29 research outputs found

    A Clinical Prognostic Framework for Classifying Severe Liver Disorders (SLDs) and Lungs’ Vulnerability to Virus

    Get PDF
    Most severe liver diseases (SLDs) are attributed to increased risk for cancer, and cirrhosis, through which the manifestation of fibrotic tissues and scars tends to affect liver function The role of liver is indispensable, as inner organ performing services that ranges from metabolism, immune guide, energy producer and digestive aid, just to mention a few. Prevalence of classification problem and the need for automated prognosis is the continual drive to apply data mining techniques and/or machine learning algorithms in medical diagnosis and clinical support systems. Computational scientists and researchers in the field of artificial intelligence have recorded notable efforts with existing methods/models for diagnosis or prognosis, yet their effectiveness and functional performance is not without drawback due to ambiguity of medical information and selected features in patients’ data to tell the future course. In this paper, a novel hybridized machine learning model was provided (Fuzzy c-BC) for clinical classification of Severe Liver Disorders (SLDs) and to determine Lungs Vulnerability (LV) to virus; by incorporating individual strength of fuzzy cluster means (FCM) and naive Bayes classifier (NBC) for projecting future course of every categorized liver disease (LD) and its implication to aggravate lungs infection if preventive measures are not taken in timely manner

    A Proposed Framework to Improve Diagnosis of Covid-19 Based on Patient’s Symptoms using Feature Selection Optimization

    Get PDF
    Recently, an epidemic called COVID-19 appeared, and it was one of the largest epidemics that affected the world in all economic, educational, health, and other aspects due to its rapid spread worldwide. The surge in infection rates made traditional diagnostic methods ineffective. Systems for automatic diagnosis and detection are crucial for controlling the outbreak. Other than PCR-RT, further diagnostic and detection techniques are needed. Individuals who receive positive test results often experience a range of symptoms, ranging from mild to severe, including coughing, fever, sore throats, and body pains. In more extreme cases, infected individuals may exhibit severe symptoms that make breathing challenging, ultimately leading to catastrophic organ failure. A hybrid approach called SDO-NMR-Hill has been developed for diagnosing COVID-19 based on a patient’s initial symptoms. This approach incorporates traits from three models, including two distinct feature selection optimization methods and a local search. Supply-demand optimization and the naked mole rat were preferred among metaheuristic methods because they have fewer parameters and a lower computing overhead, which can help you find superfluous and uninformative characteristics. Hill climbing was preferred among local search methods to maximize a criterion among several candidate solutions. We used decision trees, random forests, and adaptive boosting machine-learning classifiers in various experiments on three COVID-19 datasets. We carried out a natural selection of the classifier’s hyper-parameters to optimize outcomes. The optimal performance was attained using the adaptive boosting classifier, with an accuracy of 88.88% and 98.98% for the first and third datasets, respectively. The optimal performance for the second dataset was attained using the random forest classifier, with an accuracy of 97.97%. The suggested SDO-NMR-Hill model is evaluated using nine benchmark UCI datasets, and 15 different optimization techniques are contrasted

    Hybrid meta-heuristic algorithm based parameter optimization for extreme learning machines classification

    Get PDF
    Most classification algorithms suffer from manual parameter tuning and it affects the training computational time and accuracy performance. Extreme Learning Machines (ELM) emerged as a fast training machine learning algorithm that eliminates parameter tuning by randomly assigning the input weights and biases, and analytically determining the output weights using Moore Penrose generalized inverse method. However, the randomness assignment, does not guarantee an optimal set of input weights and biases of the hidden neurons. This will lead to ELM instability and local minimum solution. ELM performance also is affected by the network structure especially the number of hidden nodes. Too many hidden neurons will increase the network structure complexity and computational time. While too few hidden neuron numbers will affect the ELM generalization ability and reduce the accuracy. In this study, a heuristic-based ELM (HELM) scheme was designed to secure an optimal ELM structure. The results of HELM were validated with five rule-based hidden neuron selection schemes. Then HELM performance was compared with Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Classification and Regression Tree (CART) to investigate its relative competitiveness. Secondly, to improve the stability of ELM, the Moth-Flame Optimization algorithm is hybridized with ELM as MFO-ELM. MFO generates moths and optimizes their positions in the search space with a logarithm spiral model to obtain the optimal values of input weights and biases. The optimal weights and biases from the search space were passed into the ELM input space. However, it did not completely solve the problem of been stuck in the local extremum since MFO could not ensure a good balance between the exploration and exploitation of the search space. Thirdly, a co-evolutionary hybrid algorithm of the Cross-Entropy Moth-Flame Optimization Extreme Learning Machines (CEMFO-ELM) scheme was proposed. The hybrid of CE and MFO metaheuristic algorithms ensured a balance of exploration and exploitation in the search space and reduced the possibility of been trapped in the local minima. The performances of these schemes were evaluated on some selected medical datasets from the University of California, Irvine (UCI) machine learning repository, and compared with standard ELM, PSO-ELM, and CSO-ELM. The hybrid MFO-ELM algorithm enhanced the selection of optimal weights and biases for ELM, therefore improved its classification accuracy in a range of 0.4914 - 6.0762%, and up to 8.9390% with the other comparative ELM optimized meta-heuristic algorithms. The convergence curves plot show that the proposed hybrid CEMFO meta-heuristic algorithm ensured a balance between the exploration and exploitation in the search space, thereby improved the stability up to 53.75%. The overall findings showed that the proposed CEMFO-ELM provided better generalization performance on the classification of medical datasets. Thus, CEMFO-ELM is a suitable tool to be used not only in solving medical classification problems but potentially be used in other real-world problems

    Implementing decision tree-based algorithms in medical diagnostic decision support systems

    Get PDF
    As a branch of healthcare, medical diagnosis can be defined as finding the disease based on the signs and symptoms of the patient. To this end, the required information is gathered from different sources like physical examination, medical history and general information of the patient. Development of smart classification models for medical diagnosis is of great interest amongst the researchers. This is mainly owing to the fact that the machine learning and data mining algorithms are capable of detecting the hidden trends between features of a database. Hence, classifying the medical datasets using smart techniques paves the way to design more efficient medical diagnostic decision support systems. Several databases have been provided in the literature to investigate different aspects of diseases. As an alternative to the available diagnosis tools/methods, this research involves machine learning algorithms called Classification and Regression Tree (CART), Random Forest (RF) and Extremely Randomized Trees or Extra Trees (ET) for the development of classification models that can be implemented in computer-aided diagnosis systems. As a decision tree (DT), CART is fast to create, and it applies to both the quantitative and qualitative data. For classification problems, RF and ET employ a number of weak learners like CART to develop models for classification tasks. We employed Wisconsin Breast Cancer Database (WBCD), Z-Alizadeh Sani dataset for coronary artery disease (CAD) and the databanks gathered in Ghaem Hospital’s dermatology clinic for the response of patients having common and/or plantar warts to the cryotherapy and/or immunotherapy methods. To classify the breast cancer type based on the WBCD, the RF and ET methods were employed. It was found that the developed RF and ET models forecast the WBCD type with 100% accuracy in all cases. To choose the proper treatment approach for warts as well as the CAD diagnosis, the CART methodology was employed. The findings of the error analysis revealed that the proposed CART models for the applications of interest attain the highest precision and no literature model can rival it. The outcome of this study supports the idea that methods like CART, RF and ET not only improve the diagnosis precision, but also reduce the time and expense needed to reach a diagnosis. However, since these strategies are highly sensitive to the quality and quantity of the introduced data, more extensive databases with a greater number of independent parameters might be required for further practical implications of the developed models

    Multi-Objective Optimization in Metabolomics/Computational Intelligence

    Get PDF
    The development of reliable computational models for detecting non-linear patterns encased in throughput datasets and characterizing them into phenotypic classes has been of particular interest and comprises dynamic studies in metabolomics and other disciplines that are encompassed within the omics science. Some of the clinical conditions that have been associated with these studies include metabotypes in cancer, in ammatory bowel disease (IBD), asthma, diabetes, traumatic brain injury (TBI), metabolic syndrome, and Parkinson's disease, just to mention a few. The traction in this domain is attributable to the advancements in the procedures involved in 1H NMR-linked datasets acquisition, which have fuelled the generation of a wide abundance of datasets. Throughput datasets generated by modern 1H NMR spectrometers are often characterized with features that are uninformative, redundant and inherently correlated. This renders it di cult for conventional multivariate analysis techniques to e ciently capture important signals and patterns. Therefore, the work covered in this research thesis provides novel alternative techniques to address the limitations of current analytical pipelines. This work delineates 13 variants of population-based nature inspired metaheuristic optimization algorithms which were further developed in this thesis as wrapper-based feature selection optimizers. The optimizers were then evaluated and benchmarked against each other through numerical experiments. Large-scale 1H NMR-linked datasets emerging from three disease studies were employed for the evaluations. The rst is a study in patients diagnosed with Malan syndrome; an autosomal dominant inherited disorder marked by a distinctive facial appearance, learning disabilities, and gigantism culminating in tall stature and macrocephaly, also referred to as cerebral gigantism. Another study involved Niemann-Pick Type C1 (NP-C1), a rare progressive neurodegenerative condition marked by intracellular accrual of cholesterol and complex lipids including sphingolipids and phospholipids in the endosomal/lysosomal system. The third study involved sore throat investigation in human (also known as `pharyngitis'); an acute infection of the upper respiratory tract that a ects the respiratory mucosa of the throat. In all three cases, samples from pathologically-con rmed cohorts with corresponding controls were acquired, and metabolomics investigations were performed using 1H NMR technique. Thereafter, computational optimizations were conducted on all three high-dimensional datasets that were generated from the disease studies outlined, so that key biomarkers and most e cient optimizers were identi ed in each study. The clinical and biochemical signi cance of the results arising from this work were discussed and highlighted

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.

    Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management

    Get PDF
    The main aim of this book is to present various implementations of ML methods and metaheuristic algorithms to improve modelling and prediction hydrological and water resources phenomena having vital importance in water resource management

    Big Data Analytics and Information Science for Business and Biomedical Applications

    Get PDF
    The analysis of Big Data in biomedical as well as business and financial research has drawn much attention from researchers worldwide. This book provides a platform for the deep discussion of state-of-the-art statistical methods developed for the analysis of Big Data in these areas. Both applied and theoretical contributions are showcased
    corecore