261 research outputs found

    Benefits of connecting rfid and lean principles in health care

    Get PDF
    The performance management process in health care is far behind compared to the manufacturing and service industries. Although nowadays the health care organizations are able to deal with a greater rank diseases, their cost, quality and delivery has essentially not improved significantly, and the difference with the other industries even seems to have increased. As opposed to this situation health care has a tremendous opportunity to deploy lean principles to reduce internal/external costs, improve patient safety, increase profits, reduce litigation and decrease the dependence on Government and Insurance. The application of these principles is being facilitated by the use of the new technologies. A new technology allowing personnel to constantly "see" what's happening with regards to patients schedule, backlog, workflow, inventory levels, resource utilization, quality, etc., is Radio Frequency Identification (RFID). The aim of this paper is to analyse the benefits that can be derived from the joint use of lean principles and RFID technology in health care

    BENEFITS OF CONNECTING RFID AND LEAN PRINCIPLES IN HEALTH CARE

    Get PDF
    The performance management process in health care is far behind compared to the manufacturing and service industries. Although nowadays the health care organizations are able to deal with a greater rank diseases, their cost, quality and delivery has essentially not improved significantly, and the difference with the other industries even seems to have increased. As opposed to this situation health care has a tremendous opportunity to deploy lean principles to reduce internal/external costs, improve patient safety, increase profits, reduce litigation and decrease the dependence on Government and Insurance. The application of these principles is being facilitated by the use of the new technologies. A new technology allowing personnel to constantly "see" what’s happening with regards to patients schedule, backlog, workflow, inventory levels, resource utilization, quality, etc., is Radio Frequency Identification (RFID). The aim of this paper is to analyse the benefits that can be derived from the joint use of lean principles and RFID technology in health care.

    Critical Management Issues for Implementing RFID in Supply Chain Management

    Get PDF
    The benefits of radio frequency identification (RFID) technology in the supply chain are fairly compelling. It has the potential to revolutionise the efficiency, accuracy and security of the supply chain with significant impact on overall profitability. A number of companies are actively involved in testing and adopting this technology. It is estimated that the market for RFID products and services will increase significantly in the next few years. Despite this trend, there are major impediments to RFID adoption in supply chain. While RFID systems have been around for several decades, the technology for supply chain management is still emerging. We describe many of the challenges, setbacks and barriers facing RFID implementations in supply chains, discuss the critical issues for management and offer some suggestions. In the process, we take an in-depth look at cost, technology, standards, privacy and security and business process reengineering related issues surrounding RFID technology in supply chains

    Directly printable compact chipless RFID tag for humidity sensing

    Get PDF
    In this letter, 8-bit paper based printable chipless tag is presented. The tag not only justifies the green electronic concept but also it is examined for sensing functionality. The compact tag structure comprises of seven L-shaped and one I-shaped dipole structure. These conducting tracks/dipole structures are of silver nano-particle based ink having a conductivity of 1.1 × 107 S/m. Each conducting track yields one bit corresponding to one peak. The tag design is optimized and analyzed for three different flexible substrates i.e. paper, Kapton¼ HN, and PET. The tag has ability to identify 28 = 256 objects, by using different binary combinations. The variation in length of particular conducting strip results in a shift of peak for that specific conducting track. This shift corresponds to logic state-1. The response of the tag for paper, Kapton¼ HN, and PET substrates is observed in the frequency band of 2.2–6.1 GHz, 2.4–6.3 GHz, and 2.5–6.5 GHz, respectively. The tag has an attractive nature because of its easy printability and usage of low-cost, flexible substrates. The tag can be deployed in various low-cost sensing applications

    Directly Printable Organic ASK Based Chipless RFID Tag for IoT Applications

    Get PDF
    A chipless RFID tag with unique ASK encoding technique is presented in this paper. The coding efficiency is enhanced regarding tag capacity. The amplitude variations of the backscattered RFID signal is used for encoding data instead of OOK Strips of different widths are used to have amplitude variations. The ASK technique is applied using three different substrates of Kapton (R) HN, PET, and paper. To incorporate ASK technique, dual polarized rhombic shaped resonators are designed. These tags operate in the frequency range of 3.1-10.6 GHz with size of 70 x 42 mm(2). The presented tags are flexible and offer easy printability. The paper-based decomposable organic tag appears as an ultra low-cost solution for wide scale tracking. This feature enables them to secure a prominent position in the emerging fields of IoT and green electronics

    RF and THz Identification Using a New Generation of Chipless RFID Tags

    Get PDF
    This article presents two chipless RFID approaches where data are reading using electromagnetic waves and where the medium encoding the data is completely passive. The former approach rests on the use of RF waves (more precisely the ultra-wide band UWB). The tags developed for this application are comparable with very specific, planar, conductive, radar targets where the relation between the tag geometry and its electromagnetic signature is perfectly known and is used to encode the data. The principle of operation as well as the realization process of the RF tags presented in this paper is similar to those already reported in the literature. However, contrary to the majority of chipless RFID tags, these labels do not present an antenna function dissociated from the circuit part where the data are stored. Here, functions such as the receiver, the treatment and the emitter of the signal are closely dependent. The data storage capacity of the RF chipless tags is proportional to of the used frequency bandwidth. As radio spectrum is regulated, the number of possible encoding bits is thus strongly limited with this technology. This is the reason why we introduce a new family of tags radically different from the preceding one, where data is encoded in volume thanks to a multilayer structure operating in the THz domain. These two approaches although different are complementary and allow to increase significantly the data storage capacity of the chipless tags. Simulation and experimental results are reported in this paper for both configurations. We demonstrate a coding capacity of 3.3 bit/cm2 for RFID chipless tags and a potential 10 bits coding capacity in the THz domain

    Design de circuitos RFID multi-ressonantes sem chip como substitutos dos cĂłdigos de barras

    Get PDF
    The chipless RFID technology , appears from an e ort to design low-cost RFID tags without the use of traditional silicone Application Specific Integrated Circuits (ASICs) that are the price bottleneck of the typicall RFID technology. In this way, tags become fully passive and without any active processing unit, thus the Chipless RFID system have more similarities with the Radio Detection And Ranging (RADAR) systems than with the common RFID systems. This dissertation sheds light on the problems and challenges that the RFID technology has as replacement of the optical barcode labels, discuss the state of the art of the chipless RFID technology and presents a model to describe the relationship between the multi-resonant circuit resonant frequency and the resonant spirals length. Finally, a chipless RFID system is simulated making use of the fractional Fourier Transform as means to separate linear frequency modulated signals that collide in both time and frequency domain. The results achieved with dissertation not only aid designers with the synthesis of multi-resonant circuits but also prove the reliability of the use of the fractional Fourier Transform as a means of manipulating the time-frequency domain and successfully recovering individual tags' ID from a signal containing more than one collided backscattered signal.A tecnologia de RFID sem chip, surgiu de um esforço para obter etiquetas RFID de baixo custo sem o uso de circuitos integrados de aplicação especifica (ASICs) que sĂŁo a restrição Ă  diminuição dos preço dos tipicos sistemas RFID. Desta forma, as tags tornam-se totalmente passivas e sem nenhuma unidade de processamento ativa, passando, os sistemas RFID sem chip a ter mais semelhanças com os sistemas de Radio Detection And Ranging (RADAR) do que com os sistemas RFID comuns. Esta dissertação esclarece os problemas e desafios que a tecnologia RFID enfrenta enquanto substituta das etiquetas de cĂłdigo de barras apresentando tambĂ©m o estado da arte da tecnologia RFID sem chip. TambĂ©m apresenta e propĂ”e um modelo para descrever a relação entre a frequĂȘncia de ressonĂąncia do circuito multi-ressonante e o comprimento das espirais ressonantes. Finalmente, um sistema RFID sem chip Ă© simulado usando a transformada fracionĂĄria de Fourier como meio de separar sinais modulados linearmente em frequĂȘncia que colidem simultaneamente no domĂ­nio do tempo e da frequĂȘncia. Os resultados alcançados com esta dissertação por um lado ajudam os projetistas com a sĂ­ntese de circuitos multi-ressonantes e por outro provam a confiabilidade do uso da transformada fracionĂĄria de Fourier como um meio de manipular o domĂ­nio tempo-frequĂȘncia para recuperar com sucesso informa ção individual de ID a partir de um sinal que contĂ©m mais de um sinal transmistido de uma etiqueta sem chip.Mestrado em Engenharia EletrĂłnica e TelecomunicaçÔe

    Sub-ppm NO2 Detection through Chipless RFID Sensor Functionalized with Reduced SnO2

    Get PDF
    NO2 is an important environmental pollutant and is harmful to human health even at very low concentrations. In this paper, we propose a novel chipless RFID sensor able to work at room temperature and to detect sub-ppm concentration of NO2 in the environment. The sensor is made of a metallic resonator covered with NO2-sensitive tin oxide and works by monitoring both the frequency and the intensity of the output signal. The experimental measurements show a fast response (a few minutes) but a very slow recovery. The sensor could therefore be used for non-continuous threshold monitoring. However, we also demonstrated that the recovery can be strongly accelerated upon exposure to a UV source. This opens the way to the reuse of the sensor, which can be easily regenerated after prolonged exposure and recycled several times

    Developing Wound Moisture Sensors: Opportunities and Challenges for Laser-Induced Graphene-Based Materials

    Get PDF
    Recent advances in polymer composites have led to new, multifunctional wound dressings that can greatly improve healing processes, but assessing the moisture status of the underlying wound site still requires frequent visual inspection. Moisture is a key mediator in tissue regeneration and it has long been recognised that there is an opportunity for smart systems to provide quantitative information such that dressing selection can be optimised and nursing time prioritised. Composite technologies have a rich history in the development of moisture/humidity sensors but the challenges presented within the clinical context have been considerable. This review aims to train a spotlight on existing barriers and highlight how laser-induced graphene could lead to emerging material design strategies that could allow clinically acceptable systems to emerge

    Design of an Ultra-wideband Radio Frequency Identification System with Chipless Transponders

    Get PDF
    The state-of-the-art commercially available radio-frequency identification (RFID) transponders are usually composed of an antenna and an application specific integrated circuit chip, which still makes them very costly compared to the well-established barcode technology. Therefore, a novel low-cost RFID system solution based on passive chipless RFID transponders manufactured using conductive strips on flexible substrates is proposed in this work. The chipless RFID transponders follow a specific structure design, which aim is to modify the shape of the impinged electromagnetic wave to embed anidentification code in it and then backscatter the encoded signal to the reader. This dissertation comprises a multidisciplinary research encompassing the design of low-cost chipless RFID transponders with a novel frequency coding technique, unlike usually disregarded in literature, this approach considers the communication channel effects and assigns a unique frequency response to each transponder. Hence, the identification codes are different enough, to reduce the detection error and improve their automatic recognition by the reader while working under normal conditions. The chipless RFID transponders are manufactured using different materials and state-of-the-art mass production fabrication processes, like printed electronics. Moreover, two different reader front-ends working in the ultra-wideband (UWB) frequency range are used to interrogate the chipless RFID transponders. The first one is built using high-performance off-theshelf components following the stepped frequency modulation (SFM) radar principle, and the second one is a commercially available impulse radio (IR) radar. Finally, the two readers are programmed with algorithms based on the conventional minimum distance and maximum likelihood detection techniques, considering the whole transponder radio frequency (RF) response, instead of following the commonly used approach of focusing on specific parts of the spectrum to detect dips or peaks. The programmed readers automatically identify when a chipless RFID transponder is placed within their interrogation zones and proceed to the successful recognition of its embedded identification code. Accomplishing in this way, two novel fully automatic SFM- and IRRFID readers for chipless transponders. The SFM-RFID system is capable to successfully decode up to eight different chipless RFID transponders placed sequentially at a maximum reading range of 36 cm. The IR-RFID system up to four sequentially and two simultaneously placed different chipless RFID transponders within a 50 cm range.:Acknowledgments Abstract Kurzfassung Table of Contents Index of Figures Index of Tables Index of Abbreviations Index of Symbols 1 Introduction 1.1 Motivation 1.2 Scope of Application 1.3 Objectives and Structure Fundamentals of the RFID Technology 2.1 Automatic Identification Systems Background 2.1.1 Barcode Technology 2.1.2 Optical Character Recognition 2.1.3 Biometric Procedures 2.1.4 Smart Cards 2.1.5 RFID Systems 2.2 RFID System Principle 2.2.1 RFID Features 2.3 RFID with Chipless Transponders 2.3.1 Time Domain Encoding 2.3.2 Frequency Domain Encoding 2.4 Summary Manufacturing Technologies 3.1 Organic and Printed Electronics 3.1.1 Substrates 3.1.2 Organic Inks 3.1.3 Screen Printing 3.1.4 Flexography 3.2 The Printing Process 3.3 A Fabrication Alternative with Aluminum or Copper Strips 3.4 Fabrication Technologies for Chipless RFID Transponders 3.5 Summary UWB Chipless RFID Transponder Design 4.1 Scattering Theory 4.1.1 Radar Cross-Section Definition 4.1.2 Radar Absorbing Material’s Principle 4.1.3 Dielectric Multilayers Wave Matrix Analysis 4.1.4 Frequency Selective Surfaces 4.2 Double-Dipoles UWB Chipless RFID Transponder 4.2.1 An Infinite Double-Dipole Array 4.2.2 Double-Dipoles UWB Chipless Transponder Design 4.2.3 Prototype Fabrication 4.3 UWB Chipless RFID Transponder with Concentric Circles 4.3.1 Concentric Circles UWB Chipless Transponder 4.3.2 Concentric Rings UWB Chipless RFID Transponder 4.4 Concentric Octagons UWB Chipless Transponders 4.4.1 Concentric Octagons UWB Chipless Transponder Design 1 4.4.2 Concentric Octagons UWB Chipless Transponder Design 2 4.5 Summary 5. RFID Readers for Chipless Transponders 5.1 Background 5.1.1 The Radar Range Equation 5.1.2 Range Resolution 5.1.3 Frequency Band Selection 5.2 Frequency Domain Reader Test System 5.2.1 Stepped Frequency Waveforms 5.2.2 Reader Architecture 5.2.3 Test System Results 5.3 Time Domain Reader 5.3.1 Novelda Radar 5.3.2 Test System Results 5.4 Summary Detection of UWB Chipless RFID Transponders 6.1 Background 6.2 The Communication Channel 6.2.1 AWGN Channel Modeling and Detection 6.2.2 Free-Space Path Loss Modeling and Normalization 6.3 Detection and Decoding of Chipless RFID Transponders 6.3.1 Minimum Distance Detector 6.3.2 Maximum Likelihood Detector 6.3.3 Correlator Detector 6.3.4 Test Results 6.4 Simultaneous Detection of Multiple UWB Chipless Transponders 6.5 Summary System Implementation 7.1 SFM-UWB RFID System with CR-Chipless Transponders 7.2 IR-UWB RFID System with COD1-Chipless Transponders 7.3 Summary Conclusion and Outlook References Publications Appendix A RCS Calculation Measurement Setups Appendix B Resistance and Skin Depth Calculation Appendix C List of Videos Test Videos Consortium Videos Curriculum Vita
    • 

    corecore