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ABSTRACT 

Most classification algorithms suffer from manual parameter tuning and it 

affects the training computational time and accuracy performance. Extreme Learning 

Machines (ELM) emerged as a fast training machine learning algorithm that eliminates 

parameter tuning by randomly assigning the input weights and biases, and analytically 

determining the output weights using Moore Penrose generalized inverse method. 

However, the randomness assignment, does not guarantee an optimal set of input 

weights and biases of the hidden neurons.  This will lead to ELM instability and local 

minimum solution. ELM performance also is affected by the network structure 

especially the number of hidden nodes. Too many hidden neurons will increase the 

network structure complexity and computational time. While too few hidden neuron 

numbers will affect the ELM generalization ability and reduce the accuracy. In this 

study, a heuristic-based ELM (HELM) scheme was designed to secure an optimal 

ELM structure. The results of HELM were validated with five rule-based hidden 

neuron selection schemes. Then HELM performance was compared with Support 

Vector Machine (SVM), k-Nearest Neighbour (KNN), and Classification and 

Regression Tree (CART) to investigate its relative competitiveness. Secondly, to 

improve the stability of ELM, the Moth-Flame Optimization algorithm is hybridized 

with ELM as MFO-ELM. MFO generates moths and optimizes their positions in the 

search space with a logarithm spiral model to obtain the optimal values of input 

weights and biases. The optimal weights and biases from the search space were passed 

into the ELM input space. However, it did not completely solve the problem of been 

stuck in the local extremum since MFO could not ensure a good balance between the 

exploration and exploitation of the search space. Thirdly, a co-evolutionary hybrid 

algorithm of the Cross-Entropy Moth-Flame Optimization Extreme Learning 

Machines (CEMFO-ELM) scheme was proposed. The hybrid of CE and MFO 

metaheuristic algorithms ensured a balance of exploration and exploitation in the 

search space and reduced the possibility of been trapped in the local minima.  The 

performances of these schemes were evaluated on some selected medical datasets from 

the University of California, Irvine (UCI) machine learning repository, and compared 

with standard ELM, PSO-ELM, and CSO-ELM. The hybrid MFO-ELM algorithm 

enhanced the selection of optimal weights and biases for ELM, therefore improved its 

classification accuracy in a range of 0.4914 - 6.0762%, and up to 8.9390% with the 

other comparative ELM optimized meta-heuristic algorithms. The convergence curves 

plot show that the proposed hybrid CEMFO meta-heuristic algorithm ensured a 

balance between the exploration and exploitation in the search space, thereby 

improved the stability up to 53.75%. The overall findings showed that the proposed 

CEMFO-ELM provided better generalization performance on the classification of medical 

datasets. Thus, CEMFO-ELM is a suitable tool to be used not only in solving medical 

classification problems but potentially be used in other real-world problems. 
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ABSTRAK 

Kebanyakan algoritma-algoritma klasifikasi menghadapi masalah penalaan 

parameter secara manual,  dan ia mempengaruhi masa pengkomputeran latihan dan 

prestasi ketepatan.  Mesin Pembelajaran Extrim (ELM)  muncul sebagai algoritma 

pembelajaran mesin pantas yang menghapuskan penalaan parameter dengan 

pengumpukan secara rawak pengumpukan pemberat dan bias input, dan secara analitik 

menentukan pemberat menggunakan kaedah songsang umum Moore Penrose. Walau 

bagaimanapun, umpukan parameter secara rawak,  tidak dapat menjamin nilai optimun 

bagi input dan bias neuron tersembunyi dan ini akan mengakibatkan ketidakstabilan 

ELM dan penyelesaian minima setempat. Prestasi ELM juga dipengaruhi oleh struktur 

rangkaian terutamanya bilangan neuron tersembunyi. Terlalu banyak bilangan neuron 

tersembunyi akan meningkatkan kompleksiti struktur rangkaian dan masa 

pengkomputeran sementara bilangan neuron tersembunyi terlalu sedikit akan 

menjejaskan keupayaan pengitlakan ELM dan mengurangkan ketepatan. Dalam kajian 

ini, skema ELM berasaskan heuristik (HELM) direka untuk memastikan struktur ELM 

yang optimum. Hasil  HELM disahkan dengan lima skema aturan-asas penentuan 

neuron tersembunyi. Seterusnya, prestasi HELM dibandingkan dengan Mesin 

Sokongan Vektor (SVM), k-Nearest Neighbour (KNN) dan Pohon Pengelasan dan 

Regresi (CART) untuk mengkaji kebolehsaing relatifnya. Kedua, bagi meningkatkan 

kestabilan ELM, algoritma Moth-Flame Optimization dilakukan dengan ELM sebagai 

MFO-ELM. MFO menjanakan rama-rama dan mengoptimunkan kedudukan mereka 

dalam ruang carian menggunakan model logaritma lingkaran untuk mendapatkan nilai 

optima bagi input pemberat dan bias. Pemberat dan bias input yang optimum dari 

ruang carian diteruskan ke ruang input ELM Walua bagaimanapun, ia tidak 

menyelesaikan sepenuhnya masalah terperangkap di kawasan setempat kerana MFO 

tidak dapat memastikan keseimbangan yang baik antara eksploitasi dan eksplorasi 

ruang carian. Ketiga, algoritma gabungan evolusi-bersama iaitu skema Cross-Entropy 

Moth-Flame Optimization Extreme Learning Machines (CEMFO-ELM) dicadangkan. 

Gabungan algoritma metaheuristik CE dan MFO memastikan keseimbangan 

eksplorasi dan eksploitasi id ruang carian dan mengurangkan kebarangkalian untuk 

terperangkap dalam minima setempat. Prestasi skema ini dinilai pada beberapa set data 

perubatan terpilih dari machine learning repository University of California, Irvine 

(UCI), dan dibandingkan dengan ELM piawai, PSO-ELM dan CSO-ELM. Gabungan 

algoritma MFO-ELM telah meningkatkan keupayaan pemilihan nilai optima pemberat 

dan bias ELM, oleh itu ketepatan pengelasan ELM telah ditingkatkan antara julat 

0.4914-6.0762%, dan sehingga 8.9390% berbanding dengan algoritma ELM 

pengoptima metaheuristik yang lain.  Plot keluk penumpuan menunjukkan bahawa 

algoritma gabungan CEMFO yang dicadangkan memastikan keseimbangan antara 

eksplorasi dan eksploitasi dalam ruang carian, sehingga meningkatkan kestabilan 

hingga 53.75%. Dapatan keseluruhan menunjukkan bahawa CEMFO-ELM yang 

dicadangkan menghasilkan prestasi pengitlakan yang lebih baik ke atas pengelasan 

data perubatan. Oleh itu, CEMFO-ELM adalah alat yang sesuai untuk digunakan 

bukan hanya dalam menyelesaikan masalah klasifikasi perubatan tetapi juga 

berpotensi digunakan dalam masalah dunia nyata yang lain.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview of the Study 

The heart of medical science is clinical diagnosis of human ailments. In recent 

years, there has been a dramatic increase in the use of computational techniques to 

analyse medical datasets. The general approach falls under artificial intelligence or 

machine learning, in which a computer program “learns” important features of a 

dataset to make predictions about other data that are not part of the training set 

(Tharwat, 2020). A classifier separates instances in a dataset into (usually) two or 

(rarely) more classes based on the attributes measured in each subject. Analysis of 

medical data and diagnosis  of diseases involve the use of classifiers (Foster, 

Koprowski, Skufca, et al., 2014).  

A major challenge in medical science is the early detection and treatment of 

diseases in patients. Doctors make mistakes when analyzing the symptoms of diseases 

(Fathurachman and Kalsum, 2014). Wrong diagnosis results in wrong treatments, 

which may have adverse effects and sometimes death of patients. Several techniques 

are used for this over the ages (Tsanas, Little, and Mcsharry, 2013). Human experts 

have been employed as diagnostic agents: Some human agents apply the heuristic 

approach to medical diagnosis – as in “trado-medical”, then orthodox medicine – using 

laboratory analysis of symptoms specimen from the patients. The advances in modern 

technology have brought new dimensions to medical diagnosis, yet there are various 

challenges in these tools. Therefore, automated systems can assist the doctors in 

clinical diagnosis based on established symptoms in the systems’ repository. Such 

systems will reduce the rate of wrong diagnosis and mortality rate.   
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Many automated techniques have been used by researchers in medical 

classification  (Yassin, Omran, El Houby, et al., 2018).  There are two broad groups of 

such techniques - statistical and soft computing methods. The statistical methods draw 

inferences from relationships that exist among various features of datasets, while the 

soft computing methods use computational algorithms on datasets to achieve the 

desired results. The marriage between statistics and computer science poses a 

computational challenge to building statistical models that can handle massive data to 

run billions or trillions of data points (Kotsavasiloglou, Kostikis, Hristu-Varsakelis, et 

al., 2017) and the draw expected results in less time with little or no human 

intervention. Statistical techniques like Euclidian minimum distance (EMD), quadratic 

minimum distance (QMD), and K-nearest neighbor, Bayesian decision theory, are 

used in constructing classifiers (Mohapatra, Chakravarty, and Dash, 2015). The 

challenge of statistical techniques is that their performance depends on the correctness 

of some underline assumptions for successful application. Therefore, the accuracy of 

statistical based classifiers is generally less than the soft computing methods. The soft 

computing techniques are implemented in machine learning algorithms. 

Several machine learning algorithms are used for the classification of datasets 

in medical research. Some of them are Artificial Neural Network (ANN) (Shahid, 

Rappon, and Berta, 2019), Random Forest (RF) (Alam, Rahman, and Rahman, 2019), 

Support Vector Machines (SVM) (Wang and Chen, 2020), Multilayer Perceptions 

(MLP), k-Nearest Neighbors (KNN) and Bagging, etc. (Mangesh Metkari, 2014). The 

machine learning algorithms have hyper-parameters whose values cannot be estimated 

directly from datasets (Saporetti, Duarte, Fonseca, et al., 2019). These hyper-

parameters have a great influence on the performance of the classification algorithms. 

However, most of these machine learning parameters have some issues in their 

learning processes - they are characterised by parameter tuning which makes them 

slow and gets stuck in local minimal, they could not reach optimal performance.  

Huang proposed Extreme Learning Machines (ELM) to address the problem 

of parameter tuning (Huang, Zhu, and Siew, 2004). The ELM learning principle is 

essentially a linear model (Wang et al., 2017). ELM is a three-step training algorithm. 

It is simple, and it requires no tuning like the gradient-descent algorithms (Baron and 
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Zhang, 2020). ELM randomly assigns the connection weights and biases to the hidden 

neurons, then computes the output of the hidden neurons and analytically determines 

the output weights.  The weights between the hidden nodes and the output neuron(s) 

are learned in a single step. Therefore, the parameters (weights and biases) of the 

hidden layer no longer require iterative tuning as they were in the conventional 

learning machines (Chen, Kloft, Yang, et al, 2018; Huang et al., 2006). ELM gains 

popularity because of its fast learning speed, which is far superior to the gradient 

descent based algorithms.  

In recent times, researchers have exploited the usage of ELM in many real-

world applications. Some of the application areas of ELM are computer vision (Albadr 

and Tiun, 2017; Wang, Tianlei, Cao, et al., 2018), image processing (Cao and Lin, 

2015; López-Úbeda, Díaz-Galiano, Martín-Noguerol, et al., 2021), time series analysis 

(Yayık, Kutlu, and Altan, 2019), biomedical applications (Duan, Li, Yang, et al., 2018; 

Raghuwanshi and Shukla, 2020). In such research areas, ELM proves to achieve good 

generalization performance, while maintaining low computational cost. The main idea 

of ELM is to randomly generate the input weights of a single hidden layer feedforward 

neural network (SLFN) and analytically determine the output weights. Considering the 

high value of health research to society, and how valuable the generalization 

performance of ELM is, its efficient classification of medical datasets will have a direct 

and indirect impact on diagnosis, treatment, the pattern of health care, and 

functionality of public health intervention. Therefore, this research focuses on 

improving ELM to further exploit its numerous advantages for better classification 

results especially in medical datasets. 

1.2 Problem Background 

The existing study shows that different artificial intelligence (AI) methods 

have been employed by medical experts to assist them in the medical diagnosis of 

patients in recent times (Yassin, 2018). Many of these machine learning algorithms are 

single hidden layer feedforward neural networks (SLFN) (Albadr, 2017). The 

algorithms are based on gradient descent methods, using backpropagations (BP), to 
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train SLFN (Decherchi, Gastaldo, Zunino, et al., 2013; Eshtay, Faris, and Obeid, 

2018a). They are challenged with turning of the parameters. SLFN has been well 

studied and applied in various areas of machine learning, and it is commended by 

researchers for its capabilities and fault tolerance abilities (Da Silva and Krohling, 

2018; Nayak, Dash, Majhi, et al., 2018). Although these algorithms are popular, they 

have the difficulties that they are highly dependent on the hyper-parameters (initial 

weights, biases, learning rate, etc.) of the network; they can easily be stuck in local 

minimal; and they are usually slow in convergence (Akusok, 2016; Ling, Song, Han, 

et al., 2019; Song, Chunning, Feng,  et al., 2014). This is because the parameters 

require iterative tuning (Li, Shuai, You, et al., 2016).  

Huang (2004) proposed Extreme Learning Machine (ELM) to address the 

challenge of parameter turning in gradient-descent algorithms. Many researchers 

embraced ELM, and it has been applied in many areas including medical diagnosis 

(Toprak, 2018). However, the acceptance of ELM has opened up some gaps for the 

improvements of the algorithm. It also requires a higher number of processing nodes 

in the hidden layer (Faris, Mirjalili, Aljarah, et al., 2020b) – that is, a complex network 

structure; instability of the network output (Eshtay, Faris, and Obeid, 2018b); and 

eventually a low degree of accuracy. Filling these gaps is being responded to in many 

ways by researchers. 

ELM’s complex network structure affects its performance of ELM (Salam, 

Zawbaa, Emary, et al., 2016). It reduces its response to unknown data.  The basic ELM 

requires 𝑁̃ hidden neurons to train 𝑁 distinct datasets (Huang, Li, Chen, et al., 2008; 

Huang, Huang, Song, et al., 2015). Many hidden neurons have little contribution to the 

performance of the architecture (Rong, Ong, Tan, et al., 2008).   More so, too large a 

network leads to over-fitting and high cost of the network. This affects its deployment 

for some time-sensitive applications.   

Several variants of ELM were proposed to ensure the optimal number of hidden 

neurons. Lekamalage, Kasun, Yang, et al., (2016) employed ELM Auto-Encoder 

(ELM-AE) for dimensional reduction. Their research investigated linear and non-

linear ELM-AE and sparse ELM-AE that are based on orthogonal and sparse input 
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neurons without tuning. They showed that ELM-AE and SELM-AE learn the between-

class scatter matrix, and distance points within a cluster are reduced. More so, the 

learning of their algorithms is robust to noise, and the normalized mean square error 

(NMSE) is reduced. However, the sparsity of the algorithms is low and the 

computational time is high.  

Regularization parameter has also been used to improve the compactness of 

ELM network architecture. Some of these approaches are based on ridge regression 

theory and weighted least squares (Deng, Zheng, and Chen, 2009). Martínez-Martínez 

et al. (2011) improved the work of Deng et al. They proposed the use of ridge 

regression, elastic net, and lasso methods to prune the size of hidden neurons in ELM 

architecture. Their work was validated with some regression benchmark tasks, and it 

was proved to scale a more compact network with a competitive result when compared 

with ELM. However, Inaba et al. (2018) appraised the generalization of their 

algorithms but shows that the ridge regularized ELM requires large memory space, 

and since large matrix inversion is involved, the computational cost is high. Therefore, 

they proposed the generalized regularized ELM (GR-ELM) approach for multiclass 

classification tasks. The approach combined the Frobenius norm and ℓ2,1norm of 

output weights as ELM penalty. The R-ELM was maintained for binary classification 

tasks. The Alternating Direction Method for Multiplier (ADMM) was used for 

implementation. They came up with a more compact network structure. However, the 

approach becomes more complex and the issue of computational cost remains 

unresolved.  

Some static rule based approaches have been used in literature. The rules relate 

the network size to the number of features and/or the number of output neurons 

(Eshtay, Faris, and Obeid, 2020; Hecht-Nielsen, 1968; Masters, 1993; Sheela and 

Deepa, 2013). However, the rule based approaches are static and have not been proven 

that the network size of the SLFN depends on the number of features or the output 

nodes.  

Some other improvements on ELM network structures are online-sequential 

ELM (Linag, Huang, Saratchandran, et al., 2006), Incremental-ELM (Huang, Li, 
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Chen, et al, 2008), pruning-ELM (Rong, 2008), Voting based ELM (Huang et al., 

2008), two-stage ELM (Zhao, Wang, and Park, 2012), Ensemble ELM (Albadr, 2017)  

and many more. Multiple tests of error comparisons are required by these methods to 

determine the optimal number of hidden neurons. These approaches are time-

consuming (Tian, Ren, and Wang, 2019). More so, they could not adequately address 

the problem of how the optimal number of the hidden neuron is determined. The 

problem of over-fitting persists, and some of the approaches have little or no effect on 

the output. In this research, a randomized heuristic determination of optimum network 

structure for ELM classification is proposed. 

ELM’s random assignment of input weights and hidden neuron biases poses a 

negative challenge to the stability of ELM. Wang et al. (2011) proposed an Efficient 

Extreme Learning Machine (EELM) as a high-quality feature mapping algorithm. 

EELM makes a proper selection of input weights and biases before it calculates the 

output weight. The focus was to ensure a full column rank hidden neuron output 𝐻. 

Their work improved learning rates and ensured a robust network structure. Over-

parameterized (a large number of hidden neurons) design of ELM usually results in an 

ill-conditioning problem (Dash and Patel, 2015; Janakiraman, Nguyen, and Assanis, 

2016; Mohapatra, Chakravarty, and Dash, 2015b; Zhang, Yang, Cao, et al., 2018)  

Janakiraman et al (2016) attempt to have a bounded parameter via stochastic gradient 

descent. The results of the work were evaluated using the Lyapunov approach for error 

measure and the boundedness of the learning rates. Their work avoided the bad 

regularization of online learning for the identification of non-linear dynamic systems. 

Although these methods improve the performance of the ELM algorithm, it is still 

subject to over-fitting, it tends to fall into a local minimum, and the improvement on 

the accuracy of the algorithm is possible. 

Optimization of the input weights and biases can improve the stability and 

accuracy of ELM (Ling et al., 2019; Maimaitiyiming et al., 2019; Tian, et al., 2019). 

Meta-heuristic algorithms are being used in recent times by researchers to optimize the 

parameter settings of ELM (Mohapatra et al., 2015, Eshtay et al (2018b)). The bio-

inspired optimization techniques are better meta-heuristic algorithm options to 

optimize the parameters because they provide near optima solutions that are more 
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acceptable to researchers (Hegazy, Makhlouf, and El-Tawel, 2019; Li, Shuang, Zhao, 

et al., 2019; Mirjalili et al., 2017). They are Particle Swarm Optimized ELM (PSO-

ELM) (Vidhya and Kamaraj, 2017), Genetic Algorithm ELM (GA-ELM) (Yang, Yi, 

Zhao, et al., 2013), Cuckoo Search Optimization algorithm (CSO-ELM) (Mohapatra 

et al., 2015), FireFly algorithm (FA) (Su and Cai, 2016; Zhou and Jiao, 2017), Bat 

Swarm Optimization (BSO) (Alihodzic, Tuba, and Tuba, 2017), Artificial Bee Colony 

(ABC-ELM) (Wang, Wang, Ai, et al., 2017b), Artificial Immune System ELM (AIS-

ELM) (Tian, Li, Wu, et Lal., 2018), Differential Evolution (DE-ELM) (Saporetti, 

2019), Improved Grey Wolf Optimization (IGWO) model (Cai, Gu, Luo, et al., 2019), 

etc. Despite the relative success of these metaheuristics approaches in terms of 

flexibility and efficiency towards solution finding, they continue to suffer slow speed 

of convergence, and they are often trapped in local optimal (Liu, Liu, and Li, 2019) 

thereby affecting the efficiency of ELM. Yang and Duan (2020) proposed a hybrid 

model of Artificial Bee Colony (ABC) and Differential Evolution (DE) optimization 

techniques to improve the parameter selection of ELM. The model improved the 

generalization performance with less processing time offered by ELM. The deficiency 

of initial random assignment of input weights and biases was also improved, and the 

results of the classification were also improved.  However, the exploitation of ABC is 

poor (Li, Liu, Le, et al., 2019) and the DE is computationally intensive (Shehab, 

Abualigah, Al Hamad, et al., 2019).  

Moth Flame Optimization (MFO) was proposed by Mirjalili in 2015. The 

algorithm offers a competitive result compared with other state-of-the-arts 

metaheuristic optimization algorithms (Luo, Jie, Chen, et al., 2019; Pelusi, Mascella, 

Tallini, et al., 2020). However, the mechanism of position update and the convergent 

constant of MFO lay strong emphasis on exploitation rather than a one-to-one 

assignment of moth and flame provision for exploration (Khalilpourazari and 

Khalilpourazary, 2019). Each agent may be far away from the optimum point, this 

might increase uncertainty. The initial position of the algorithm might influence the 

properties of MFO to a certain degree. Therefore, it is necessary to strike a balance 

between the local and global search space for the efficient performance of the meta-

heuristic algorithms and ensure the selection of optimal parameters for ELM. Xi et al 

(2019) proposed Gaussian mutation to improve the exploration of MFO, and chaotic 
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exploitation to enhance the local search. The proposed Chaotic Local Search Gaussian 

mutation Moth-Flame Optimization (CLSGMFO) was used to optimize the kernel 

function and penalty coefficient of KELM. The algorithm was tested on 23 benchmark 

functions, and then applied to 2 financial datasets to prove its competitiveness with 

some other meta-heuristic algorithms. However, their proposed algorithm did not 

consider the selection of optimal input weights and biases. More so the evaluation of 

Gaussian mutation function is relatively expensive (Shehab, 2019). 

Another promising meta-heuristic algorithm used to improve the exploration is 

the cross-entropy (CE) algorithm. It was used as an operator to improve the exploration 

of the FireFly Algorithm (FA) in (Li, 2019), and in the Bat algorithm (Li and Le, 2019). 

Thus, CE is promising for global optimization search. The algorithms fully absorb the 

ergodicity, adaptability, and robustness of the cross-entropy method. Therefore, to 

strike a balance between the exploration and exploitation in the optimization search 

space, this research proposes to embed the CE into MFO as an exploration operator.  

This would bring a new co-evolutionary hybrid algorithm called Extreme Learning 

Machines based Cross-Entropy Moth-Flame Optimization (CEMFO) scheme. 

Therefore CEMFO is proposed to balance the exploration and exploitation of the 

optimization search space to select optimal input weights and biases for ELM and 

ensure improved stability and accuracy of the ELM classification algorithm. The 

improvement on the ELM classifier will have a contribution to the classification of 

medical datasets 

1.3 Problem Statement 

ELM is a promising classification algorithm for the classification of medical 

datasets. However, the size of the network architecture and the initial settings of the 

input weights and biases are key issues that greatly affect the overall performance of 

ELM classification algorithms (He, Liu, Wu, et al., 2019). ELM architecture requires 

a high number of hidden neurons to have a good performance. This reduces its 

response to unknown data. Although the rule based approaches have been used to 

determine the optimal network size, this could not guarantee optimal network 
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structure. More so, the poor initial setting of the input weights and biases makes ELM 

ill-conditioned, this affects the stability and accuracy of the output of ELM (Eshtay, 

2018a). Also, meta-heuristic techniques are employed to select optimal input 

parameters for the machine learning classification algorithms. However, the imbalance 

between exploration and exploitation in the metaheuristics algorithm is another issue that 

can lead to poor-quality solutions. Moreover, most ELM individual based optimization 

algorithms suffer slow convergence and are stuck in the local optimum (Li and Le, 

2019; Yang and Duan, 2020). The resultant effect is the selection of poor input weights 

and biases for the ELM classification algorithm.  Therefore, this research proposes 

heuristic, meta-heuristic, and co-evolutionary meta-heuristic optimization techniques 

to improve the network complexity, stability, and exploration and exploitation of 

optimization search space for Extreme Learning Machines in solving medical 

classification problems. 

Consequently, the hypothesis of this research can be stated as follows: 

The performance of extreme learning machines (ELM) in classification could 

be enhanced with heuristic, meta-heuristic, and co-evolution of meta-heuristic 

optimization schemes to ensure optimal network structure, stable algorithm, and better 

accuracy. 

1.4 Research Questions 

To address the problems of classification specified above, the following 

research questions are presented: 

i. How a heuristic scheme can determine an optimum number of hidden 

neurons to ensure a compact network structure of the Extreme Learning 

Machines classification algorithm? 
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ii. How Moth-Flame optimization algorithm can improve the selection of 

the input weights and biases of Extreme Learning Machines?  

iii. How a hybrid of Cross-Entropy and Moth-Flame optimization 

techniques could balance the exploration and exploitation of the 

optimization search space for optimal parameter selection for Extreme 

Learning Machines? 

1.5 Aim of the Research  

This research aims to improve the generalization performance of Extreme 

Learning Machines in terms of a compact network structure, stability, and accuracy 

using a hybrid Cross-Entropy Moth-Flame-Extreme Learning Machine (CEMFO-

ELM).    

1.6 Research Objectives 

Based on the problem statement and the aim of this research, the research 

objectives are set as follows: 

i. To determine a compact and efficient network size of hidden neurons with a 

heuristic scheme to improve the performance of Extreme Learning Machines 

classification. 

ii. To enhance the selection of optimum input weights and biases of Extreme 

Learning Machines classification algorithm with Moth-Flame Optimization 

algorithm to improve its stability and accuracy. 

iii. To propose a hybrid Cross-Entropy Moth-Flame Optimization (CE-MFO) 

algorithm to balance the exploration and exploitation of the search space for 
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the selection of optimal parameters for Extreme Learning Machines 

classification. 

1.7 Research Scope 

This research is proposed within the following scopes: 

i. Five (5) medical datasets are used in this research. They are Blood, 

Breast cancer, Pima Indian diabetes, Bupa liver, and Phoneme datasets. 

The key feature of these datasets is that they have linearly non-

separable separable distribution. Only binary class datasets are 

considered in this study. 

ii. The research focuses on building a compact network size, improved 

stability, and accuracy of ELM for selected datasets.  

iii. Although ELM can be trained with any continuous piece-wise 

activation function, only sigmoid is used in all the simulations to ensure 

consistency. 

iv. The study considers meta-heuristics algorithms for enhancing ELM 

classification tasks. It proposes a hybrid of two meta-heuristic 

algorithms as a co-evolutionary algorithm to balance the exploration 

and exploitation of the search space of the meta-heuristic algorithms.  

v. The proposed algorithm is implemented on MATLAB running on 

Windows 10 – 64-bit operating systems install on core i7 CPU @ 

1.90GHz. 
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1.8 The Organization of the Thesis 

The rest of the thesis is organized as outlined below: 

Chapter 2: Literature related to this research is reviewed in order to formulate the 

research problem. The concepts of classification and classification models, the trend in 

ELM enhancement leading to the direction of this research are presented. Chapter 3 

presents the methodology of this research is presented. The problems are defined, the 

proposed solutions are designed, datasets are described and the evaluation metrics used 

for the results are presented. In this chapter 4, a heuristic approach is used to determine 

the optimal learning structure of ELM. The optimal structures are validated by rule 

based network structures. The performances are compared with three (3) other 

machine learning algorithms namely KNN, SVM, and CART on five (5) machine 

learning medical classification datasets – Blood, Breast cancer, Diabetes, Bupa Liver, 

and Phoneme. The results are analysed on three evaluation criteria: accuracy, 

computational time and standard deviation. Chapter 5 proposed Moth-Flame 

Optimization to enhance the selection of parameters for ELM. The performance of the 

algorithm is measured using standard classification performance metrics. Chapter 6: 

This chapter proposed a hybrid of Cross-Entropy and Moth-Flame Optimization to 

enhance Extreme Learning Machines (CEMFO-ELM). This ensures a balance 

between exploration and exploitation of the search algorithms. The proposed hybrid 

algorithm is described and the results are discussed. Chapter 7 conclusions the 

research. 
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