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Abstract 

The state-of-the-art commercially available radio-frequency identification (RFID) 

transponders are usually composed of an antenna and an application specific integrated 

circuit chip, which still makes them very costly compared to the well-established barcode 

technology. Therefore, a novel low-cost RFID system solution based on passive chipless 

RFID transponders manufactured using conductive strips on flexible substrates is 

proposed in this work. The chipless RFID transponders follow a specific structure design, 

which aim is to modify the shape of the impinged electromagnetic wave to embed an 

identification code in it and then backscatter the encoded signal to the reader. 

This dissertation comprises a multidisciplinary research encompassing the design 

of low-cost chipless RFID transponders with a novel frequency coding technique, unlike 

usually disregarded in literature, this approach considers the communication channel 

effects and assigns a unique frequency response to each transponder. Hence, the 

identification codes are different enough, to reduce the detection error and improve their 

automatic recognition by the reader while working under normal conditions. The chipless 

RFID transponders are manufactured using different materials and state-of-the-art mass 

production fabrication processes, like printed electronics. Moreover, two different reader 

front-ends working in the ultra-wideband (UWB) frequency range are used to interrogate 

the chipless RFID transponders. The first one is built using high-performance off-the-

shelf components following the stepped frequency modulation (SFM) radar principle, and 

the second one is a commercially available impulse radio (IR) radar.  

Finally, the two readers are programmed with algorithms based on the conventional 

minimum distance and maximum likelihood detection techniques, considering the whole 

transponder radio frequency (RF) response, instead of following the commonly used 

approach of focusing on specific parts of the spectrum to detect dips or peaks. The 

programmed readers automatically identify when a chipless RFID transponder is placed 

within their interrogation zones and proceed to the successful recognition of its embedded 

identification code. Accomplishing in this way, two novel fully automatic SFM- and IR-

RFID readers for chipless transponders. The SFM-RFID system is capable to successfully 

decode up to eight different chipless RFID transponders placed sequentially at a 

maximum reading range of 36 cm. The IR-RFID system up to four sequentially and two 

simultaneously placed different chipless RFID transponders within a 50 cm range.
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Kurzfassung 

Die handelsübliche Technologie der Identifizierung mit Hilfe elektromagnetischer 

Wellen (RFID, englisch: radio-frequency identification) Transponder bestehen nach dem 

Stand der Technik üblicherweise aus einer Antenne und einem anwendungsspezifischen 

integrierten Schaltungschip, weshalb sie im Vergleich zur bekannten Barcode-

Technologie noch sehr kostenintensiv sind. Um die Herstellungskosten weiter zur senken, 

wird daher eine neuartige, kostengünstige RFID-Systemlösung basierend auf passiven 

chiplosen RFID-Transponder vorgeschlagen, die unter Verwendung von leitfähigen 

Streifen auf flexiblen Substraten hergestellt werden. Die chiplosen RFID-Transponder 

folgen einem speziellen Strukturdesign, welches darauf abzielt, die Form der 

auftreffenden elektromagnetischen Welle zu modifizieren, um einen Identifikationscode 

in diese einzubetten und dann das codierte Signal zum Lesegerät zurück zu streuen. 

Die vorliegende Dissertation umfasst multidisziplinäre Forschungsarbeit, die das 

Design von kostengünstigen, chiplosen RFID-Transponder mit einer neuartigen 

Frequenzkodierungstechnik umfasst. Im Gegensatz zum aktuellen Stand von Literatur 

und Technik, berücksichtigt dieser Ansatz die Auswirkungen des Kommunikationskanals 

und weist jedem Transponder eine eindeutige Frequenzantwort zu. Daher sind die 

Identifikationscodes unterschiedlich genug, um den Erkennungsfehler zu reduzieren und 

ihre automatische Erkennung durch das Lesegerät während des Arbeitens unter normalen 

Bedingungen zu verbessern. Die chiplosen RFID-Transponder werden unter Verwendung 

verschiedener Materialien und modernster Massenproduktionsfertigungsverfahren, wie 

gedruckter Elektronik, hergestellt. Darüber hinaus werden zwei unterschiedliche 

Lesegerät-Frontends, die im Ultrabreitband-Frequenzbereich (UWB) arbeiten, zur 

Abfrage der chiplosen-RFID-Transponder eingesetzt. Der erste ist mit High-

Performance-Standardkomponenten nach dem Prinzip des gestuften 

Frequenzmodulations-Radars (SFM-Radar) gebaut, und der zweite ist ein kommerziell 

verfügbarer Impulsradio-Radar (IR-Radar). 

Schließlich werden die beiden Lesegeräte mit Algorithmen programmiert, die auf 

den herkömmlichen Techniken der minimalen Entfernung und die maximale 

Wahrscheinlichkeit-Methode basieren, wobei die gesamte Antwort der Transponder-

Radiofrequenz (HF) berücksichtigt wird, statt dem üblichen Ansatz der Fokussierung auf 

bestimmte Teile des Spektrums (Frequenzspitzen oder abfall) zu folgen. Die 
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programmierten Lesegeräte identifizieren automatisch einen in ihrer Abfragezone 

platzierten, chiplosen RFID und führen selbstständig die Erkennung des eingebetteten 

Identifikationscodes durch. Auf diese Weise wurden die neuartigen beiden 

vollautomatischen SFM- und IR-RFID-Lesegeräte für chiplose Transponder realisiert. 

Das SFM-RFID-System ist in der Lage bis zu acht verschiedene chiplose RFID 

Transponder in einem maximalen Lesebereich von 36 cm sequenziell zu decodieren und 

das IR-RFID-System ermöglich die Erkennung von vier sequentiell und zwei gleichzeitig 

platzierten, verschiedenen chiplosen RFID-Transponder innerhalb eines Bereichs von  

50 cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                          
 

VII 
 

Table of Contents 

Acknowledgments ..................................................................................................... I 

Abstract .................................................................................................................. III 

Kurzfassung ............................................................................................................ V 

Table of Contents .................................................................................................. VII 

Index of Figures ..................................................................................................... XI 

Index of Tables .................................................................................................. XVII 

Index of Abbreviations .......................................................................................... XX 

Index of Symbols ..............................................................................................XXIV 

 Introduction ............................................................................................................ 1 

1.1 Motivation .......................................................................................................... 1 

1.2 Scope of Application .......................................................................................... 3 

1.3 Objectives and Structure ..................................................................................... 8 

 Fundamentals of the RFID Technology............................................................... 10 

2.1 Automatic Identification Systems Background ................................................. 10 

2.1.1 Barcode Technology ............................................................................... 11 

2.1.2 Optical Character Recognition ................................................................ 11 

2.1.3 Biometric Procedures ............................................................................. 12 

2.1.4 Smart Cards ............................................................................................ 12 

2.1.5 RFID Systems ........................................................................................ 13 

2.2 RFID System Principle ..................................................................................... 13 

2.2.1 RFID Features ........................................................................................ 14 

2.3 RFID with Chipless Transponders .................................................................... 16 

2.3.1 Time Domain Encoding.......................................................................... 17 

2.3.2 Frequency Domain Encoding ................................................................. 24 

2.4 Summary .......................................................................................................... 31 



                                                                                                                          
 

VIII 
 

 Manufacturing Technologies ............................................................................... 33 

3.1 Organic and Printed Electronics ........................................................................ 33 

3.1.1 Substrates ............................................................................................... 34 

3.1.2 Organic Inks ........................................................................................... 35 

3.1.3 Screen Printing ....................................................................................... 37 

3.1.4 Flexography ........................................................................................... 38 

3.2 The Printing Process ......................................................................................... 39 

3.3 A Fabrication Alternative with Aluminum or Copper Strips.............................. 40 

3.4 Fabrication Technologies for Chipless RFID Transponders .............................. 41 

3.5 Summary .......................................................................................................... 42 

 UWB Chipless RFID Transponder Design .......................................................... 43 

4.1 Scattering Theory ............................................................................................. 43 

4.1.1 Radar Cross-Section Definition .............................................................. 44 

4.1.2 Radar Absorbing Material’s Principle ..................................................... 45 

4.1.3 Dielectric Multilayers Wave Matrix Analysis ......................................... 47 

4.1.4 Frequency Selective Surfaces ................................................................. 50 

4.2 Double-Dipoles UWB Chipless RFID Transponder .......................................... 52 

4.2.1 An Infinite Double-Dipole Array ............................................................ 52 

4.2.2 Double-Dipoles UWB Chipless Transponder Design .............................. 55 

4.2.3 Prototype Fabrication ............................................................................. 58 

4.3 UWB Chipless RFID Transponder with Concentric Circles .............................. 60 

4.3.1 Concentric Circles UWB Chipless Transponder ..................................... 61 

4.3.2 Concentric Rings UWB Chipless RFID Transponder .............................. 84 

4.4 Concentric Octagons UWB Chipless Transponders .......................................... 92 

4.4.1 Concentric Octagons UWB Chipless Transponder Design 1 ................... 92 

4.4.2 Concentric Octagons UWB Chipless Transponder Design 2 ................... 98 



                                                                                                                          
 

IX 
 

4.5 Summary ........................................................................................................ 101 

 RFID Readers for Chipless Transponders ........................................................ 104 

5.1 Background .................................................................................................... 104 

5.1.1 The Radar Range Equation ................................................................... 104 

5.1.2 Range Resolution ................................................................................. 106 

5.1.3 Frequency Band Selection .................................................................... 107 

5.2 Frequency Domain Reader Test System .......................................................... 108 

5.2.1 Stepped Frequency Waveforms ............................................................ 109 

5.2.2 Reader Architecture .............................................................................. 112 

5.2.3 Test System Results.............................................................................. 114 

5.3 Time Domain Reader ...................................................................................... 116 

5.3.1 Novelda Radar...................................................................................... 117 

5.3.2 Test System Results.............................................................................. 118 

5.4 Summary ........................................................................................................ 119 

 Detection of UWB Chipless RFID Transponders ............................................. 120 

6.1 Background .................................................................................................... 120 

6.2 The Communication Channel ......................................................................... 122 

6.2.1 AWGN Channel Modeling and Detection ............................................. 123 

6.2.2 Free-Space Path Loss Modeling and Normalization .............................. 124 

6.3 Detection and Decoding of Chipless RFID Transponders ............................... 126 

6.3.1 Minimum Distance Detector ................................................................. 127 

6.3.2 Maximum Likelihood Detector ............................................................. 128 

6.3.3 Correlator Detector ............................................................................... 128 

6.3.4 Test Results .......................................................................................... 129 

6.4 Simultaneous Detection of Multiple UWB Chipless Transponders .................. 137 

6.5 Summary ........................................................................................................ 140 



                                                                                                                          
 

X 
 

 System Implementation ...................................................................................... 142 

7.1 SFM-UWB RFID System with CR-Chipless Transponders ............................. 143 

7.2 IR-UWB RFID System with COD1-Chipless Transponders............................ 149 

7.3 Summary ........................................................................................................ 153 

 Conclusion and Outlook ..................................................................................... 157 

References ............................................................................................................... 161 

Publications ............................................................................................................. 170 

Appendix A ............................................................................................................. 172 

RCS Calculation ................................................................................................... 172 

Measurement Setups ............................................................................................ 175 

Appendix B .............................................................................................................. 178 

Resistance and Skin Depth Calculation ................................................................. 178 

Appendix C ............................................................................................................. 181 

List of Videos ....................................................................................................... 181 

Test Videos .................................................................................................... 181 

Consortium Videos ........................................................................................ 181 

Curriculum Vitae .................................................................................................... 182 

 



XI 
 

 

Index of Figures 

Fig. 1.1: eVACUATE framework overview .................................................................. 4 

Fig. 1.2: UWB RFID with chipless transponders system overview ................................ 7 

Fig. 2.1: RFID system working principle [11] ............................................................. 14 

Fig. 2.2: SAW RFID transponder schematic working principle [19] ............................ 18 

Fig. 2.3: Chipless RFID transponder based on high speed time domain delay lines: a) 

transmission line equivalent circuit and reflection principle, b) photograph of the 

prototype with size 8.3 cm × 3.1 cm and its measurement setup, taken from [20] ....... 20 

Fig. 2.4: Geometry of the chipless RFID transponder based on a uniplanar monopole 

antenna and CPW [21] ................................................................................................ 21 

Fig. 2.5: Chipless RFID transponders’ backscattered waveform for matched, open and 

short circuit terminations and CPW length: a) 37.6 mm, b) 41.6 mm, after [21] .......... 21 

Fig. 2.6: Proposed receiver architecture for CPW chipless RFID transponders [21] ..... 22 

Fig. 2.7: Chipless RFID transponder based on C-section transmission line: a) geometry, 

b) coding principle [23]............................................................................................... 23 

Fig. 2.8: Proposed RFID transmitter architecture to read chipless RFID transponders 

based on C-section transmission line, three pulses with carrier frequencies of  𝑓 = 3 GHz, 

𝑓 = 4 GHz and 𝑓 = 5 GHz are generated [23] .......................................................... 23 

Fig. 2.9: Chipless RFID transponder based on spiral resonators: a) geometry, b) principle 

of encoding [25].......................................................................................................... 25 

Fig. 2.10: Proposed UWB reader architecture to read chipless RFID transponders based 

on spiral resonators [27] .............................................................................................. 26 

Fig. 2.11: Chipless RFID transponder based on open stub resonators: a) geometry, b) 

measured response, modified from [28] ...................................................................... 27 

Fig. 2.12: Chipless RFID transponder based on RF barcode principle: a) geometry, b) 

measurement results for codes 11111 and 11010, modified from [29] ......................... 28 

Fig. 2.13: Chipless RFID transponder based on C-section like scatters a) geometry and 

coding principle, b) simulated |RCS| for codes 11111111111111111111 and 

10111111110111111101, modified from [31] ............................................................. 29 



                                                                                                                          
 

XII 
 

Fig. 2.14: Chipless RFID transponder based on open conical resonators: a) geometry, b) 

calculated |RCS| from measured scattering parameters [32] ......................................... 30 

Fig. 2.15: Classification of chipless RFID transponders according to their coding 

technique and structures .............................................................................................. 31 

Fig. 3.1: Screen printing principle ............................................................................... 37 

Fig. 3.2: Flexography principle ................................................................................... 39 

Fig. 4.1: Radar cross-section definition ....................................................................... 45 

Fig. 4.2: One-layer shunt equivalent circuit [50] ......................................................... 48 

Fig. 4.3: Multilayer shunt circuit [50] .......................................................................... 49 

Fig. 4.4: Two-layer power reflection for 𝑇  = 𝑇  = 𝜆 /4, 𝑓  = 5 GHz, calculated according 

to Eq. (4.18) ................................................................................................................ 50 

Fig. 4.5: Typical FSS element geometries [50] [52] .................................................... 51 

Fig. 4.6: Geometry of an infinite double-dipole array with different terminal loads 

composed of two interlaced dipoles [53] ..................................................................... 53 

Fig. 4.7: Calculated power reflection of an infinite double-dipole array with: a) different 

terminal loads according to Eq. (4.20) and b) equal terminal loads with irregular array 

spacing according to Eq. (4.21). 𝑅 =  45 Ω, 𝑋  =  −70 Ω, 𝑓 = 5 𝐺𝐻𝑧, 𝑋 =  50 Ω, 

𝑅 =  55 Ω, and 𝑋 = 1000𝑓/𝑓 −  1000 Ω [53] ....................................................... 54 

Fig. 4.8: Geometry of the dipole-based UWB chipless RFID transponder ................... 55 

Fig. 4.9: Simulated |RCS| of a dipole-based UWB chipless RFID transponder, 𝑙  = 35 

𝑚𝑚, 𝑙  = 25 𝑚𝑚, 𝑤 = 1 𝑚𝑚, 𝑑 = 5 𝑚𝑚, 𝑇 = 35 𝜇𝑚, 𝑆𝑢𝑏𝑇 = 100 𝜇𝑚 ....................... 57 

Fig. 4.10: Simulated |RCS| of different dipole-based UWB chipless RFID transponder for 

the different lengths configurations specified in Table 4.2 [58] ................................... 58 

Fig. 4.11: Photograph of a) an UWB chipless RFID transponder prototype with two 

aluminum dipoles on bond paper substrate, 𝑤 = 1 mm, 𝑙  = 35 mm, 𝑙  = 25 mm, and  

𝑑 = 5 mm b) all four UWB chipless RFID transponders defined in Table 4.2 [58] ....... 59 

Fig. 4.12: Calculated |RCS| from measured scattering parameters for the different  

DD-UWB chipless RFID transponders [58] ................................................................ 60 

Fig. 4.13: CC-UWB chipless RFID transponder: a) geometry based on three concentric 

rings and one disk, b) |RCS| simulation results for 𝑟 = 14 𝑚𝑚, 𝑔 =  𝑤 = 1 𝑚𝑚 [60] . 62 



                                                                                                                          
 

XIII 
 

Fig. 4.14: CC-UWB chipless RFID transponders fabricated using: a) screen printing 

technology on PET, glossy paper and Fasson, b) flexography printing on PET and glossy 

paper ........................................................................................................................... 63 

Fig. 4.15: Calculated |RCS| from measured scattering parameters for a transponders 

fabricated with: a) screen printing technology on glossy and Fasson papers, as well as 

PET, and b) flexography printing on glossy paper and PET ......................................... 64 

Fig. 4.16: Flexography printed CC-UWB chipless RFID transponders on: a) glossy paper 

with conductive thin film thicknesses 𝑆𝐺 − 𝑇 = 2.8 µ𝑚, 𝑆𝐺 − 𝑇 = 3.2 µ𝑚 and  

𝑆𝐺 − 𝑇 = 3.7 µ𝑚, b) PET with conductive thin film thicknesses 𝑆𝑃 − 𝑇 = 3.9 µ𝑚, 

𝑆𝑃 − 𝑇 = 4.2 µ𝑚, 𝑆𝑃 − 𝑇 = 6.2 µ𝑚, 𝑆𝑃 − 𝑇 = 6.4 µ𝑚, and 𝑆𝑃 − 𝑇 = 7.5 µ𝑚 ... 68 

Fig. 4.17: Laser-scanning microscope pictures of two conductive thin film with thickness 

𝑇  and 𝑇  printed on PET substrate (Photo by Dr. Georg Schmidt, TUC) .................... 68 

Fig. 4.18: Calculated |RCS| from measured scattering parameters for a CC-UWB chipless 

RFID transponder fabricated printing silver-ink with different thin film thicknesses on: a) 

glossy paper 𝑆𝐺 − 𝑇 = 2.8 µ𝑚, 𝑆𝐺 − 𝑇 = 3.2 µ𝑚 and 𝑆𝐺 − 𝑇 = 3.7 µ𝑚, b) PET 

𝑆𝑃 − 𝑇 = 3.9 µ𝑚, 𝑆𝑃 − 𝑇 = 4.2 µ𝑚, 𝑆𝑃 − 𝑇 = 6.2 µ𝑚, 𝑆𝑃 − 𝑇 = 6.4 µ𝑚, and 

𝑆𝑃 − 𝑇 = 7.5 µ𝑚 ...................................................................................................... 71 

Fig. 4.19: Copper-based ink flexography printed CC-UWB chipless RFID transponders 

on: a) glossy paper with conductive thin film thicknesses 𝐶𝐺 − 𝑇 = 5.4 µ𝑚, 

 𝐶𝐺 − 𝑇 = 7.7 µ𝑚 and 𝐶𝐺 − 𝑇 = 12.2 µ𝑚 b) PET with conductive thin film 

thicknesses 𝐶𝑃 − 𝑇 = 7.5 µ𝑚, 𝐶𝑃 − 𝑇 = 9.7 µ𝑚, 𝐶𝑃 − 𝑇 = 11.7 µ𝑚 ................... 74 

Fig. 4.20: Calculated |RCS| from measured scattering parameters for a copper ink-based 

CC-UWB chipless RFID transponder fabricated with different thin film thicknesses on: 

a) glossy paper with conductive thin film thicknesses 𝐶𝐺 − 𝑇 = 5.4 µ𝑚,  

𝐶𝐺 − 𝑇 = 7.7 µ𝑚 and 𝐶𝐺 − 𝑇 = 12.2 µ𝑚 b) PET with conductive thin film 

thicknesses 𝐶𝑃 − 𝑇 = 7.5 µ𝑚, 𝐶𝑃 − 𝑇 = 9.7 µ𝑚, 𝐶𝑃 − 𝑇 = 11.7 µ𝑚 ................... 76 

Fig. 4.21: CC-UWB chipless RFID transponders fabricated using copper and aluminum 

thin films on: a) bond paper, b) PET [47] .................................................................... 78 

Fig. 4.22: Calculated |RCS| from measured scattering parameters for CC-UWB chipless 

RFID transponder fabricated with either aluminum or copper thin films on: a) bond paper, 

b) PET [47] ................................................................................................................. 79 



                                                                                                                          
 

XIV 
 

Fig. 4.23: Multiple sets of CC-UWB chipless RFID transponders: a) placement schematic 

and sequence, b) simulated |RCS| response for different constellations [60] ................ 81 

Fig. 4.24: CC-UWB chipless RFID transponders fabricated using copper strips on bond 

paper: a) picture of all five transponders, b) calculated |RCS| from measured scattering 

parameters for different sets [60] ................................................................................. 82 

Fig. 4.25: CR-UWB chipless RFID transponder’s geometry of a) one array element based 

on five concentric rings, b) all four arrays of elements ................................................ 84 

Fig. 4.26: CR-UWB chipless RFID transponder |RCS| simulation results for the different 

geometries configurations ........................................................................................... 85 

Fig. 4.27: Picture of one array element of each eight CC-UWB chipless RFID 

transponders fabricated using silver ink on PET .......................................................... 88 

Fig. 4.28: CR-UWB chipless RFID transponders calculated |RCS| from measured 

scattering parameters .................................................................................................. 90 

Fig. 4.29: COD1-UWB chipless RFID transponder’s a) geometry of one array element 

with 𝑙  = 22.4 mm, 𝑙  = 18.8 mm, 𝑙  = 15.3 mm, 𝑙  = 12.4 mm, 𝑙  = 10.5 mm,  

𝑙  = 9.0 mm, 𝑙  = 6.6 mm, 𝑤 = 𝑤 = 𝑤  = 22.4 mm, 𝑤 = 0.7 mm and  

𝑤 =  𝑤  = 0.6 mm, b) |RCS| simulation results ......................................................... 93 

Fig. 4.30: Picture of each eight COD1-UWB chipless RFID transponders identification 

codes fabricated using a) silver ink on PET b) venues substrates ................................. 95 

Fig. 4.31: COD1-UWB chipless RFID transponder fabricated on the different venues 

substrates calculated |RCS| for identification codes a) 00 b) 01 c) 10 d) 11 .................. 96 

Fig. 4.32: COD2-UWB chipless RFID transponder: a) geometries, b) |RCS| simulation 

results for the two geometries and the combination of two .......................................... 99 

Fig. 4.33: COD2- UWB chipless RFID transponder: a) picture, b) calculated |RCS| .. 100 

Fig. 5.1: Radar system basic principle, Tx: transmit waveform,  

Rx: receive waveform ............................................................................................... 105 

Fig. 5.2: Range resolution: a) concept, b) resolved signals, c) unresolved signals,  

d) limit ...................................................................................................................... 106 

Fig. 5.3: Obtaining UWB chipless RFID transponder frequency profile from stepped 

frequency measurements ........................................................................................... 108 

Fig. 5.4: UWB RFID reader for chipless transponders: a) basic architecture,  

b) SF transmit and receive waveforms....................................................................... 110 



                                                                                                                          
 

XV 
 

Fig. 5.5: Discrete UWB RFID reader for chipless transponders system architecture .. 113 

Fig. 5.6: Photograph of the discrete UWB SFM RFID reader for chipless  

transponders.............................................................................................................. 113 

Fig. 5.7: UWB SFM reader front-end measurements of chipless RFID transponders based 

on concentric rings .................................................................................................... 115 

Fig. 5.8: UWB chipless RFID transponder with identification code 100: a) five different 

frequency response measurements with the UWB SFM reader, b) calculated standard 

deviation ................................................................................................................... 116 

Fig. 5.9: Time domain reader working principle ........................................................ 117 

Fig. 5.10: Novelda radar: a) basic architecture [88], b) Gaussian pulse shape ............ 118 

Fig. 5.11: COD2-UWB chipless RFID transponder calculated |RCS| ......................... 119 

Fig. 6.1: CR-UWB chipless RFID identification code 00 measured at different distances 

of 80 cm, 120 cm, and 180 cm a) received |𝑆 |, b) normalized |𝑆 | according to  

Eq. (6.5) .................................................................................................................... 125 

Fig. 6.2: Minimum distance detector architecture ...................................................... 127 

Fig. 6.3: Maximum likelihood detector architecture .................................................. 128 

Fig. 6.4: Correlator detector architecture ................................................................... 129 

Fig. 6.5: UWB chipless RFID transponder measurements results: a) received S   

b) calculated s  ........................................................................................................ 130 

Fig. 6.6: Calculated time domain received S  for the COD1-UWB chipless RFID 

transponder on PET substrate .................................................................................... 135 

Fig. 6.7: UWB chipless RFID transponder with same identification code a) multi-

detection scenario, b) multi-path channel scenario c) received signal ........................ 137 

Fig. 6.8: Chipless RFID transponders simultaneous multi-detection scenarios: a) A – A, 

two type A located at 10 and 30 cm from the antennas, b) B – B, two type B located at 10 

and 30 cm from the antennas, c) A – B, A located at 10 cm and B at 30 cm from the 

antennas, d) B – A, B located at 10 cm and A at the 30 cm from the antennas,  

e) A – A + B, A located at 10 cm and A + B at 30 cm from the antennas, f) A + B – A,  

A + B located at 10 cm and B at 30 cm from the antennas, (g) A – 2B, A located at 10 cm 

and 2 B at 30 cm from the antennas, and (h) 2B – A, 2 B located at 10 cm and A at 30 cm 

from the antennas [76]. ............................................................................................. 138 

Fig. 7.1: UWB SFM-RFID reader detection algorithm .............................................. 144 



                                                                                                                          
 

XVI 
 

Fig. 7.2: FD RFID system sequence of detection: a) No. 2 – child, b) No. 8 – first 

responder, c) No. 5 – handicap, d) No. 4 – pregnant woman, e) No. 6 – crew f) No. 1 – 

adult, g) No. 7 – official, h) No. 3 baby ..................................................................... 146 

Fig. 7.3: UWB IR-RFID reader detection algorithm .................................................. 149 

Fig. 7.4: IR-UWB RFID system sequence of detection: a) ONE b) TWO c) THREE, d) 

FOUR and e) ONE and THREE ................................................................................ 151 

Fig. 7.5: IR-UWB chipless RFID system pilot demonstrations at: a) Anoeta soccer 

stadium [10], b) Athens international airport (photo courtesy of Vicente Serrulla),  

c) MSC Meraviglia cruise ship [10], d) Bilbao San Mamés metro station [10] .......... 153 

Fig. A.1: VNA 37397D with Chengdu antennas measurement setup ......................... 175 

Fig. A.2: VNA MS46122A with Rohde & Schwarz antennas measurement setup ..... 176 

Fig. A.3: VNA 37397D with Rohde & Schwarz antennas measurement setup ........... 176 

Fig. A.4: IR radar measurement setup: a) top view, b) rear view ............................... 177 

Fig. B.1: UWB chipless RFID transponder two-point resistance: a) measurement 

schematic, and equivalent circuit b) straightened strip ring, equivalent circuit ........... 179 



                                                                                                                          
 

 
 

Index of Tables 

Table 2.1: Comparison of technical features between barcode and RFID technologies [6] 

[12] [16] ..................................................................................................................... 16 

Table 3.1: Physical properties of substrate materials for chipless RFID transponders  

[9] ............................................................................................................................... 35 

Table 3.2: EKRA X1 SL technical data [43] ............................................................... 38 

Table 4.1: Free-space wavelength to substrate/dipole thickness relation ...................... 56 

Table 4.2: Double-dipole UWB chipless RFID transponder strips lengths [58]............ 57 

Table 4.3: Calculated frequency peak magnitudes and dips depths for the different  

DD-UWB chipless RFID transponders ........................................................................ 60 

Table 4.4: Measured frequency peak and dips positions .............................................. 65 

Table 4.5: Calculated frequency peak magnitudes and dips depths for the CC-UWB 

chipless RFID transponders fabricated on different substrates and printing  

technologies ................................................................................................................ 66 

Table 4.6: CC-UWB chipless RFID transponder printed with different silver-ink thin film 

thicknesses electric parameters (thin film thicknesses provided by Mrs. Katherina Haase, 

TUC) .......................................................................................................................... 70 

Table 4.7: Calculated frequency peak magnitudes and dips depths for the CC-UWB 

chipless RFID transponders fabricated on different substrates and thin film  

thicknesses .................................................................................................................. 72 

Table 4.8: Copper-ink printed CC-UWB chipless RFID transponder electric parameters 

(thin film thicknesses provided by Mrs. Katherina Haase, TUC) ................................. 75 

Table 4.9: Calculated frequency peak magnitudes and dips depths for the CC-UWB 

chipless RFID transponders fabricated on different substrates printing copper-based 

conductive thin film with different thicknesses ........................................................... 77 

Table 4.10: Calculated frequency peak magnitudes and dips depths for the CC-UWB 

chipless RFID transponders fabricated with aluminum or copper thin films on different 

substrates .................................................................................................................... 80 

Table 4.11: Calculated frequency peak magnitudes and dips depths for the CC-UWB 

chipless RFID transponders constellations .................................................................. 83 



                                                                                                                          
 

 
 

Table 4.12: CR-UWB chipless RFID transponders frequency response  

characteristics ............................................................................................................. 86 

Table 4.13: CC-UWB chipless RFID transponders different physical dimensions ....... 87 

Table 4.14: Silver-ink printed CR-UWB chipless RFID transponder electric parameters 

(thin film thicknesses and resistance values provided by Mrs. Katherina Haase and  

Dr. Georg Schmidt, TUC) ........................................................................................... 89 

Table 4.15: Calculated frequency peak magnitudes and dip depths for the CR-UWB 

chipless RFID transponders ........................................................................................ 91 

Table 4.16: Calculated frequency peak magnitudes and dips depths for the COD1-UWB 

chipless RFID transponders fabricated on the different venues’ substrates .................. 97 

Table 4.17: Calculated frequency peak magnitudes and dips depths for the two  

COD2-UWB chipless RFID transponders ................................................................. 101 

Table 4.18: Calculated frequency peak magnitudes and dips depths for the different UWB 

chipless RFID transponders ...................................................................................... 102 

Table 5.1: Amplitude and phase response of the UWB chipless RFID transponder, 

obtained at each frequency step ................................................................................. 109 

Table 6.1: Minimum distance detector results for different UWB chipless RFID 

transponders based on double-dipoles, according to Eq. (6.12) .................................. 131 

Table 6.2: Minimum distance detector results for different UWB chipless RFID 

transponders based on double-dipoles and different measurement parameters, according 

to Eq. (6.12) .............................................................................................................. 132 

Table 6.3: Minimum distance detector results for different UWB chipless RFID 

transponders based on concentric rings, according to Eq. (6.12) ................................ 133 

Table 6.4: Minimum distance detector results for UWB chipless RFID transponders based 

on concentric rings and different measurement parameters, according to Eq. (6.12) .. 134 

Table 6.5: Minimum distance detector results for UWB chipless RFID transponders based 

on concentric rings and different measurement parameters, according to Eq. (6.12) .. 134 

Table 6.6: Maximum likelihood detector results for UWB chipless RFID transponders 

based on COD1 on different substrates, according to (6.14) ...................................... 136 

Table 6.7: Correlation detector results for different scenarios, *partial results of scenarios 

A – AB and AB + A, according to Eq. (6.15) [76] ..................................................... 139 

Table 6.8: Calculated received pulse energy, according to Eq. (6.16) [76] ................. 140 



                                                                                                                          
 

 
 

Table 7.1: Identification codes assigned numbers and images ................................... 145 

Table 7.2: SFM-UWB system detector results ........................................................... 147 

Table 7.3: Identification codes assigned numbers and images ................................... 150 

Table 7.4: IR-Reader detector results [82] ................................................................. 152 

Table 7.5: RFID systems with chipless transponders comparison .............................. 154 



                                                                                                                          
 

XX 
 

Index of Abbreviations 

1D One dimensional 

2D Two dimensional 

3D Three dimensional 

ADC Analog-to-digital converter 

ASK Amplitude-shift keying 

ASIC Application Specified Integrated Circuit 

AWGN Additive white Gaussian noise 

CA Circuit analog 

CC Concentric-circles 

CG Copper-ink on Glossy paper 

CMOS Complementary metal-oxide-semiconductor 

CP Copper-ink on PET 

CPW Co-planar waveguide 

CR Concentric-rings 

CST Computer systems technology 

DAC Digital-to-analog converter 

DC Direct-current 

DD Double-dipoles 

EEPROM Electrically erasable programmable read-only memory 

FDX Full duplex 

FPGA Field programmable gate array 

FSS Frequency selective surface 

HDX Half duplex 

HF High frequency 

IC Integrated circuit 

IR Impulse radio 

ISM Industrial, scientific, and medical 

LAN Local area network 

LF Low-frequency 

LNA Low-noise amplifier 



                                                                                                                          
 

XXI 
 

LO Local oscillator 

LOS Line-of-sight 

LPF Low-pass filter 

ML Maximum likelihood 

MW Microwave 

OCR Optical character recognition 

OOK On-off keying 

PC Personal computer 

PCB Printed circuit board 

PET Polyethylene terephthalate 

PNA Programmable network analyzer 

PPM Pulse-position modulation 

PSK Phase-shift keying 

QR Quick response 

RADAR Radio detection and ranging 

RAM Radar absorbing material 

RCS Radar cross-section 

RCSR Radar cross-section reduction 

RF Radio frequency 

RFID Radio frequency identification 

RAM Random access memory 

ROM Read-only memory 

RS-232 Recommended standard 232 

SAW Surface acoustic wave 

SEQ Sequential 

SG Silver-ink on Glossy paper 

SOFIA Smart objects for intelligent applications 

SP Silver-ink on PET 

SFM Stepped frequency modulation 

ToA Time-of-arrival 

UHF Ultra-high frequency 

USB Universal serial bus 



                                                                                                                          
 

XXII 
 

UWB Ultra-wideband 

VNA Vector network analyzer 

VCO Voltage-controlled oscillator 

WLAN Wireless local area network 

 



                                                                                                                          
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                          
 

XXIV 
 

Index of Symbols 

𝑑 Distance between two resonators 

𝐷 Distance between two-unit arrays of chipless RFID 

transponders 

𝛿 Skin depth 

𝐸 Electric Field 

𝜀 Permittivity 

𝜀  Relative permittivity 

𝜀  Free space permittivity 

𝜀  Effective dielectric constant 

𝜁  Signal recevied energy 

𝑓 Frequency 

𝑔 Gap 

𝜅 Conductivity 

𝑘 Waveform number 

𝑘  Free space waveform number 

𝑙 Length 

𝜆 Wavelength 

𝜆  Free space wavelength 

𝜂 Normalized impedance 

𝑛 Refraction index 

𝑟 Radius 

𝑅 Resistance 

Γ Reflection coefficient 

𝑠  Received signal 

𝑠  Transmitted signal 

𝑆 Scattering parameter 

𝑡 Time 

𝑇 Thickness 

𝜏 Pulse duration 



                                                                                                                          
 

XXV 
 

𝜏  Time delay 

𝜇 Permeability 

𝜇  Relative permeability 

𝜇  Free space permeability 

�̅� Mean 

𝜎 Standard deviation 

∅ Angle between incident and scattered field 

𝜃 Angle 

𝑤 Width 

𝜔 Angular frequency 

𝑥 Separation distance 

𝑋 Reactance 

𝑌 Admittance 

𝑍 Intrinsic impedance 

𝑍  Free space impedance 

 



                                                                                                                          
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                          
 

 
 

 



1 Introduction                                                                                                                          
 

1 
 

 Introduction 

1.1 Motivation  

The progress of the fundamental understanding of the electromagnetic theory 

during the XIX century performed mainly by Michael Faraday and James Clerk Maxwell, 

as well as the first transmission and reception of radio waves, credited to Heinrich 

Rudolph Hertz in 1887 [1]. Marked the evolution of wireless communication systems, 

opening a gate for a wide range of applications including but not limited to radio, 

television, personal communications, radar, and identification systems. Especially the 

radar technology contributed to the modern identification systems by means of 

electromagnetic waves. The radar was developed mainly for military purposes during 

World War II, aiming the detection and location of an object using the reflected radio 

waves, it also first included a transponder to distinguish between friends or foes. 

In 1948, Harry Stockman published his work on “Communication by Means of 

Reflected Power”, where he proposed the used of radio, light, or sound waves for the 

transmission and mentioned variable damping modulation, position modulation, and 

polarization modulation between others, as ways the reflector may perform the 

modulation [2]. Nevertheless, the development of the electronic components like the 

integrated circuits (IC), microprocessors, and especially the personal computer (PC) were 

still needed to make feasible a realization of the identification systems on a commercial 

level. And it was not until the 1980s with the help of all these developments that the radio 

frequency identification (RFID) system starts its technological breakthrough with 

implementations in areas like public transportation, personnel access, animal tagging, 

industrial and business [1]. 

Nowadays, RFID systems have become an integral part of our daily lives, 

increasing productivity by reducing waiting times in a wide variety of applications: 

tracking of products from the supplier premises to the point of sale throughout the 

logistics and supply chain process, buildings access control to prevent unauthorized 

access for security purposes, or the monitoring and tracking of patients information and 

history in the healthcare branch between others [1], [3], [4]. IDTechEx Research has 
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analyzed the RFID market for the last 18 years and reported a total RFID market’s worth 

of US$ 11.2 billion in 2017, for both hardware and software, and expecting it to growth 

to US$ 14.9 billion by 2022. Nevertheless, it also mentions that in the specific case of 

apparel tagging in retails, where RFID has the greatest market penetration above other 

applications by volume, it still barely reached only 20% of the addressable market in 

2017, which means there are still huge market opportunities for the RFID technology [5]. 

The fabrication cost of the RFID transponder is often referred as the main 

impediment to overtake this growing market of item-level tagging and compete against 

other widespread automatic identification technologies such as barcodes or smart cards 

[6] [7]. Currently, searching through authorized distributors of electronic components’ 

websites, a standard ultra-high frequency (UHF) RFID transponder can be found for no 

less than approximately US $0.10 (for example [8]). Therefore, a further price reduction 

to achieve a transponder price below US $0.01 is desired in order to gain additional 

market penetration [6] [9]. 

In the past decades, developments on the solid-state electronics manufacturing 

procedures have led toward miniaturization, concentration of functionalities and price 

reduction of the ICs, which are used to fabricate the RFID transponders. However, the 

ICs require an external energy source and it is not possible to connect all of them to the 

power grid or attach them batteries that last for a lifetime to guarantee their proper and 

interrupted functionality. Moreover, the production of billions of such enduring devices 

that last beyond their host object, represents a considerable environmental impact and the 

development of an ecofriendly solution and energetically autonomous becomes evident. 

For that reason, in the last decades research has been focused on the development of new 

technologies beyond conventional semiconductors, introducing new concepts and 

materials like organic printed electronics, where low cost, easily producible in large areas 

and ecofriendly materials are being investigated e.g. paper, bioplastics, Polyethylene 

terephthalate (PET) to produce electronic devices [9]. 

Organic printed electronics on flexible substrates, is a promising technology to 

mass produce RFID transponders without ICs and reduce furthermore the manufacturing 

costs. The RFID transponders are environmental friendlier than ICs and fabricated by 

printing metallic inks on flexible substrates like paper or PET. 
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This thesis presents for the first time, two ultra-wideband (UWB) RFID systems 

with chipless transponders for low-cost short-range tagging applications (< 50 cm). The 

two systems are composed by two different sets of UWB chipless RFID transponders 

manufactured with organic materials on flexible substrates by printed electronics. And 

two different and fully automatic UWB RFID readers used to interrogate each set in either 

the time- or frequency-domain respectively. The UWB chipless RFID transponders are 

encoded using a novel differential frequency coding technique that together with the 

implementation of conventional detection techniques, the UWB chipless RFID 

transponders identification codes can be successfully recognized, after being placed in 

the system’s interrogation zone. 

Despite the act of determining the identification of people without or against their 

own will is a complicated ethical problem and must be discussed on a social scale. 

Engineers must perceive their responsibility in this discussion. I hereby express my wish 

that this work shall not be used in systems aiming at localizing and identifying people 

without their explicit consent. 

1.2 Scope of Application 

This research was conducted in the scope of the European integration project with 

title “A holistic, scenario-independent, situation-awareness and guidance system for 

sustaining the Active Evacuation Route for large crowds”, with acronym eVACUATE. 

The goal of the eVACUATE project is the development of an evacuation assistance tool 

for mass gathering venues (e.g. soccer stadiums, metro stations, airports, cruise ships, 

etc.), that fuses the information coming from different sensor technologies, and in case of 

an emergency, provides to the crisis managers and first responders with a total situation-

awareness of the crowds’ behavior. If The crisis managers deem necessary to trigger the 

evacuation procedure, the evacuation tool provides the crowd by mean of its different 

sensors with the optimal evacuation routes to leave the premises in a timely and safely 

manner [10]. 

 The eVACUATE framework overview diagram can be seen in Fig. 1.1, it is mainly 

composed of four key elements: smart spaces, crowd models, simulation tools, and the 

decision center. The Smart spaces are implemented including different types of sensors 

and cameras, they feed the system with enough information to assess the venue’s 



1 Introduction                                                                                                                          
 

4 
 

infrastructure condition and analyze the crowd behavior using the crowd models. If a 

triggering event is detected, like an abnormal crowd behavior or a physical event that 

compromises the venue’s or people’s integrity, the system sends an alarm to the crisis 

managers located at the decision center. The crisis managers evaluate the situation and 

decide whether an evacuation procedure must be triggered or not, if they decide to do so, 

the system assess with the help of the simulation tool, the most optimal evacuation routes 

to timely guide the crowd safely out of danger, avoiding possible crowd congestion 

scenarios [10].  

For the realization of the project, several partners were involved in the development 

of different technologies and tasks. The tasks and technologies per project partner are 

briefly described in the following list [10]: 

 EXODUS S.A., Greece, overall project management 

 University of Southampton, IT Innovation Centre, Great Britain, lead the crowd 

behavior detection and recognition in crisis situations models, study of crowd 

psychology and typology of behaviors, develop and implement crowd behavior 

recognition tools 

 Institute of Communications and Computer Systems, Greece, lead the 

communication and adaptive interfaces implementation, carry out the system 

communications and network architectures deployment 

 

Fig. 1.1: eVACUATE framework overview 
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 HKV, The Netherlands, lead the definitions of evacuation scenarios and 

user/system requirements, as well as the evaluation of the system demonstrations 

 Telesto Technologies, Greece, develop and implement the wireless sensor 

networks, mobile application, and positioning system for people location 

assessments 

 TEKNIKER-Ik4, Spain, lead the smart spaces implementation, process the data 

to generate comprehensive information, and develop the exit signs 

 Athens International Airport, Greece, provide expertise regarding the security 

and evacuation issues at airport facilities, and the use of its premises for the 

project system validation 

 Vitrociset, Italy, lead the decision making and optimal evacuation strategy, as 

well as the dissemination and exploitation activities. Set the decision rules 

according to the specific scenarios at the different venues and the information 

coming from the smart devices 

 Crowd Dynamics International, Great Britain, model and simulate the crowd 

behavior, determine the optimum evacuation routes for the different venues and 

evacuation scenarios 

 INDRA, Spain, lead the framework design and system integration, adapt the 

smart objects for intelligent applications (SOFIA) interoperability platform to 

eVACUATE and manage the database  

 Katholieke Universiteit Leuven, Belgium, formulate the legal requirements for 

eVACUATE 

 DIGINEXT, France, develop the three dimensional (3D) interactive common 

operational picture system and iterative simulation of evacuation scenarios 

 Politecnico Di Torino – Department of Mathematics, Italy, identify real-time 

crowd modelling techniques of crowd behavior  

 STX France S.A., France, provide expertise regarding the security and 

evacuation issues at cruise ship facilities, and the use of cruise ships for the 

project system validation 

 Technische Universität Dresden, Germany, designs the chipless RFID 

transponder’s architecture. Conducts performance tests, reader 
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development/programming and overall RFID system integration to the 

framework 

 Technische Universität Chemnitz, Germany, manufacturing of the printed RFID 

transponders and development of roll-to-roll printing technology  

 Real Sociedad de Fútbol S.A.D., Spain, provide expertise regarding the security 

and evacuation issues at professional sport arenas, and the use of Anoeta soccer 

stadium for the project system validation 

 Metro Bilbao S.A., Spain, provide expertise regarding the security and 

evacuation issues at underground transportation facilities, and the use case of the 

Metro Bilbao stations for the project system validation  

 Telecom Italia, Italy, provide the necessary expertise/support for the 

implementation of the resilient communications and adaptive interfaces, system 

demonstrations, ethics, and mobile positioning 

In the case an evacuation procedure is started, it becomes imperative to guarantee 

that all the endangered persons leave safely the facilities. To do so, the system must keep 

track and count of all the people located inside the premises by all available technological 

means. Moreover, it shall be able to subtract the number of persons leaving through the 

evacuation routes from the total count and calculate whether people are still left behind 

or not. Thus, an RFID system becomes a feasible solution to perform this specific task. 

However, the venues where the system shall be implemented, are mass gathering places, 

most of them with high traffic and continuous dynamic movement of people, entering and 

leaving confined rooms, staying only for a short period of time. Therefore, the 

implementation of a conventional RFID system could become very costly, infrastructure 

and logistic demanding, and the need to exploit the deployment of a low-cost RFID 

system with chipless transponders becomes evident, with the capability to be integrated, 

at no major cost, in the already existing venue’s respective access tickets or cards systems 

[10]. 

The proposed RFID system with chipless transponders, foresees the use of roll-to-

roll printing technology to fully integrate the chipless RFID transponders on paper or foil, 

allowing its implementation on the already existing venue’s ticketing system, and the 

counting of people passing through predefined checkpoints (emergency exits), as shown 

in Fig. 1.1. 
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 Fig. 1.2 shows the RFID system with chipless transponders overview, it consists 

of three major components: 

1. Chipless RFID transponders, which are printed on the venue’s tickets to be 

identified. 

2. RFID reader, that sends the RF signal to interrogate the chipless RFID 

transponder and retrieve its stored identifying information. 

3. Data processing subsystem associates the chipless RFID transponder stored data 

with arbitrary records, namely the name or picture of object to be identified and 

keeps count of the amount of tickets passing through the checkpoints. 

The RFID system with chipless transponders can be integrated to the eVACUATE 

framework either by means of a local area network (LAN) or a wireless local area network 

(WLAN). 

A set of specifications has been defined for the operation of the RFID system with 

chipless transponders:  

1. Number of bits: represents the quantity of items that can be distinguished, the 

aim is to be able to code at least 3 bits, which means a minimum of 8 different 

objects can be recognized.  

2. Coverage range: determines the maximum distance at which the UWB chipless 

RFID transponders can be detected, a value of at least 1-meter range is specified 

as a target. 

3. Power consumption: the necessary electrical energy over time to operate the 

chipless RFID transponder is set to zero. 

  

Fig. 1.2: UWB RFID with chipless transponders system overview 
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4. Lifetime: the duration of the chipless RFID transponder before its complete 

degradation hast to be greater than 3 months. 

5. Cost: the chipless RFID transponder fabrication cost with roll-to-roll printing 

technology should round the 1 Eurocent per 30 cm2. 

6. Simultaneous detection: the RFID system should be capable to simultaneous 

detect at least two chipless transponders.  

7. License free operation: to allow the implementation in any part of the world, the 

RFID system must operate in an international reserved frequency band. 

1.3 Objectives and Structure 

This work presents a structured approach for the design of an UWB RFID system 

with chipless transponders. The UWB chipless RFID transponders are designed to 

perform the coding by means of their frequency response. Two types of reader 

architectures based on the stepped frequency modulation (SFM) and impulse radio (IR) 

radar principles, are studied to perform the chipless RFID transponders detection. This 

dissertation is organized as follows: 

Chapter 2 discusses the fundamentals of RFID systems. A brief overview of several 

automatic identification system with special emphasis on the barcode technology and 

RFID is presented. Followed by the introduction to the RFID working principles, features 

and development challenges that has led to current research focusing on the low-cost 

approach with chipless RFID transponders. A classification of chipless RFID 

transponders according to their coding techniques and type of structures is provided along 

with some typical geometries. 

Chapter 3 introduces the manufacturing technologies used to fabricate the chipless 

RFID transponders presented in this work. The working principle of the different printing 

electronics with metallic inks technologies are explained, to understand the influence of 

the fabrication process in the frequency response performance of the chipless RFID 

transponders, and the major challenges the printing technology still faces. Additionally, 

an alternative fabrication process is described, for fast prototyping with metals that cannot 

currently be synthetized into metallic inks. 

Chapter 4 describes the design of chipless RFID transponders based on different 

scattering geometries placed on flexible substrates, and their novel differential frequency 
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coding technique. It also presents the results of the investigations concerning the 

influence of main manufacturing parameters like type of substrate, metallic-ink, and 

fabrication process on the chipless RFID transponder radio frequency (RF) performance. 

Five different transponders based on three different patterns (double-dipoles, concentric-

circles or octagons) are designed and fabricated using different technologies to obtain 

distinct frequency responses and conduct several studies on detection techniques. 

Chapter 5 illustrates the two RFID readers front-ends architectures used to retrieve 

the responses of the chipless RFID transponders designed in chapter 4, and their working 

principles based on SFM and IR are explained. The first one is fabricated using high 

performance off-the-shelf components and the second one, an already commercially 

available pulse radar front-end, they are used to interrogate the chipless RFID 

transponders in the frequency and time domain respectively.  

Chapter 6 presents the three different detection rules used to retrieve the 

identification codes of four chipless RFID transponders designs presented in  

chapter 4. The detection rules are based on the implementation of minimum distance, 

maximum likelihood or simple correlation detectors. The chipless RFID transponders are 

placed at different distances and measured with different parameters to analyze the 

performance of the detectors. Additionally, the importance of a robust coding technique 

capable to be detected by a computing system is highlighted. 

In chapter 7, the results of the detection algorithms implementation on the RFID 

readers front-ends to interrogate the chipless RFID transponders and build fully automatic 

systems are presented. Including the deployment of the IR based system to perform real 

case-test scenario evacuation procedures on each of the different venues described 

previously. This investigative work is concluded in chapter 8, highlighting the main 

achievements and findings, as well as outlining further areas of research to improve the 

current system.  
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 Fundamentals of the RFID Technology 

This chapter provides an overview of different automatic identification systems 

with special emphasis on the barcode and RFID technologies. The classical RFID 

working principle and features based on the interaction between transponder and reader 

are described. The novel concept of RFID with chipless transponders is introduced as a 

low-cost alternative to compete against the well-established barcode technology. RFID 

systems with chipless transponders are based on metallic structures placed on a substrate 

and have the capability to modify the received signal and retransmit or backscatter it to 

the reader.  

Chipless RFID transponders follow the basic principles of conventional microwave 

circuits and antennas design and are built on these foundations to achieve the coding in 

the time or frequency domains. A brief overview of some typical structures employed is 

given, their basic working and encoding principles, as well as their implementation are 

discussed. 

2.1 Automatic Identification Systems Background 

Automatic identification systems (Auto-ID) have become an attractive solution in 

a wide range of customer-oriented industries, logistics and supply chain management, 

fabrication and processing of products from raw materials. The Auto-ID aim is to provide 

information about people, animals, assets and products being processed [11]. 

The widely used barcode labels started the revolution in automatic identification 

systems in the 1980s, however nowadays are being found insufficient for an increasing 

number of applications. Barcodes are very cheap, but they reading distance is limited to 

a few centimeters, require direct line-of-sight (LOS) to be read and they can’t be 

reprogrammed [11]. 

The use of ICs to store the data would be the technical optimal solution to overcome 

the barcode disadvantages. The smart card is the most used type of electronic data-

carrying appliance (bank cards, library cards, personal identification cards, etc.), it is 

based on a contact field that requires mechanical contact with the reader, which also 
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makes it often quite impractical. Therefore, the need to implement a contactless system 

to transfer data between the data-carrying device and its reader becomes obvious, and in 

an ideal case, the power needed to operate the electronic data-carrying device should also 

be transferred from the reader using contactless technology. The Auto-ID system that uses 

radio waves to contactless transfer power and data is the RFID system [11]. 

The following subsections provide a brief introduction to different Auto-ID 

systems. 

2.1.1 Barcode Technology 

The barcode is a binary representation of data and is the most used technology for 

identification of products, with billions of daily scans all over the world. There are two 

main types of barcodes currently being used: one-dimensional (1D) and the two-

dimensional (2D) barcode. The 1D barcode is the most popular and it consists of a set of 

bars and gaps arranged in a parallel configuration. The data representation takes place by 

varying the widths and spacing between bars according to a predeterminate pattern. The 

barcode is read by optical laser scanning, e.g. by calculating the difference in the 

reflection of a laser beam from black bars and white gaps, the European article number 

EAN-13, which is the most used standard, encodes 13 digits. The 2D barcode on the other 

hand, such as the quick response (QR) codes, encodes the data in both horizontal and 

vertical dimensions increasing the capacity, the model 2 with 177 × 177 modules can 

store up to 7,089 digits, it has recently been gaining more market, especially due to the 

advancement of the smartphone technology, where the barcodes can be capture by the 

device’s integrated camera and the message extracted using a mobile application [11] [12] 

[13] [14]. 

2.1.2 Optical Character Recognition 

The optical character recognition system (OCR) was first used by companies in the 

1960s. Its aim was to convert printed text to machine-encoded text, therefore, special 

fonts with stylized characters were developed in a way that they could be read both by 
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the human eye as well as automatically by the OCR reader. Allowing to have high density 

information and in case of an emergency, be able to read the data visually [11]. 

Although OCR system failed to become universally applicable due to the 

development of its complicated reader, which at the time increased its price when 

compare to other Auto-ID products [11]. Nowadays, as the processing capabilities of 

mobile/wearable devices increases and are being equipped with high resolution cameras 

and microprocessors, the OCR has become feasible, attractive and ubiquitously available 

using sources like scanned documents, digital photographs, business cards, etc. to obtain 

information [15].  

2.1.3 Biometric Procedures 

The biometric procedures involve measuring of physical characteristics of living 

beings, that is, identifying people by comparing unmistakable its individual 

characteristics like fingerprints, voice, retina or iris [11]. 

2.1.4 Smart Cards 

A smart card is a system where the data is stored electronically, in some cases with 

additional processing capacity like a microprocessor card. It comes in a plastic card of 

the same size as a credit card (85.60 mm × 53.98 mm). The smart card is read by placing 

it in the reader, where the card’s contact springs make a galvanic connection with the 

respective set in the reader. The data transfer takes place using a bi-directional serial 

interface. Two different type of cards could be found: the memory card and the 

microprocessor one [11]. 

The information in the memory card is accessed using a state machine, they can be 

cost effective for some type of applications and that is why they are predominantly used 

in price sensitive, large-scale applications [11]. 

The microprocessor cards contain a microprocessor connected to a segmented 

memory: read-only memory (ROM), random access memory (RAM) and electrically 

erasable programmable read-only memory (EEPROM). The ROM and its content are 

inserted during the manufacturing of the integrated circuit. The EEPROM contains the 
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application data, the operation system allows the reading or writing of data to this memory 

[11], and the RAM is the microprocessors temporary working memory. The data stored 

in the RAM is lost after the smart card is disconnected from its supply voltage [11]. 

Microprocessor cards are mainly being used in security sensitive applications like 

banking e.g. EC-cards (electronic cash) [11]. 

2.1.5 RFID Systems 

The RFID systems stored the data in an electronic data-carrying device, namely the 

transponder. The power supply as well as the data transfer between transponder and 

reader is achieved by means of electromagnetic fields. Due to the advantages of the RFID 

systems compared to other Auto-ID systems, RFID Systems are currently being 

developed to overcome new mass markets like item level tagging. The working principle 

taken from the fields of radio and radar engineering, will be explained further in the next 

section [11].  

2.2 RFID System Principle 

The RFID system is composed of three major elements [11], as shown in Fig. 2.1: 

1. RFID transponder, which is placed on the object to be identified. 

2. The interrogator or reader, which, depending upon the design or the 

technology used, may be a read/write device. 

3. Data processing subsystem associates the transponder stored data with 

arbitrary records of object to be identified. 

 The reader typically consists of a radio front-end to generate and receive radio 

signals, a control unit and an antenna. Additionally, the reader is equipped with other 

standard interfaces to send and receive data to another system like a PC, e.g. universal 

serial bus (USB), recommended standard 232 (RS-232), etc. [11]. 

The RFID transponder, which is the actual data-carrying device of an RFID system, 

normally consists of a coupling element and an electronic application specified integrated 

circuit (ASIC). The RFID transponder is usually a passive device and is only activated 

whenever it is placed within the reader’s interrogation zone. The energy necessary to 

operate the transponder is supplied through the antenna unit, in the same way, the timing 
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pulse (if necessary) as well as the data is transferred through this mean [11]. To transfer 

the data, the transponder sends or backscatters an electromagnetic EM wave to the reader.  

2.2.1 RFID Features 

RFID system are available in different variants and fabricated by probably equal 

number of manufacturers. A technical comparison between two different RFID systems 

may include features like [11]:  

1. Operating frequency range, it’s an important feature and is the frequency at 

which the reader and transponder transmit, which also has an influence on the 

reading distance of the system. Commercially available RFID systems can be 

found operating at a wide range of frequencies, ranging from  

135 kHz longwave to 5.8 GHz in the microwave range. 

2. Reader-transponder’s communication type is the way transponder and reader 

communicate to each other, the signal received at the reader from the transponder 

could be very weak compared to the signal sent by the reader, therefore, an 

appropriate communication procedure must be employed to be able to 

differentiate one signal from the other. Two different transmission procedures 

can be implemented: 

    

Fig. 2.1: RFID system working principle [11] 
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a. Full duplex (FDX)/ half duplex (HDX) systems, is a point to point 

communication procedure, in an FDX system, both devices 

communicate with each other simultaneously, and in a HDX system, 

both devices communicate with each other in one direction at a time. 

b. Sequential (SEQ) systems, in this procedure, the power of the reader 

is switched off at specific intervals of time, which are recognized by 

the transponder and used to send its data to the reader. 

3. Frequency response is the frequency range used by the RFID transponder to send 

its response, it could be the same as the reader, a frequency ratio of 1:1, or the 

use of subharmonics with a frequency ratio of 1: n-fold.  

4. RFID transponder’s power supply is one important feature of RFID systems. 

Active RFID transponders incorporate a battery, that supplies all of part of the 

power needed for the operation of the microchip. Passive RFID transponders on 

the other hand, acquire its power for operation from the transmitted signal energy 

of the reader. 

5. The operation principle of the data carrier: with IC or not 

6. The type of processing used: state machine or microprocessor 

7. Programmable RFID transponder is the possibility for the reader to write data to 

the RFID transponder. 

8. RFID transponder storage capacity is the measure of the amount of data an RFID 

transponder may contain, it could range from one bit to several kilobytes. 

9. Data transmission from the RFID transponder to the reader, is the procedure how 

the RFID transponder sends data to the reader: 

a. The RFID transponder sends a reflection or backscatter signal to the 

reader. 

b. The RFID transponder modulates the received signal from the reader 

with a load modulator. 

c. The RFID transponder sends its information using radio waves of a 

different frequency range that the one used by the reader. 

RFID international standards are used to facilitate the different manufactures to 

fabricate interoperable products with same characteristics, and therefore the RFID 

transponder design is driven by these specifications defined according to the frequency 
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of operation. Passive RFID transponders operating in the low-frequency (LF) of 125,  

134 – 135 kHz or high-frequency (HF) of 13.56 MHz bands, are powered by the magnetic 

field of the reader, include an IC which could also be programmed, and are used for 

applications with typical distances no greater than 15 cm or 1.5 m respectively. The LF 

and HF wavelengths are much larger than the reader or RFID transponder antennas 

(greater than 2200 m and 22 m respectively), therefore the data transfer must take place 

by magnetic coupling between the reader and transponders coils. RFID transponders 

operating in the ultra-high (UHF) and microwave (MW) can be either passive or active, 

their wavelengths are shorter than 35 cm and for that reason, they are based on electric 

field coupling. Passive RFID transponders could reach a reading range of up to 10 m and 

active ones even larger distances [6] [16]. 

Now that the main features of the barcode and RFID technologies have been 

introduced, a comparison between their main technical capabilities can be done and it is 

shown in Table 2.1 [6] [12] [16]. 

2.3 RFID with Chipless Transponders 

In the previous sections, the technical aspects of different Auto-ID systems have 

been discussed, with special emphasis on the barcode and RFID technologies. Although 

both systems provide advantages and disadvantages, as explained before, efforts are being 

made to develop an RFID system for barcode replacement on an item-level tagging [7]. 

Feature Barcode RFID 

LOS required Yes No 

Simultaneous reading No Yes 

Requires human operation Yes No 

Rewritable No Yes 

Storage capacity 
EAN-13: 13 digits 

QR: up to 7,089 digits  
Typically, 2 KB 

Power consumption  Reader Reader and transponder 

Environmentally friendly Yes No 

Durability Low High 

Table 2.1: Comparison of technical features between barcode and RFID technologies 
[6] [12] [16] 
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The main limitation to achieve this goal is the RFID transponder price, most of up to date 

RFID systems typically required a complementary metal-oxide-semiconductor (CMOS) 

chip in addition to an antenna, which significantly increases their price compared to the 

barcode. Therefore, further works are being conducted to achieve a meaningful reduction 

in the RFID transponder fabrication cost, one of them investigates the implementation of 

a solution in which the RFID transponder does not require an IC chip, or in other terms, 

an RFID system with chipless transponders [9]. 

The RFID system with chipless transponders offers a promising solution for price 

reduction, conserving important features from the classical RFID (e.g. multi-reading, no 

direct LOS, no human operation, etc.) while adopting others from the barcode technology 

(e.g. environmental friendlier, cost). The chipless RFID transponders are passive devices 

based on electric circuits that when placed in their reader interrogation zone, re-transmit 

or backscatters a modulated version of the received electromagnetic wave. Therefore, in 

RFID Systems with chipless transponders, one of the main challenges is to generate a 

modulation technique or coding principle based on the chipless transponder frequency 

signature, that allows to send the information and be unequivocally decoded by the reader 

[7] [9]. 

Several coding techniques mostly developed from the chipless transponder’s 

perspective have been proposed in literature with different types of structures and ways 

in which the information is transmitted. Two main classifications can be found: time and 

frequency domain encoding, and they will be discussed briefly in the following 

subsection. Other coding techniques, which are a combination of these two can also be 

found in literature [17].  

2.3.1 Time Domain Encoding 

The time domain encoding basically consist in assigning specific re-transmission 

delays to each different chipless RFID transponder’s received signal, which theoretically 

allows the reader to determinate which code has been sent by performing a pulse time-of-

arrival (ToA) analysis. Two main types of structures working principle can be found: 

surface-acoustic-waves (SAW), and delay lines. 
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2.3.1.1 Surface Acoustic Waves Chipless RFID Transponders 

White and Voltmer first described the principle of surface-acoustic-wave (SAW) 

transduction by means of direct piezoelectric coupling in 1965. They fabricated their 

sample by depositing aluminum on a quartz substrate and then pattern it by means of 

photolithography [18]. Since then, there has been continuous development on the 

fabrication processes for mass production and on the applications of SAW devices, being 

RFID with chipless transponders one of those. Nowadays, commercially available SAW 

RFID transponders can be found working on the industrial scientific medical (ISM) 

frequency band at 2.4 GHz [19]. 

The principle of operation of a SAW RFID transponder is shown schematically in 

Fig. 2.2, it is based on piezoelectricity, the electromechanical interaction between the 

electrical and mechanical state in a material. In certain dielectric crystals, the application 

of a mechanical force generates an electrical charge, and the opposite, a mechanical strain 

due to the application of an electric field [19]. 

 In Fig. 2.2, the RFID transponder antenna receives the pulse transmitted by the 

reader, the interdigital transducer (IDT) performs the transduction between the electrical 

signal and the acoustic mechanical wave, which then propagates across the surface of the 

substrate. The generated SAW is then partially reflected and transmitted by each of the 

reflectors placed at specific distances on the substrate. Each of the reflectors reflected 

SAW returns to the IDT with a delay proportional to its distance to the IDT, are 

 

Fig. 2.2: SAW RFID transponder schematic working principle [19] 
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transduced to radio waves and send back through the antenna to the reader to perform the 

recognition of the transmitted identification code [19]. 

The SAW encoding method is achieved considering the time delays of the reflected 

SAW pulses, an amplitude-shift keying (ASK) is implemented by dividing the time into 

specific slots, a binary 1 is represented by a pulse being received in the given timeslot and 

a binary 0 otherwise. A phase-shift keying (PSK) coding technique could also be realized 

by designing the reflectors as phase shifters, more coding techniques could also be 

achieved by analyzing any other suitable distinctive characteristic for the received pulses 

like pulse-position modulation (PPM), etc. [19]. 

One disadvantage of the SAW RFID transponders is that its capacity is limited by 

its size, to make it competitive against other Auto-ID technologies, it must be small and 

cheap. However, achieving delays of 2 to 4 µs requires propagation distances around 8 

and 16 mm respectively. Therefore, the number of achievable codes is still rather limited, 

and efforts are being conducted to increase the SAW transponder capacity [19].  

Another type of passive time-domain encoded chipless RFID transponders with 

similar functionalities as the SAW are described in the next section.  

2.3.1.2 Chipless RFID Transponder Based on Delay Lines 

One approach to realize a system with delayed reflected signals is proposed by 

Zhang et. al. [20], and is based on the transmission lines matching principle. A 

transmission line is terminated with a load that is equal to its characteristic impedance to 

prevent undesired reflections, on the other hand, a mismatched termination will generate 

signals reflections. Therefore, the authors propose to design a transmission line with 

different impedance mismatches along it and connect it to an external antenna. One single 

chipless transponder transmission line is designed placing 4 different capacitive 

discontinuities at regular intervals, its equivalent circuit and basic reflection principle are 

shown Fig. 2.3a, a resistance is placed at the end of the line to dissipate the forward pulse. 

The coding is based on the PPM technique and up to 16 different codes are claimed. A 

photograph of the chipless transponder prototype fabricated using Rogers 4350 as a 

substrate is shown in Fig. 2.3b, a UWB pulse generator is used to send a train of Gaussian 

pulses with a width of 2 ns and a period of 20 ns as an interrogation signal, and the period 



2 Fundamentals of the RFID Technology                                                                                                                         
 

20 
 

is set long enough to avoid undesired collisions. The total length of the transmission line 

is determined by the amount of desired identification codes and the pulse duration. Thus, 

it suffers from the same size limitations as the SAW transponder.  

Later works like the ones proposed by Hu et. al. in [21] and [22], involves the design 

of a uniplanar monopole antenna. The geometry of the chipless RFID transponder is 

shown in Fig. 2.4, it consists of trimmed elliptical ring patch antenna and by a meandered 

coplanar waveguide (CPW). The coding is done by varying the CPW length and 

terminating it with different kind of loads: matched, short and open circuit.  

Six different chipless RFID transponder are fabricated on Rogers 4003C substrate, 

three with CPW length of 37.6 mm and three with 41.6 mm. The chipless RFID 

transponders are measured using a fifth order Gaussian pulse, and the results are shown 

in Fig. 2.5. The first received pulse is the reflection generated once the waveform reaches 

the RFID transponder, it is the same for all chipless RFID transponders and it could serve 

to calculate their location. The delay between the first and the second received pulses is 

due to the time it takes for the Gaussian pulse to travel along the meandered CPW, these 

delays with respect to the first pulse, along the different shapes obtained due to the CPW 

termination type should serve to generate the different codes. 

 

 

a) b) 

Fig. 2.3: Chipless RFID transponder based on high speed time domain delay lines: 

a) transmission line equivalent circuit and reflection principle, b) photograph of the 

prototype with size 8.3 cm × 3.1 cm and its measurement setup, taken from [20] 
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Fig. 2.4: Geometry of the chipless RFID transponder based on a uniplanar monopole 

antenna and CPW [21] 

 
a) 

 
b) 

Fig. 2.5: Chipless RFID transponders’ backscattered waveform for matched, open 

and short circuit terminations and CPW length: a) 37.6 mm, b) 41.6 mm, after [21]  
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To decode the CPW chipless RFID transponders, the authors proposed theoretically the 

architecture of the receiver illustrated in Fig. 2.6. The received signal is split 𝑀 different 

paths, then it is multiplied with a delayed version of itself. Each path has a unique delay 

𝜏  that corresponds to a specific time difference between the first and second pulse of 

the 𝑀th-chipless RFID transponder. The low-pass-filters (LPF) serves as envelope 

detector for the signal coming out of the mixers. To perform the detection, the authors 

suggest the selection of the signal with the largest amplitude and correct polarity, 

additionally, the chipless RFID transponder position can also be calculated using the ToA 

and positioning algorithms. Nevertheless, no practical experimental data to evaluate the 

functionality of the receiver and the effectivity of detection algorithm is provided [21].  

Another way to codify a chipless transponder, which should also serve as a 

transition between time and frequency domain coding principles, is a PPM technique 

using the group delay characteristics of meandered transmission lines, as proposed by 

Gupta et. al. in [23], Fig. 2.7a illustrates the design schematic of the chipless RFID 

transponder, consisting of microwave C-section dispersive delay structures, and Fig. 2.7b 

the coding principle. The non-commensurate coupled-lines realized by cascading several 

C-sections with different lengths and coupling levels are particularly suitable to generate 

a group delay with dispersive characteristics. A variation in the inter-coupled lengths, 

produces a quasi-arbitrary group-delay response, which is the superposition of all the 

group delays provided by each C-section with their peak 𝜏  centered at 𝜔  [23]. 

 
Fig. 2.6: Proposed receiver architecture for CPW chipless RFID transponders [21] 
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 Three chipless RFID transponders are fabricated on Rogers 4003C substrate, the 

schematic of proposed transmitter is shown in Fig. 2.8, 1-ns long pulse with rise and fall 

times of 65-ps is generated, it is divided and send through three different paths with 

different delays and modulation frequencies of 3, 4, and 5 GHz, to be finally combined 

and transmitted through a horn antenna to interrogate the chipless RFID transponder, and 

the coded response is measured in the frequency domain with the help of an oscilloscope 

connected to another horn antenna [23]. 

In general, the coding capacity of time domain chipless transponders based on the 

delay lines/group delay principles is directly proportional to the chipless RFID 

transponder size, which could make its placement on an object impractical. Furthermore, 

a greater size translates into an increase of its fabrication cost, that is also a disadvantage, 

especially when compared to the barcode technology. Although efforts are being 

 
Fig. 2.7: Chipless RFID transponder based on C-section transmission line: a) 
geometry, b) coding principle [23] 

 

 
Fig. 2.8: Proposed RFID transmitter architecture to read chipless RFID transponders 
based on C-section transmission line, three pulses with carrier frequencies of  
𝑓 = 3 GHz, 𝑓 = 4 GHz and 𝑓 = 5 GHz are generated [23]  
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conducted to reduce the chipless transponder occupied area, like the one proposed by 

Rodrigues et. al. in [24], where a methodology of folded multi-layer chipless RFID 

transponders is evaluated. Nevertheless, the printed area continues to be the same, and 

although the occupation area is reduced, more complexity to its fabrication process is 

added to overcome the effects of folding, which could also affect the cost of the chipless 

RFID transponder. For that reason, researchers are also focusing their attention in 

development of the frequency domain coding methodology, which is mostly based on the 

spectral signature of the chipless RFID transponder as will be described in the next 

subsection.  

2.3.2 Frequency Domain Encoding 

The frequency domain coding resides on modifying the chipless RFID transponder 

frequency response for a given bandwidth, allocating specific signatures to every 

individual chipless RFID transponder that the reader should be able to analyze and 

successfully identify. As per the time domain case, two different types of structures can 

be found in literature: frequency resonating circuits with antennas or scatters. 

2.3.2.1 Chipless RFID Transponders Based on Resonating Circuits 

Preradovic et. al. presented in [25] a concept considering the amplitude and phase 

of the spectral signature of a multi-resonator circuit, assigning a 1:1 correspondence 

between resonators and data bits. The geometry of the chipless RFID transponder is 

shown in Fig. 2.9a, it theoretically encodes a total of 6 bits, and is composed of six 

microstrip spiral resonators, and two microstrip UWB disc loaded monopole antennas for 

cross-polarized transmission and reception. By varying each spiral resonator dimensions, 

a new different stopband is generated, and therefore, six different frequency dips within 

the 2 – 2.5 GHz frequency band are achieved, which are separated around 100 MHz from 

each other, starting from 2 GHz. 

The coding technique consist of an on-off-keying (OOK) and is illustrated in  

Fig. 2.9b, if a resonance is generated, it is considered as a digital 0, if the resonance is 

removed, then it becomes a digital 1. The resonance removal is achieved by  
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short-circuiting the spiral resonators, a short circuit will generate a shift in the frequency 

dip locating it outside the designed chipless RFID transponder operational range, forming 

a digital 1, where the original resonance should have taken place [25].  

The multi-resonators circuits and the antennas are fabricated on Taconic TLX-0 

substrate and the chipless transponder frequency response is measured using a vector 

network analyzer (VNA). Another 35-bits chipless RFID transponder composed of a 35 

spiral resonators circuit is also fabricated in [25], working under the same coding 

principle. Later in [26] and [27], the same author proposed the reader architecture 

illustrated in Fig. 2.10, is fabricated and used to detect two 23-bit chipless transponders 

based on the same spiral resonators principle. For transmission, the micro-controller 

generates a sequence of bits that are converted to voltages by the analog-to-digital 

converter (ADC) and fed to a Teledyne YIG oscillator, which generates a frequency 

 
a) 

 
b) 

Fig. 2.9: Chipless RFID transponder based on spiral resonators: a) geometry, b) 
principle of encoding [25] 
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sweeping signal (7 and 10.7 GHz) with 15 dBm constant power that is sent through the 

10-dB coupler to the antenna to interrogate the chipless RFID transponder. The received 

signal through the antenna is down-converted by the mixer and sent to the gain/phase 

detector to be compared with the down-converted version of the transmitted one. The 

comparison voltages are converted to bits by the digital-to-analog converter (DAC) and 

sent to the microprocessor. The detection is performed using a simple peaks detector 

algorithm, and variations on the amplitude and phase of one single chipless transponder 

were detected up to 15 cm away from the horn antennas in a noise free environment.  

A more compact structure based on open stubs in a microstrip transmission line and 

two cross-polarized transmitting and receiving disc monopole antennas is proposed in 

[28] and its geometry shown in Fig. 2.11a, eight different resonators are designed to 

produce equal number of resonating dips and bits. It is based on the OOK coding principle 

or a further analysis of the group delays. The chipless transponder was measured in an 

anechoic chamber with a programmable network analyzer (PNA) and the results are 

shown in Fig. 2.11b, a measurement considering only the transmission line directly 

connected to the PNA (no antennas) is also illustrated. 

The chipless RFID transponders based on resonating circuits have the disadvantage, 

that they additionally required the fabrication and design of antennas, which increases 

    

Fig. 2.10: Proposed UWB reader architecture to read chipless RFID transponders based 
on spiral resonators [27] 
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their size and fabrication cost. Therefore, another type of structures based on scatters are 

also being investigated and are presented below.  

2.3.2.2 Chipless RFID Transponders Based on Scattering Structures 

In 2005, Jalaly and Robertson presented two works on RF barcodes using multiple 

frequency bands inspired by frequency selective surfaces (FSS) and the barcode 

technology: one approach considering between others, a chipless RFID transponder 

consisting of an arrays of five opaque metallic microstrip dipoles with different lengths 

and widths [29]. And the second one, considering an array of eleven identical split dipoles 

[30], both in the 5.8 GHz frequency band, fabricated on Taconic’s TLY-5 substrate, and 

using the same coding principle: OOK. The geometry of the work presented in [29] is 

   
a) 

 
b) 

Fig. 2.11: Chipless RFID transponder based on open stub resonators: a) geometry, b) 
measured response, modified from [28] 
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illustrated in Fig. 2.12a, the dipole-like structures behave in a similar ways as the previous 

discussed structures, generating a resonant band pass or band stops frequency response. 

However, the author does not explain clearly how the coding is implemented physically 

on the UWB chipless RFID transponder (short-circuit or complete removal of a specific 

dipole). The network analyzer measurement results for two transponders with codes 

11111 and 11010 are shown in Fig. 2.12b. The presence of a resonance dip represents a 

one, and its absence a zero.  

 The geometry of another scattering structure proposed by Vena et. al [31] is shown 

in Fig. 2.13a, it is based on 20 C-sections without antennas or ground plane and fabricated 

on FR-4 substrate. The author explores the OOK and the group delays as coding principle. 

To configure the chipless RFID transponders, each resonator is replaced by a conductive 

strip of the same dimensions. As illustrated in Fig. 2.13b, the chipless transponder 

produces 20 resonance peaks between the 2 – 4 GHz frequency band, which should 

 
a) 

 
b) 

Fig. 2.12: Chipless RFID transponder based on RF barcode principle: a) geometry, 
b) measurement results for codes 11111 and 11010, modified from [29]  
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correspond to 20 bits. Finally, the chipless transponder are measured with the help of a 

VNA and radar cross-section (RCS) response, which is a measure of the detectability of 

an object, is calculated from the measured scattering parameters and a calibration method. 

The RCS concept will be further explained in subsection 4.1.1. 

Another similar structure based on open conical resonators is proposed by Nair et. 

al. in [32], a picture of the prototype is shown in Fig. 2.14a. The chipless transponder is 

fabricated printing silver ink on PET, it produces 12 peaks in the 2.5 – 9.5 GHz frequency 

 
a) 

 
b) 

Fig. 2.13: Chipless RFID transponder based on C-section like scatters a) geometry 
and coding principle, b) simulated |RCS| for codes 11111111111111111111 and 
10111111110111111101, modified from [31] 
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band, its calculated |RCS| from the VNA measured scattering parameters and a calibration 

method, as well as the coding principle based on PPM is shown in Fig. 2.14b. A peak 

placed at a specific frequency represents a digital zero and if placed in another frequency 

represents a digital one. The chipless RFID transponder physical coding is achieved by 

the changing the length of the resonators.  

 Thus, different geometries consisting of squares [33], rings [34], and a very 

interesting approach using genetic algorithms to generate a change in the frequency 

response [35], are being investigated to encode the chipless transponders using any 

desirable characteristics: amplitude, phase, group delay, etc. The maximum coding 

capacity claimed for frequency domain transponders are: 35 bits for transponders based 

on resonating circuits plus antennas [25], and of 42 bits for scattering structures [34]. 

However, these capacity claims are mostly based solely on the visual inspection of the 

chipless transponders generated peaks or dips, obtained through a front-end or 

measurement equipment without the proper implementation of a computer-based 

detection algorithm under normal working conditions or taking the influence of the 

 
a) 

 
b) 

Fig. 2.14: Chipless RFID transponder based on open conical resonators: a) geometry, 
b) calculated |RCS| from measured scattering parameters [32] 
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communication channel into consideration. Furthermore, under normal working 

conditions, the chipless RFID transponder may experience frequency response 

degradations due to its handling while being placed in the interrogation zone, which 

compromises a detection technique based solely on the position of the peaks or the dips, 

and the need for a more robust coding and detection techniques becomes evident [33]. 

Finally, a block diagram containing the classification of chipless RFID transponders 

according to their coding technique and structures is illustrated in Fig. 2.15. 

2.4 Summary 

This chapter provided an overview of different automatic identification systems, 

their working principles, technical features, major advantages and implementation 

challenges. The RFID technology has been specially emphasized as it continues gaining 

market penetration in a wide range of applications. Furthermore, due to price-constraints, 

a novel system based on chipless RFID transponders is presented as a feasible solution 

for barcode replacement on a in item-level tagging. The RFID system with chipless 

transponders aims to implement additional features like simultaneous detection, no 

human operation required, etc. to the ones that are currently being offered by the barcode 

technology, like environmentally friendly, cost, etc. 

Different types of chipless RFID transponders structures and coding techniques 

have been discussed, ranging from the already commercially available time domain SAW 

   

 

Fig. 2.15: Classification of chipless RFID transponders according to their coding 
technique and structures 
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RFID transponders to the frequency domain scattering structures currently being 

investigated and which are the structures used to conduct this investigation. The 

importance to implement a proper coding and detection techniques for their 

implementation in a real case scenario has been highlighted, and their different 

manufacturing processes will be discussed in the next chapter.  
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 Manufacturing Technologies 

The two-main printed electronics techniques used to produce UWB chipless RFID 

transponders, and the overall manufacturing processes are discussed in this chapter. The 

key physical parameters of the substrate materials and the challenges to produce metallic 

inks are explained, to provide a general understanding of the technology and its 

limitations, which need to be considered at the time to design a printable UWB chipless 

RFID transponder on flexible substrates. Finally, an alternative procedure to manufacture 

low-cost prototypes in an expedite way with other available organic materials is 

introduced. 

3.1 Organic and Printed Electronics 

Conventional semiconductor devices used today, are being manufactured in a series 

of steps involving bulky expensive equipment to perform the deposition of inorganic 

materials from the gas phase. Processes that are realized at vacuum with relative high 

temperatures. Between steps, the deposited material is patterned via photolithography 

with a precise mask containing the desired design. In photolithography, a light sensitive 

chemical called photo resist is used to cover the substrate, after the mask is placed, light 

is used to harden the photo resist and transfer the desired mask design to the substrate. 

The light exposed photoresist is then developed with chemical treatments, an exact mask 

representation made of photoresist is obtained. An etching process removes the unwanted 

areas using a plasma that reacts with the inorganic material not covered by the photoresist. 

The process is repeated until all the desired layers have been successfully developed. 

Thus, the manufacturing of semiconductor electronics generates an increasing significant 

quantity of inorganic material and chemicals waste, causing not only economic liability 

due to increasing disposal cost but also environmental [36]. 

Organic and printed electronics is a field of material science and an emerging 

technology in terms of mass production techniques. Organic molecules or polymers with 

desired electronic properties like conductivity can be formulated in functional inks, which 

can then be implemented in mass production printers. Technique that could significantly 

reduce the production cost, especially compared to the inorganic electronics, and with 
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additional added values like being light weighted, flexible, environmental friendlier and 

easier to dispose [37]. Although some concepts are taken from the classic device theory, 

fabrication materials including the substrates, inks, and the development process are quite 

different from the ones used in the conventional semiconductor industry [38]. 

3.1.1 Substrates 

The substrate is the underlying layer on which the flexible electronic devices will 

be developed. Its main function is to serve as device carrier. Therefore, large area sheets 

or rolls can be easily used to implement batch or roll-to-roll fabrication processes. All 

organic printed electronics substrates are being used in other markets segments where 

mass production capabilities have been implemented, which allows the application of 

these mature process in the fabrication of flexible electronics [38]. 

One of the main advantages of organic printed electronics is that flexible low-cost 

substrates of different sizes can be employed for fabrication. Nowadays polymer films 

like the PET are mostly used, nevertheless there’s an important focus on the utilization of 

paper. However, the material to be chosen depends on its mechanical properties (surface 

roughness, thermal expansion, etc.) and the device development process required for a 

specific application [38]. 

Each substrate material has its advantages and disadvantages, glass substrates 

present a higher barrier while paper is more flexible and cheaper. Plastic materials like 

PET can be modified to fulfill certain physical and surface requirements and employed 

for different applications. Other materials are high temperature resistance allowing the 

implementation of more complex development processes. According to its specific 

properties, the right material can be found to fulfill the requirements of a specific 

application [38]. 

As it will be further explained in chapter 4, the impedance of microstrip lines 

depends on the relative dielectric constant 𝜀 , as well as the physical dimensions of the 

substrate such as thickness. Therefore, the final dimensions of the microstrip line (width, 

gap) are determinate by the selected substrate. To reduce the size of a device, a high 

relative dielectric constant 𝜀  is desired, given that it increases the capacitance of the 

components, reducing the size and radiation losses. On the other hand, a low relative 
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dielectric constant material 𝜀  can serve as a good substrate for RFIDs [9]. The substrate 

thickness has a direct influence on the effective dielectric constant 𝜀 , therefore it also 

determines the resonance frequency, and the sizes of the components on the substrate, as 

well as the substrate losses and overall system flexibility [9]. 

In the specific case of RFID with chipless transponders, a low-cost substrate with 

capabilities for large volume item tagging needs to be used. In the best-case scenario, the 

chipless RFID transponder will be directly printed on the product package without the 

need of an extra label or special substrate [38]. Given the high price pressure, PET and 

paper are mostly selected for their low-cost availability. Thus, their main parameters are 

of great interest, Table 3.1 presents some key mechanical/electrical properties for PET 

and paper [9]. 

The influence of the permittivity and the loss tangent will be further explained in 

subsection 4.1.2. However, PET has a higher permittivity than paper which has a direct 

influence on the position of the UWB chipless RFID transponder’s frequency dip, and it 

also has a higher physical resistance to mechanical tension or compression. Paper, on the 

other hand, presents higher losses than PET.   

3.1.2 Organic Inks 

The ink is the organic material that needs to be transferred to surface of the 

substrate. For that reason, functional materials need to be transformed to a physical state 

in which they can be easily transported, namely the liquid state. Furthermore, this liquid 

Parameter PET Paper 

Relative permittivity (𝜀 ) 3.4 2.8  ̴3 

Loss tangent (tan 𝛿) 2.0 x 10-3 0.05  ̴0.06 

Coefficient of thermal expansion (𝑡𝑝𝑝𝑚/°𝐶) 6 - 

Young’s modulus (𝑝𝑠𝑖) 4.0  ̴4.5 x 105 144  ̴838 

Water absorption (% 𝑎𝑓𝑡𝑒𝑟 24 ℎ𝑟𝑠) 0.16 2 

Compound PET Cellulose 

   

Table 3.1: Physical properties of substrate materials for chipless RFID transponders [9] 
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state needs to fulfill the respective printing technology specifications. Two parameters 

are mainly considered: viscosity, which is the ability to transfer mechanical stress and 

hydrodynamic pressure to the substrate, and surface tension, which are the capillary 

forces between the fluid-substrate and fluid-air interfaces. The printing ink needs to be 

set sensitively in viscosity and surface tension for the given substrate, printing process, 

and drying conditions [37]. 

In printed electronics, the conductive inks are based on conductive metal 

nanoparticles. However, to stabilize the ink against aggregation and precipitation, and 

provide reproducible performance, an agent which is usually a polymer is required. This 

polymer is especially important to prevent dispersions of inks with high metal content, 

which are required to produce high conductivity printed patterns. Therefore, the best 

metal candidates to produce the inks are the ones with high conductivity as silver Ag  

(6.3 × 107), copper Cu (5.96 × 107), gold Au (4.42 × 107), and aluminum Al  

(3.78 × 107). Nowadays, silver-based ink, is the most reported and studied worldwide 

conductive film material in printed electronics [39] [40]. Silver is a novel metal well 

known for its privilege position in terms of electrical conductivity, lower affinity to 

oxygen if compare to copper or aluminum. It can be found in a rate of 25 to 1 with respect 

to gold on the earth crust, and therefore is cheaper. Additionally, it possesses interesting 

physical properties, that enables the silver-based inks to have a good adhesion to the 

substrate, reducing the coffee-ring effect and particles aggregation. It also provides a 

suitable viscosity and surface tension helping to determine the drop size improving its 

placement accuracy [40] [41] [42]. 

Nevertheless, silver is still quite costly and a major challenge in this field is to 

replace it with cheaper ones like copper or aluminum, but this depends on finding the 

proper fabrication process to avoid their oxidation at ambient conditions, for example 

aluminum gets a dense thin amorphous aluminum oxide layer (𝐴𝑙 𝑂 ) of around 2 – 6 nm 

within approximately 100 picoseconds, loosing electrical conductivity and making it 

inapplicable for conductive inks formulations. In the case of copper, it undergoes a slower 

oxidation process, which allows to coat it with a capping agent or with another air stable 

metal and this way, prevent penetration of air in the surface of the nanoparticles [39]. 
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Now that the main materials used in printed electronics has been described, an 

introduction to the different printing technologies and process is given in the following 

subsections. 

3.1.3 Screen Printing 

The screen-printing principle is shown in Fig. 3.1. A screen-printing machine 

usually is composed by a screen (a mesh generally made of natural silk, plastic, and metal 

mounted on a frame), a squeegee, a flooding blade, and a substrate holder or base plate. 

The metallic based ink is applied to the screen by the syringe, the flooding blade is used 

to distribute homogenously the ink all over the screen without pressure and without 

bending it. The mesh is designed with different textures for printing and non-printing 

areas. An impermeable layer called stencil covers the mesh for non-printing areas 

preventing the ink from passing through the mesh to the substrate. The ink is pressed 

through the mesh to the substrate on the printing areas by the squeegee, which puts the 

mesh under local stress and bends it. The squeezed ink then adheres to the substrate 

surface [37].  

 The UWB chipless RFID transponders presented in this thesis are fabricated by the 

Technische Universität Chemnitz’s personnel, using the semi-automatic screen and 

 

Fig. 3.1: Screen printing principle 
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stencil printing machine X1 SL with manual positioning system from EKRA – ASYS 

Group and its printing characteristics are presented in Table 3.2[43]. The conductive 

layers are printed using silver-based ink Dupont 5028 [44].  

The first printing technology used for the fabrication of electronic components was 

the screen printing [37]. Nowadays, due to the technological advancements, screen 

printing has expanded its range of applications and is currently being used to print 

chipless RFID transponders on conventional flexible substrates [7]. Nevertheless, another 

printing technique based on flexography can also be used and its working principle is 

explained in the next subsection. 

3.1.4 Flexography 

The principle of flexography is shown in Fig. 3.2. The ink is stored in the ink feed 

chamber and covers the anilox roller as it rotates removing the excess of ink. The anilox 

roller is usually composed of a steel core and a ceramic or metallic surface with engraved 

cells that allow the storage of enough ink. The ink is then transferred from the anilox 

roller to the printing plate, that is mounted on the plate cylinder by means of a double 

face adhesive tape and contains the printing pattern. The ink is then transfer to the 

substrate as it is pressed against the printing plate by the impression cylinder [37].  

Nowadays, flexography is also being used in printing electronics for the fabrication 

of electronic devices, given the facilities to produce printing plates with higher printing 

resolutions. These advancements in the fabrication of printing plates has enable the use 

of this technology in fields like chipless RFID [37] [45]. 

The UWB chipless RFID transponders presented in this thesis are printed by the 

Technische Universität Chemnitz’s personnel, using the Flexography test machine 

Parameter Value 
Print speed  10 - 200 mm/s 
Print pressure 10 - 250 N 
Print format 460 x 460 mm 
Print material thickness max. 30 mm 
Repeat accuracy ± 10 µm 

 
Table 3.2: EKRA X1 SL technical data [43]  
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Flexiproof 100 model 630 from ERICHSEN [46]. The transponders are printed with a 

conductive thin film based on silver-based ink Dupont 5028 [44].  

3.2 The Printing Process 

The process of transferring the ink to the substrates involves a series of sub-steps 

that need to be considered depending on the properties of the ink, the substrate and the 

electronic device to be printed [37]: 

Conditioning, the surface of the substrates must be prepared for the deposition of 

the ink: sheets must be separated or unrolled individually, external contaminations need 

to be removed. In some cases, a pretreatment of the substrate using an electrical discharge 

or ionized gas is required if the printing fluid has an unsatisfactory wetting behavior. 

Fluid acquisition is the step in which a specific amount of ink is placed in the 

respective machine ink chamber. 

Pre-dosing is the distribution of the ink in a way it can be uniformly applied to the 

printing mask. For example, in Flexography printing this action is performed by the anilox 

roller. 

Dosing is the specific task of the printing mask, at this point, each point of the mask 

surface acquires a specific amount of ink that is going to be used to reproduce the desired 

pattern. 

 

Fig. 3.2: Flexography principle 
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Transfer, after the dosing of the ink has taken place, the ink is transferred to the 

desired point on the substrate, in screen and flexography printing, this is achieved by 

means of mechanical pressure. 

Relaxation is the surface-leveling process as an effect to the wetting of the substrate 

by the creation of a free, highly mobile ink surface. 

Drying, curing or sintering, the use of conductive inks for printed electronics must 

produce a high electrical conductivity of the printed pattern, preferable close the bulk 

metal, under relatively mild conditions, at which the properties of the substrate material 

are not affected (this is especially important for flexible electronics), which can be quiet 

challenging. A main effect that needs to be overcome after the relaxation process has 

occurred, is the formation of numerous percolation paths between metal particles caused 

by the presence of stabilizing agents and components that prevents direct electrical 

contacts between nanoparticles. Therefore, the nanoparticles-based ink is sintered by 

heating to produce a continuous metallic path. However, this process is limited by the 

substrate heat-sensibility, in the case of flexible substrates like paper or PET, they could 

not resist temperatures above 120 – 150°C [39]. 

3.3 A Fabrication Alternative with Aluminum or Copper Strips 

To evaluate the performance of chipless RFID transponders fabricated using other 

metallic materials like aluminum or copper, that as explained previously cannot be easily 

synthetized to produce metallic inks suitable for flexible substrates like bond paper. An 

alternative manual fabrication process was developed to produce chipless RFID 

transponders prototypes using commercial copper or aluminum tape for the conductive 

strips, and commercial bond paper or PET for the substrate.  

 The fabrication process of the chipless RFID transponders consists on printing two 

full scaled pattern masks with the desired design original dimensions on a sheet of bond 

paper using a commercial inkjet printer. The first mask pattern should serve to shape the 

metal strips and the second one to be used as a template where the finalized strips are 

glued.  

One of the printed masks is fixed with an adhesive agent from the non-printed side 

to the non-metal side of the respective tape, to prevent the reduction of conductivity due 

to influence of additives on the metallic surface. Then using a cutting tool, the metal tape 
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is shaped in the desired pattern. Finally, the protective paper of the patterned tape strips 

is removed, and they are pasted on the surface of the second mask following its printed 

design. This way, a very cheap and fast design prototype can be fabricated, to verify the 

chipless RFID transponder frequency response and later, to compare performance to its 

organic electronics printed version [47].  

3.4 Fabrication Technologies for Chipless RFID Transponders 

As discussed in section 2.3, different types of fabrication technologies and 

substrates can be used to manufacture chipless RFID transponders, being the printed 

circuit boards (PCB) the most commonly used. The term printed comes from the fact that 

the conductive strips are usually generated by means of a screen-printing or photo-

engraving process. The main components of a PCB are [48]: 

The base, it is a thin board made of an insulating material that provides mechanical 

support for all conductive strips and components and it also influences the electrical 

properties of the complete circuit. 

The conductors, which are normally made copper strips of high purity, which are 

firmly attached to the base material. 

To keep the manufacturing cost as low was possible, the chipless RFID 

transponders can be easily fabricated on a single-sided PCB, which means that the 

conductive strips are found on one side of the insulating substrate. The fabrication process 

is mostly performed by means of a “print and etch” technique or by a “die-cut” method, 

where a die carries an image of the chipless RFID transponder shape and then it is photo-

engraved, or machine engraved [48]. 

Although PCB fabrications are commonly found in literature for the fabrication of 

chipless RFID transponders [20] - [31]. Their fabrication cost rounds the several dollars 

range, depending on their size and substrate selection, which is still way above the US 

$0.10 of a standard ultra-high frequency (UHF) RFID transponder already commercially 

found [8], and the barcode replacement target of below US $0.01, as discussed in section 

1.1. Therefore, the implementation of manufacturing technologies like printed electronics 

on flexible substrates capable to mass produce UWB chipless RFID transponders 

becomes evident, not only to the fact of the used cheaper materials but also the waste 
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reduction. Chipless RFID transponders fabricated by means of printed electronics can 

already be found in [7], [32], [33], [35], [45], [47] and [49]. 

3.5 Summary 

In this chapter, the two main printing technologies based on screen and flexography 

were discussed, as well as the manufacturing process used to fabricate the UWB chipless 

RFID transponders presented in this investigation work. The main substrate parameters, 

as well as the conductive ink synthesis and deposition challenges were explained to 

provide an initial baseline to understand the design of the chipless RFID transponders and 

the RF performance results presented in the next chapter.
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 UWB Chipless RFID Transponder Design 

In this chapter, the fundamentals of the UWB chipless RFID transponder design 

based on waveform scattering structures are introduced. They have their foundations on 

the radar scattering with absorbing materials and frequency selective surfaces (FSS) 

theory, to produce band selective frequency responses. 

To develop one single multi-purpose structure to fulfill all the required features of 

the RFID technology is quite challenging, and out of the scope of this work. Therefore, 

five UWB chipless RFID transponders based on three different geometries with distinct 

characteristics are designed and manufactured, using either printed electronics or the 

alternative fabrication technique discussed in the previous chapter, and employing 

different materials to investigate their influence in the frequency response. Furthermore, 

the structures are developed within different frequency bands, and implementing different 

coding techniques to study their influence in the successful detection and recognition of 

the identification codes. A novel differential frequency coding technique is introduced, 

that will be used in later chapters to realize a real system application scenario, with a 

computer developed detection algorithm to automatic detect and successfully recognize 

the different UWB chipless RFID transponders identification codes. 

4.1 Scattering Theory 

The UWB chipless RFID transponder working principle is founded in the scattering 

radar theory, which describes the collision and scattering of a waveform with some 

material or object. The radar is a device designed to transmit an electromagnetic signal 

and receive the object’s echo, usually to determine its location and in some cases its 

characteristics. Nevertheless, with the evolution of the radar technology and the 

increasing development of sophisticated detection systems, a new threat to reduce mission 

effectiveness of many weapons and platforms in the military field was identified. 

Therefore, attention was driven to study new methods to reduce radar detectability, one 

of them is the RCS reduction (RCSR), which focuses on how the radar signature can be 

shaped to prevent an object from being easily identified [50]. To be able to understand 
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this concept, a general understanding of RCS is required and therefore its definition is 

explained in detail in the next subsection. 

4.1.1 Radar Cross-Section Definition 

The IEEE standard radar definitions describe the RCS as “the measure of reflective 

strength of a target, usually represented by the symbol 𝜎 and measured in square meters”. 

It can be mathematically expressed as “4𝜋 times the ratio of power per unit solid angle 

scattered in a specific direction to the power per unit area solid angle scattered from a 

specified direction. More precisely, it is the limit of that ratio as the distance from the 

scatterer to the point where the scattered power is measured approaches infinity” [50]:  

 𝜎 =  lim
 →

4𝜋𝑟
|𝑬 |

|𝑬 |
 (4.1) 

where 𝑬  and 𝑬  are the scattered and incident electric field of the target respectively. 

Three different cases or types of RCS that can be distinguished and as depicted in  

Fig. 4.1 [51]: 

a) Monostatic or backscatter RCS: there’s a reflected scattering wave that travels in 

the opposite direction of the incident wave: 

 𝑬 ∙  𝑬  =  −|𝑬 | 𝑬   (4.2) 

b) Forward-scatter RCS: the energy scattered travels in the same direction as the 

incident wave:  

 𝑬 ∙  𝑬  =  |𝑬 | 𝑬   (4.3) 

c) Bistatic RCS: the energy reflected or scattered travels in any direction other than 

the incident or opposite incident direction. 

 𝑬 ∙  𝑬  =  |𝑬 | 𝑬  cos ∅ (4.4) 

where ∅ is a measure of the angle between 𝑬  and 𝑬 . 

For this research work, the monostatic or backscatter RCS definition, is the case of 

interest. Thus, from now on, every time the term RCS is used, it will mean the backscatter 

RCS taken from this definition and measured in terms of decibel relative to one square 

meter dBm2.  
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In radar technology, complex targets like ships and aircraft can be represented as a 

collection of different basic geometric elements. The dominant echo sources of the target 

are isolated, and detection is then performed focusing to a limited number of elements 

rather than the whole composite target. Four different techniques were developed for 

RCSR: shaping, radar absorbing materials, passive and active cancellation. The first two, 

are the most practical and applied RCSR techniques. Being shaping the first one to be 

employed to create a design with low RCS, and the radar absorber materials (RAM) are 

used in areas where the shape could not be optimized or to reduce the effects of the 

traveling wave forms on the radar signature [50]. 

In the specific case of UWB chipless RFID transponders, the application 

requirements and fabrication technology limitations, prevent the shaping of its surfaces 

and edges to deflect the scattered energy in directions away from the RFID reader for 

specific frequencies. Nevertheless, the knowledge of the electromagnetic aspects of RAM 

design, can be of great advantage since it focuses on the synthesis and arrangement of 

materials to provide a specific radar signature to a distinct incident waveform. 

Understanding this theory can be helpful at the time to design an UWB chipless RFID 

transponder and manipulate its respective radar signature [50]. 

4.1.2 Radar Absorbing Material’s Principle 

The principle of radar absorbing materials is based on the fact, that the 

electromagnetic energy of fields passing through a determinate substance can be 

absorbed. Furthermore, the refraction index is an intrinsic property of materials and 

 

Fig. 4.1: Radar cross-section definition 
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describes how a waveform propagates through it, includes the magnetic as well as the 

electric fields effects, it is represented by complex numbers, and the imaginary 

component represents the loss. The effects of the loss mechanisms can be grouped into 

the material’s permittivity 𝜀 and permeability 𝜇, in general, the complex relative 

permittivity and permeability concepts are used, which are normalizations by their free 

space values 𝜀  and 𝜇  respectively, and can be expressed as [50]: 

 
𝜀 =  𝜀 + 𝑗𝜀  

𝜇 =  𝜇 +  𝑗𝜇  
(4.1) 

where the real part of each parameter representing the stored energy is denoted by a prime 

and the imaginary part of each representing the loss is denoted by a double prime. Since 

the loss depends on the material conductivity 𝜅, the effect of the conductivity can be 

related to 𝜀  by [50]: 

 𝜀 =  
𝜅

𝜔𝜀
 (4.2) 

It can be seen, that the losses also depend of the angular frequency 𝜔. The electric 

and magnetic loss tangents are given by [50] 

 

tan 𝛿 =
𝜀

𝜀
 

tan 𝛿 =  
𝜇

𝜇
 

(4.3) 

The refraction index 𝑛 is given by the ratio between the waveform number inside the 

material 𝑘 and the waveform number in free-space 𝑘  [50] 

 𝑛 =
𝑘

𝑘
=  

𝜔√𝜀𝜇

𝜔 𝜀 𝜇
=  𝜀 𝜇   (4.4) 

The intrinsic impedance 𝑍 of the material is the value seen by an incident wave normal 

to the surface on a semi-infinite plate of material, represented by [50] 

 𝑍 = 𝑍  
𝜇

𝜀
  (4.5) 

where 𝑍  is the free-space impedance, 120π, that is approximately 377 Ω. In the case of 

the UWB chipless RFID transponder design, a conductive layer is placed on the material. 
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Therefore, a transmission line analysis can be conducted to calculate the effective input 

impedance at the front of the layer. 

Considering a flat metallic surface placed on a layer of dielectric material, the 

normalized input impedance 𝜂 for an incident wave normal to the front surface is 

described by [50] 

 𝜂 =
𝜇

𝜀
 tanh −𝑗𝑘 𝑇 𝜇 𝜀  (4.6) 

where 𝑇 represents the dielectric layer thickness, the normalized impedance can be used 

to calculate the reflection coefficient Γ [50] 

 Γ =
𝜂 − 1

𝜂 + 1
 (4.7) 

The reflected power in decibels can be expressed as 

 |Γ|(𝑑𝐵) = 20 log |Γ| (4.8) 

In radar technology, the RAM is designed to produce a material for which |Γ| 

remains as small as possible over a wide frequency range as possible. In the UWB RFID 

with chipless transponders technology, the objective is to achieve an |Γ| that remains as 

small as possible for a desired section of the frequency band, while remaining as high as 

possible for another portion of the same spectrum and fit the desired frequency signature 

requirements [50]. 

In UWB chipless RFID transponders design, two main objectives need to be 

achieved: To deliver the electromagnetic energy into the material, Eq. (4.7) shows that the 

impedance mismatch seen by the incident waveform as it enters the UWB chipless RFID 

transponder is the key factor to achieve this goal. The second objective is, the UWB 

chipless RFID transponder should absorb/reflect energy for given frequency bands, and 

for that, the mechanisms available for attenuating waveforms within materials need to be 

understood. Thus, to achieve this, the problem is approached in the next section from a 

wave matrix perspective to easily comprehend the physics behind it [50]. 

4.1.3 Dielectric Multilayers Wave Matrix Analysis  

A wave matrix approach can be used to calculate the scattering from a flat multilayer 

dielectrics structure, based on cascade matrix, by simply relating the output side of a  
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two-port network to its input side, that is, the relation between the incident and reflection 

scattering coefficients. The equivalent transmission line shunt element circuit is depicted 

in Fig. 4.2.  

The reflective waves represented by 𝑉  and 𝑉  are related to the incident waves 𝑉  

and 𝑉  by a scattering matrix 𝑺 given by [50] 

 
𝑉
𝑉

=  
𝑆 𝑆
𝑆 𝑆

𝑉

𝑉
=  [𝑺]

𝑉

𝑉
 (4.9) 

𝑆  and 𝑆  represent the reflection coefficient by a waveform incident at ports 𝑃  

and 𝑃  respectively, 𝑆  and 𝑆  are the transmission coefficients from ports 𝑃  to 𝑃  and 

𝑃  to 𝑃  respectively. The scanttering matrix for the shunt circuit of Fig. 4.2 is [50]  

 [𝑺] =  
1

2 + 𝑌
−𝑌 2
2 −𝑌

 (4.10) 

The scattering matrix described in Eq. (4.11) represents the interface between 

dielectric layers, 𝑌  and 𝑌  are the admittances on the left and right respectively [50] 

 [𝑺] =  
1

𝑌 +  𝑌
𝑌 −  𝑌  2𝑌

2𝑌 𝑌 −  𝑌
 (4.11) 

The admittances depend on the wave polarization and angle of incidence, for an electric 

field parallel to the interface is represented by [50] 

 
𝑌

𝑌
=  

𝜀

𝜇 𝜀 −  sin 𝜃
 (4.12) 

where 𝜃  is the angle of incidence, an electric field also parallel to the interface is 

described by [50] 

 
𝑌

𝑌
=  

𝜇 𝜀 −  sin 𝜃

𝜇
 (4.13) 

The scattering matrix to represent the phase shift and the loss of wave traveling 

through a dielectric plane of thickness 𝑇 can be expressed as [50] 

   

Fig. 4.2: One-layer shunt equivalent circuit [50] 
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 [𝑺] =  0 𝑒
𝑒 0

 (4.14) 

where 

 𝑘 =  𝑘 𝜇 𝜀 − sin 𝜃   (4.15) 

As pointed out previously, each circuit analog (CA) sheet can be represented as an 

admittance shunted across the transmission line. A multilayer design implies that the 

reflection coefficient at each shunt element will be small, which should also translate in 

that all admittances are small, and the total reflection coefficient is simply given by the 

sum of each individual reflection coefficient, plus the influence of the phase shift due to 

the transmission line length. Fig. 4.3 illustrates the multilayer shunt circuit model for this 

analysis [50]. 

The reflection coefficient of the multilayer shunt circuit without considering 

multiple reflection is approximately expressed by [50] 

Γ ≈  Γ +  Γ 𝑒 + ⋯ +  Γ 𝑒 (  ⋯ )  + 

+ Γ 𝑒 (  ⋯  )  
(4.16) 

The reflected power is the square of the absolute value of Eq. (4.16), and 

considering the simple cases of one or two shunt elements with equal length lines 

(𝜃 = 𝑘𝑇), a load reflection coefficient of -1 (i.e. a short circuit), and all reflection 

coefficients to be real and small, the reflected power can be described as [50] 

 |Γ| =  
1 − 2Γ cos 2𝜃 ,

1 − 2Γ cos 2𝜃 −  2Γ cos 4𝜃,
      

𝑛 = 1 
𝑛 = 2

   (4.17) 

Using trigonometric identities, Eq. (4.17) can also be expressed in a polynomial 

form as [50] 

|Γ| =
1 + 2Γ  − 4Γ cos 𝜃 ,

1 + 2Γ −  2Γ + (−4Γ +  16Γ ) cos 𝜃 −  16Γ cos 𝜃,
      

𝑛 = 1 
𝑛 = 2

   (4.18) 

One design solution is to set all the polynomic coefficients to zero, except for the 

higher power terms [50]: 

    

Fig. 4.3: Multilayer shunt circuit [50] 
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Γ = −

1

2
,

Γ = −
2

3
, Γ = −

1

6

       
𝑛 = 1 
𝑛 = 2

 (4.19) 

The power reflection for two-layers with 𝑇  = 𝑇  = , and 𝑓  = 5 GHz is shown in  

Fig. 4.4. The graph shows how a frequency dip can be generated, modifying this way the 

radar signature of the system by just selecting the appropriate layer thickness.  

Therefore, as previously discussed in section 2.3, the design of an UWB chipless 

RFID transponder is equivalent to the matching problem of a transmission line, where the 

main objective is to prevent reflections seen at the input cause by a short-circuit 

termination for a given frequency range. A case of a pure resistive sheets was studied, 

considering only the real part of the admittance as matching element. However, the design 

process gains more flexibility if the sheets can have a susceptance. An admittance 

imaginary part can be achieved if the continuous resistive sheets are replaced by ones 

with conductive material that has been deposited in a given geometrical form (e.g. 

dipoles, rings, octagons), namely frequency selective surfaces, which are discussed in the 

next section [50].  

4.1.4 Frequency Selective Surfaces 

Frequency selective surfaces (FSS) are periodic structures, that provide a specific 

reflection characteristic for incident electromagnetic waves [52]. The FSS resonate at a 

 

Fig. 4.4: Two-layer power reflection for 𝑇  = 𝑇  = 𝜆 /4, 𝑓  = 5 GHz, calculated 
according to Eq. (4.18) 
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designed frequency and present a design problem closely related to the CA one, they are 

used as frequency filters which design relies on changes in reactance to achieve the 

desired bandpass or band stop characteristics. Typically, FSS designs consist of elements, 

such as dipoles, that are in the order of half-wavelength long. Fig. 4.5 depicts FSS typical 

geometries implemented for bandpass applications, some of them already being used as 

elementary elements for the design of chipless RFID transponders, as discussed in 

subsection 2.3.2.2 [50] [52].  

The design of FSS relies practically on quite sophisticated, and usually time-

consuming computer programs. However, this does not prevent us from understanding 

the design techniques implemented, which also serve as a baseline to the design of UWB 

chipless RFID transponders. Considering that the layer thickness is already given, and the 

desired frequency performance has been established. Four main steps can be identified to 

complete the design process of the FSS and UWB chipless RFID transponders [50]: 

1. The first step is to reach the admittance characteristics as a function of the 

frequency for each CA layer. The number of CA sheets depends on the RCSR 

required and the desired bandwidth. In the case of UWB chipless RFID 

transponders, they are typically designed using one single substrate layer. 

2. Find a realizable geometry and conductance combinations that match closely the 

desired admittance characteristics. 

3. Compute the design performance with the simulation tool. 

4. Optimize the design performing iterations until an acceptable and doable 

combination is found. 

The fundamentals introduced in this section, as well as the previous design steps 

are followed as guideline throughout this work, to design the different UWB chipless 

RFID transponders presented in the following sections. 

   

Fig. 4.5: Typical FSS element geometries [50] [52] 
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4.2 Double-Dipoles UWB Chipless RFID Transponder 

In this section, an UWB chipless RFID transponder designed based on  

double-dipoles (DD) is introduced. Its purpose is to conduct different detection and code 

identification studies using its frequency response, measured employing a VNA, and to 

set a baseline for the comparison to other designs and coding techniques. Its working 

principle and main design parameters are explained below and should serve to understand 

further the design basics of a multiband UWB chipless RFID transponder. 

4.2.1 An Infinite Double-Dipole Array 

It is widely known that an infinite array of dipoles can be used as a single-layer FSS 

and will produce a Γ equal to one for a resonant length of approximately half wavelength 

[53]. Different authors have demonstrated theoretically and practically this characteristic 

of FSS in the simple case of a single band-stop response [53], [54], [55]. Nevertheless, 

for UWB chipless RFID transponders different band-stop responses might be required to 

modify its radar signature in a desired form. Therefore, the single-band single-layer 

design illustrated in Fig. 4.5a must be modified in such a way that two or more resonant 

structures are placed within the same surface.  

An array of elements with different resonant frequencies will produce a multi-band 

response but the unit reflection coefficient is no longer achieved due to the frequency 

dependencies between the fundamental and the harmonics frequency resonances [53]. 

Although a multi-band response may also be obtained by placing multiple dielectric 

layers of single-band FSS, as reported in [56], this solution might become quite 

impractical in the case of UWB chipless RFID transponders since it increases the 

fabrication process complexity. For that reason, only the single-layer multiband design is 

considered here. 

To achieve the multi-band design, two types of perturbation could be applied to the 

single-band one: element and spacing. Element perturbation means that additional 

elements with different resonance frequencies are included, and space perturbation means 

that the same array of elements have an irregular periodicity. For the infinite double-

dipole array shown in Fig. 4.6, the periodicity is regular if 𝐷  = 2𝑑 [53]. Munk et al. 
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developed a method to analyze these perturbations between dipole arrays using a mutual 

impedance approach in [54] [57]. The work was extended to include the case of two 

elements having different resonance frequencies by changing their terminal loads in [53], 

where an array of dipoles of same length and different terminal loads is assumed to 

simplify calculations. Then, the terminal load between the elements of an array are 

obtained, as well as the mutual impedance between different arrays. Afterwards, Γ can be 

found according to Eq. (4.20), for two subarrays of terminal loads 𝑋 =  − 𝑋 and  

𝑋 =  𝑋 and regular periodicity [53].  

 
Γ =  

1

1 + 𝑗
𝑋 −  𝑋 −  𝑋

2𝑅 [𝑋 −  𝑋 ]

  
(4.20) 

where  

𝑋  is the array reactance 

𝑋  is the array mutual reactance 

𝑅  is the array resistance 

From Eq. (4.20), it can be noted that the zero reflection is achieved when 𝑋 =  𝑋 , 

and two-unit reflections occur for 𝑋 =  ± 𝑋 +  𝑋 . The power reflection results of the 

array are depicted in Fig. 4.7a for typical values for the impedance [53]. If the loads of 

    

Fig. 4.6: Geometry of an infinite double-dipole array with different terminal loads 
composed of two interlaced dipoles [53] 
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the two subarrays are equal 𝑋 =  𝑋 =  𝑋 but the spacing is irregular 𝐷 ≠ 2𝑑, the 

array mutual impedance obtains an additional real component 𝑅  and Γ becomes [53]:  

 
Γ =  

1

1 + 𝑗
(𝑋 −  𝑋) − 𝑅 − 𝑋

2𝑅 [𝑋 −  𝑋 − 𝑋 ]

  
(4.21) 

with a null when 𝑋 =  𝑋 + 𝑋  and two unitary reflections at 𝑋 =  ± 𝑅 +  𝑋 + 𝑋 . 

The power reflection obtained is depicted in Fig. 4.7b. It can be clearly understood, that 

adding an element resonating at a different frequency or placing an array at irregular 

distances can generate a null in the final frequency response. Therefore, these effects need 

to be considered when designing an UWB chipless RFID transponder.  

 
a) 

 
b) 

Fig. 4.7: Calculated power reflection of an infinite double-dipole array with: a) 
different terminal loads according to Eq. (4.20) and b) equal terminal loads with 
irregular array spacing according to Eq. (4.21). 𝑅 =  45 Ω, 𝑋  =  −70 Ω, 
𝑓 = 5 𝐺𝐻𝑧, 𝑋 =  50 Ω, 𝑅 =  55 Ω, and 𝑋 = 1000𝑓/𝑓 −  1000 Ω [53] 
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4.2.2 Double-Dipoles UWB Chipless Transponder Design 

As demonstrated in the previous section, an infinite array of two dipoles having 

different terminal loads, and therefore different individual resonant frequency 

transmission characteristics, can produce a frequency null in a determinate position in the 

spectrum. Although to simplify the calculations, dipoles of equal length are considered, 

the terminal loads can be varied by modifying the length of each dipole, thus, a finite 

array of two dipoles having different lengths can be used as a single-layer UWB chipless 

RFID transponder. 

The geometry of the proposed DD-UWB chipless transponder is shown in Fig. 4.8. 

It consists two dipoles of lengths 𝑙  and 𝑙 , width 𝑤, thickness 𝑇, and separated a distance 

𝑑 from each other. The dipoles are placed on a dielectric substrate of relative permittivity 

𝜀  and thickness 𝑆𝑢𝑏𝑇 [58]. 

The DD-UWB chipless transponder is designed to work between the 3 – 9 GHz 

frequency band and be fabricated using available low-cost organic materials or flexible 

electronics. Aluminum with a thin film thickness of 35 𝜇𝑚 is considered for the 

conductive dipoles, commercial bond paper with 100 𝜇𝑚 thickness for the substrate and 

are fabricated according to the procedure described in section 3.3. To assess the influence 

of the substrate, the ratio between the free-space wavelength 𝜆  to the lower and upper 

limit of the UWB frequency band is calculated and presented in Table 4.1. The substrate 

thickness is at least 283 times greater than 𝜆 . Therefore no resonances due to the 

 

Fig. 4.8: Geometry of the dipole-based UWB chipless RFID transponder 
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interaction of these two materials should be expected within this frequency range and the 

final frequency signature is influenced by the dipoles geometry and the materials 

electrical properties, like conductivity and losses, as explained in chapter 3 and  

section 4.1. 

Designing an UWB chipless RFID transponder with just one metallic DD array of 

different strip lengths and thin film thickness, as well as a substrate with different layer 

thickness and properties, increases considerably the problem complexity presented in 

previous subsection. Thus, a computer simulation software is required to perform the 

calculations and modeling of the UWB chipless RFID transponder frequency response. 

For the UWB chipless RFID transponders presented in this investigation work, Computer 

Simulation Technology (CST) Microwave Studio is used to obtain the RCS calculations. 

CST is also capable to model more complex structures, as the ones that will be presented 

in the following sections. 

An UWB chipless RFID transponder based on a single double-dipole array with 

lengths 𝑙  = 35 𝑚𝑚, 𝑙  = 25 𝑚𝑚, width 𝑤 = 1 𝑚𝑚, separation distance 𝑑 = 5 𝑚𝑚, and 

the previous mentioned materials, is modeled and simulated using CST Microwave 

Studio. The calculated |RCS| results for a frequency band between 3 and 9 GHz are shown 

in Fig. 4.9. The default material properties for aluminum and bond paper provided by 

CST Microwave Studio are used to run the simulation. The obtained simulation results 

show a similar behavior generating a frequency dip at around 5 GHz, as the theoretical 

calculate ones for the infinite double-dipole arrays of Fig. 4.7 in section 4.2.1. However, 

unlike its theoretical calculation, no zero or unitary reflections are achieved since the 

array is no longer infinite. 

The peak magnitude and frequency dip depth terms are introduced, to evaluate the 

performance and be able to compare between different UWB chipless RFID transponders 

frequency responses. The first one, as a measured of the reflectivity and the second one 

Frequency  

(GHz) 

Free-space  

wavelength 𝜆  (cm) 

𝜆 /𝑆𝑢𝑏𝑇 

𝑆𝑢𝑏𝑇 = 100 𝜇𝑚 

𝜆 /𝑇 

𝑇 = 35 𝜇𝑚 

3.1 10 968 2,785 

10.6 3 283 809 

   

Table 4.1: Free-space wavelength to substrate/dipole thickness relation 
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of the resonance capabilities. The peak magnitude is given by the maximum value of the 

RCS at each specific peak. The dip frequency depth is the difference between the dip 

center frequency and the closest peak magnitudes. Both terms are also illustrated in Fig. 

4.9. In general, peaks and dips are numbered in increasing order starting from the one 

located at the lower frequency. As can be seen, the first peak magnitude is located at 3.8 

GHz and has a value of -23 dBm2 and the dip depth measured from the dip center 

frequency located at 4.8 GHz and the second peak magnitude at  

5.3 GHz is 16.5 dB. 

Additional frequency resonances can be generated varying the dipoles lengths. 

Table 4.2 presents four different length configurations to produce equal number of  

DD-UWB chipless RFID transponders, and their respective |RCS| simulation results are 

shown in Fig. 4.10. It can be noticed by simple visual inspection, that as the dipoles’ 

lengths are reduced, the observed frequency dip is shifted to the higher frequencies, and 

    

Fig. 4.9: Simulated |RCS| of a dipole-based UWB chipless RFID transponder, 
𝑙  = 35 𝑚𝑚, 𝑙  = 25 𝑚𝑚, 𝑤 = 1 𝑚𝑚, 𝑑 = 5 𝑚𝑚, 𝑇 = 35 𝜇𝑚, 𝑆𝑢𝑏𝑇 = 100 𝜇𝑚 
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Assigned  

binary code 

1 35 25 00 

2 32 22 01 

3 28 18 10 

4 23 13 11 

   

Table 4.2: Double-dipole UWB chipless RFID transponder strips lengths [58] 
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its stop band becomes wider. Furthermore, under this context, each UWB chipless RFID 

transponder can be considered as having its own unique frequency response, which is 

determinate by its whole spectrum characteristic, and with special emphasis on the 

different frequency dips generated at specific frequency ranges. 

 The UWB chipless RFID transponders coding principle is based on these 

frequency signatures, however, as explained in section 2.3, every author chooses a distinct 

characteristic to encode the information e.g. frequency dip/peak, phase, group delay, etc. 

In this work, a computer system and not the human eye must perform the detection. Thus, 

the coding technique must be developed not only from the transponders perspective but 

also considering the detector limitations. Therefore an arbitrary identification code will 

be assigned to each transponder having a unique frequency response, as done in  

Table 4.2, and further details regarding the coding techniques and detection capabilities 

will be discussed in detail in chapter 6. 

4.2.3 Prototype Fabrication 

A photograph of a DD-UWB chipless RFID transponder prototype with dipoles 

lengths 𝑙  = 35 mm and 𝑙  = 25 mm is shown in Fig. 4.11a. All four previously modeled 

and simulated different combinations of UWB chipless RFID transponders are fabricated 

and shown in Fig. 4.11b with their respective assigned identification codes. 

The scattering parameters of all the fabricated DD-UWB chipless RFID 

transponders are obtained using the bi-static measurement setup depicted in Fig. A.1. The 

 

Fig. 4.10: Simulated |RCS| of different dipole-based UWB chipless RFID transponder 
for the different lengths configurations specified in Table 4.2 [58] 
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VNA has been configured to measure the 3.5 – 9 GHz frequency spectrum, with a power 

control of 3 dB, and an averaging factor of 20 sweeps per measurement, a total of 201 

frequency samples are taken. The separation distance between the horn antennas and the 

DD-UWB chipless RFID transponders is 30 cm. 

 The |RCS| values of each DD-UWB chipless RFID transponder are calculated 

using Eq. (A.10) and the procedure described in Appendix A. The calculated |RCS| results 

are shown in Fig. 4.12. As can be seen, all UWB chipless RFID transponders frequency 

responses can be easily identified by visual inspection, differentiated between them and 

are in accordance with the simulated ones presented in Fig. 4.10. 

Table 4.3 resumes the |RCS| performance values for all fabricated DD-UWB 

chipless RFID transponders. The frequency peaks magnitudes and the frequency dip 

depths differ slightly among identification codes. The measurements show a 300 MHz 

shift to a lower frequency, an average peak magnitude and peak depth variation of around 

±1 dB with respect to the simulated values.  

 
a) 

 
b) 

Fig. 4.11: Photograph of a) an UWB chipless RFID transponder prototype with two 
aluminum dipoles on bond paper substrate, 𝑤 = 1 mm, 𝑙  = 35 mm, 𝑙  = 25 mm, and 
𝑑 = 5 mm b) all four UWB chipless RFID transponders defined in Table 4.2 [58] 
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4.3 UWB Chipless RFID Transponder with Concentric Circles 

 An array of concentric circles can also be used to design an UWB chipless RFID 

transponder, as previously proposed by Vena et. al. in [34] and Islam et. al. in [59], adding 

features like polarization and orientation independency. In this section, two different 

structures based on the concentric circles’ geometries are presented and designed to work 

in different frequency bands. 

The concentric circles (CC) UWB chipless RFID transponder is designed to study 

the influence of the fabrication technologies, substrate materials and metallic thin film 

    

Fig. 4.12: Calculated |RCS| from measured scattering parameters for the different DD-
UWB chipless RFID transponders [58] 

 
 

Tranponder 

code 

Peak magnitude 

(dBm2) 
Frequency dip depth 

(dB) 
1st 2nd 

00 -25.8 -26.9 13.9 

01 -24.2 -27.8 12.5 

10 -24.9 -27.6 14.9 

14.4 11 -26.7 -29.3 

Average -25.4 -26.9 13.9 

 

Table 4.3: Calculated frequency peak magnitudes and dips depths for the different DD-
UWB chipless RFID transponders 
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conductivity on the frequency response. As well as to explore potential characteristics 

that could be useful in the simultaneous detection of multiple nearly placed UWB chipless 

RFID transponders having the same identification code or to improve the |RCS| response 

[60]. The concentric rings (CR) UWB chipless RFID transponder on the other hand, is 

designed to implement a novel coding technique based on frequency response 

differentiation and is meant to be interrogated by the SFM-reader developed in chapter 5.  

4.3.1 Concentric Circles UWB Chipless Transponder 

The geometry of the proposed CC-UWB chipless transponder is shown in  

Fig. 4.13a, it is based on three concentric rings and one disk. The previous basically due 

to its orientation independent backscattered response, reduced size and easiness to 

fabricate employing different manufacturing processes. It consists of three concentric 

rings and one disk. The concentric rings are placed on a dielectric substrate of relative 

permittivity 𝜀  and thickness 𝑆𝑢𝑏𝑇 [60]. 

The concentric circles UWB chipless RFID transponder is modeled using 

commercial bond paper with 100 𝜇𝑚 thickness for the substrate, copper with a thin film 

thickness of 35 𝜇𝑚 for the conductive strips, an outer radius 𝑟 = 14 𝑚𝑚, and equal strip 

widths 𝑤 and gaps 𝑔 of 1 𝑚𝑚. The |RCS| is simulated between the 0 – 8 GHz frequency 

band using CST Microwave Studio and the results are shown in Fig. 4.13b. The CC-UWB 

chipless RFID transponder is designed to obtain three frequency reflection peaks and dips 

within a 3.2 GHz bandwidth (3.1 – 6.3 GHz), the simulated peaks are located at 3.4, 4.0 

and 5 GHz, and three frequency dips at 3.6, 4.5 and 6.3 GHz, as can be clearly seen [60]. 

 As previously mentioned, the CC-UWB chipless RFID transponder’s purpose, is 

to investigate the influence on the frequency signature of the selection of different types 

of substrates and conductive thin films materials, as well as the fabrication processes. 

Furthermore, the impact of placing several CC-UWB chipless RFID transponders side by 

side and close to each other on the |RCS| is also studied, to help in the development of 

proper approaches to achieve the multi-detection of chipless RFID transponders having 

the same identification code. Thus, for this specific UWB chipless RFID transponder, no 

coding technique or additional transponders with different identification codes are 

designed nor fabricated [60]. 
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4.3.1.1 Substrate Influence  

The influence of the substrate selection on the frequency response of the proposed 

CC-UWB chipless RFID transponder is experimentally investigated in this section. As 

no information regarding the electrical parameters for these substrates is available, and 

the simulation tool does not provide the option to simulate metallic inks, no simulations 

can be ran and the experiments are conducted merely empirically. 

 
a) 

 
b) 

Fig. 4.13: CC-UWB chipless RFID transponder: a) geometry based on three 
concentric rings and one disk, b) |RCS| simulation results for 𝑟 = 14 𝑚𝑚, 
𝑔 =  𝑤 = 1 𝑚𝑚 [60] 
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The CC-UWB chipless RFID transponders are manufactured on three different 

substrates employing both the screen and flexography printing technologies described in 

Chapter 3. A picture of the different prototypes can be seen in Fig. 4.14, five prototypes 

of the proposed structure are fabricated, three using screen printing on either PET, glossy 

paper or Fasson are shown in in Fig. 4.14a, and two using flexography printing on PET 

or glossy paper are illustrated in Fig. 4.14b. 

 The scattering parameters of the different prototypes are measured using the 

measurement setup of Fig. A.1 in Appendix A, the VNA is configured to sweep the 

frequency band of interest (2 – 6 GHz), with a power control of 3 dB, an averaging factor 

of 90 sweeps per measurement and a total of 201 frequency samples. The separation 

distance between the horn antennas and the CC-UWB chipless RFID transponders is of 

30 cm. The |RCS| is calculated using the methodology and procedure described in 

Appendix A, and the results are shown in Fig. 4.15, as can be seen, changing the type of 

   
a) 

 
b) 

Fig. 4.14: CC-UWB chipless RFID transponders fabricated using: a) screen printing 
technology on PET, glossy paper and Fasson, b) flexography printing on PET and 
glossy paper 

 



4 UWB Chipless RFID Transponder Design                                                                                                                         
 

64 
 

substrate has a direct influence on the frequency signature of the UWB chipless RFID 

transponder, as explained in sections 4.1.2 and 3.1.1. Two main frequency effects can be 

clearly identified: a frequency shift due to the different material permittivities, and a 

change in the |RCS| magnitude values due to the material losses. 

 Table 4.4 resumes the position of the measured frequency peaks and dips for each 

substrate fabrication and printing technology. In the case of the screen-printed 

technology, a change from Fasson substrate to glossy paper represents in average a shift 

to a higher frequency of about 100 MHz, in the same way, but for both printed 

technologies, changing from glossy paper to PET represents another shift to a higher 

frequency of about 100 MHz, and no major frequency shift difference is experienced due 

to the use of a specific printed technology for prototypes fabricated on the same substrate. 

    
a) 

 
b) 

Fig. 4.15: Calculated |RCS| from measured scattering parameters for a transponders 
fabricated with: a) screen printing technology on glossy and Fasson papers, as well as 
PET, and b) flexography printing on glossy paper and PET 
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Furthermore, comparing the PET samples against the copper thin film on bond paper 

simulated results of Fig. 4.13b, a frequency shift to a lower frequency of 100 MHz is 

observed for the first frequency dip, one of 200 MHz for the second one, and around 500 

MHz for the third one, this due to the higher permittivity values of the PET over the bond 

paper, as explained in subsection 3.1.1. 

 Depending on the type of implemented coding technique and the UWB chipless RFID 

transponder frequency signature, a frequency shift due to a change of substrate might 

represent a significant degradation that could lead to incorrectly recognize the intended 

identification code. Researches are specially focused on investigating coding techniques, 

where the frequency peaks/dips have sharper characteristics, and it this way, produce 

more peaks/dips within the same bandwidth, in an effort to use the UWB frequency 

spectrum more efficiently, e.g. the UWB chipless RFID transponder based on open 

conical resonators presented in section 2.3.2.2 uses a frequency peak-position coding 

technique, where the difference between a peak representing a 1 and one representing a 0 

is of only 100 MHz. Therefore, replacing the substrate for this type of structure, represents 

a shift to a new bit leading to detecting the wrong identification code. Thus, the UWB 

chipless RFID transponder designer will have to either re-design the transponder 

according to the desired substrate or implement another coding technique robust enough 

to overcome the effects of a substrate change. 

 

Frequency 

Position (GHz) 

Screen Flexography 

Fasson 

paper 

Glossy 

paper 
PET 

Glossy 

paper 
PET 

1st peak 3.1 3.2 3.3 3.2 3.3 

2nd peak 3.7 3.8 3.9 3.8 3.9 

3rd peak 4.5 4.6 4.7 4.6 4.9 

1st dip 3.3 3.4 3.5 3.4 3.5 

2nd dip 4.1 4.2 4.3 4.2 4.3 

3rd dip 5.7 5.8 5.9 5.7 5.8 

 

Table 4.4: Measured frequency peak and dips positions 
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Table 4.5 resumes the CC-UWB chipless RFID transponders |RCS| performance 

values for all manufactured prototypes. The frequency peaks magnitudes and the 

frequency dip depths differ among different substrate and printing technology 

fabrications. The screen printed on glossy paper prototypes seen in Fig. 4.15a have 

slightly better performance than their Fasson counterparts, and a major improvement is 

achieved from Fasson to PET, where especially the resonance capabilities measured by 

the dip depth is improved considerably by an average value of 5.4 dB. Comparing the 

PET samples against the copper thin film on bond paper simulated results of Fig. 4.13b, 

degradations of around 4 dB in the peak magnitude and around 12 dB in the dip depth are 

observed with respect to the simulated ones. 

 

The flexography printed prototypes shown in Fig. 4.15b, experience a similar trend 

as their screen printed counterparts, where an improvement in the peaks magnitude can 

be appreciated from glossy paper to PET, but the major change is produced in the dip 

depth with an average improvement value of 7.5 dB. Moreover, the flexography printed 

prototypes also show in general better performance than the screen-printed ones, due to 

the influence of conductive thin film thickness that will be explained in the next section. 

Printing technology 
Frequency 

peak/dip 

Peak magnitude 

(dBm2) 
Dip depth (dB) 

Fasson Glossy PET Fasson Glossy PET 

Screen 

1st -25.5 -24.8 -24.2 8.5 9.1 13.0 

2nd -25.1 -24.5 -23.6 8.7 9.6 16.0 

3rd -24.4 -24.3 -23.7 15.8 14.9 20.2 

Average -25.0 -24.5 -23.8 11.0 11.2 16.4 

Flexography 

1st  -24.9 -23.7  9.3 16.95 

2nd  -23.9 -23.2  10.4 18.85 

3rd  -24.2 -23.3  14.1 20.6 

Average  -24.3 -23.4  11.3 18.8 

 

Table 4.5: Calculated frequency peak magnitudes and dips depths for the CC-UWB 
chipless RFID transponders fabricated on different substrates and printing technologies 
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4.3.1.2 Conductive Thin Film Thickness Influence 

The conductive film thickness is one key parameter that has a direct impact on the 

final manufacturing cost of UWB chipless RFID transponders in printed electronics on 

flexible substrates, as well on its RF performance. As explained in section 3.1.2, 

nowadays, silver-based ink, is the most reported conductive film material in printed 

electronics. Nevertheless, its cost is still high, and additionally, production parameters 

like thin film thickness need to be optimized to fabricate the best cost-efficient UWB 

chipless RFID transponder, while fulfilling at the same time the target performance 

requirements of the design. 

 In this section, the CC-UWB chipless RFID transponders prototypes depicted in 

Fig. 4.16 are fabricated to assess the influence of the conductive thin film thickness on 

the frequency signature performance. For this purpose, the transponders are printed by 

flexography with different conductive thin film thicknesses on glossy paper or PET 

substrates. Eight prototypes with different conductive thin film thicknesses of the 

proposed structure are fabricated, three on glossy paper shown in Fig. 4.16a and five on 

PET illustrated in Fig. 4.16b. 

 The thin film thicknesses variations are achieved by changing the silver-ink 

density, that is, the proportion between silver particles and polymers. The pictures of two 

different CC-UWB chipless RFID transponder conductive thin films, printed with 

different thicknesses on PET substrate are shown in Fig. 4.17. The pictures were taking 

using the Technische Universität Chemnitz’s Keyence laser-scanning microscope  

VK-9700. The silver ink on PET (SP) samples with the thinner 𝑇  and thicker 𝑇  thin 

films are chosen to contrast the silver particles deposition differences. As explained in  

section 3.1.2 and illustrated in the pictures, the formation of numerous percolation paths 

between metal particles is experienced in the case of the thinner film 𝑆𝑃 − 𝑇  prototype, 

which should reduce the conductive thin film conductivity, while the thicker thin film, on 

the other hand, shows a more homogeneous appearance.  

To evaluate the influence of the thin film thickness on the performance of the  

CC-UWB chipless RFID transponder, the achieved thin film conductivity 𝜅 values need 

to be correlated with the |RCS| calculated ones. Therefore, the value of the conductivity 

is required for each prototype under test. A procedure was established to estimate the 
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a) 

 
b) 

Fig. 4.16: Flexography printed CC-UWB chipless RFID transponders on: a) glossy 
paper with conductive thin film thicknesses 𝑆𝐺 − 𝑇 = 2.8 µ𝑚, 𝑆𝐺 − 𝑇 = 3.2 µ𝑚 
and 𝑆𝐺 − 𝑇 = 3.7 µ𝑚, b) PET with conductive thin film thicknesses 
𝑆𝑃 − 𝑇 = 3.9 µ𝑚, 𝑆𝑃 − 𝑇 = 4.2 µ𝑚, 𝑆𝑃 − 𝑇 = 6.2 µ𝑚, 𝑆𝑃 − 𝑇 = 6.4 µ𝑚, 
and 𝑆𝑃 − 𝑇 = 7.5 µ𝑚 

 

 

Fig. 4.17: Laser-scanning microscope pictures of two conductive thin film with 
thickness 𝑇  and 𝑇  printed on PET substrate (Photo by Dr. Georg Schmidt, TUC) 

 



4 UWB Chipless RFID Transponder Design                                                                                                                         
 

69 
 

conductivity values, considering the thin film thickness, as well as the two-points direct 

current (DC) resistance measurements, and is described in detail in  

Appendix B. Table 4.6 presents the results of the average measured thin film thickness 

for each prototype taken by the laser-scanning microscope at the Technische Universität 

Chemnitz premises. The DC resistance values of each individual ring resonator, starting 

from the outer ring 𝑅  to the inner one 𝑅 , are measured using the digital multimeter 

Volticraft model VC830 and the conductivity values are calculated using the measured 

resistances and the ring resonators physical dimensions, as explained in Appendix B. As 

can be seen, as the layer thickness increases, the measured resistance decreases, not only 

as a product of the its dependency of the thin film thickness 𝑅 ~ 1/𝑇, but also because of 

the improvement in the resultant thin film conductivity 𝑅 ~ 1/𝜅, which has also increased 

with the thickness. The previous due to an enhancement in the connections between the 

silver particles and the reduction of the percolation paths. For the specific case of the 

concentric rings printed on PET, a thin film thickness change from 3.9 to 7.5 𝜇𝑚, that is, 

an increase of roughly two times its initial value, represents an estimated average 

conductivity increase from 0.02 × 106 to 1.85 × 106 S/m, which means an average 

increase of almost 92 times. The concentric rings printed on glossy paper, on the other 

hand, a change 1.32 times in the thin film thickness, represents an average increase of 2.4 

times in the resultant estimated conductivity. 

Another parameter shown the Table 4.6, is the skin depth 𝛿, and is meant to show 

the minimum thickness required for the conductive thin film to dissipate 1/𝑒 of the current 

density. The skin depth is calculated considering the respective conductivity values at the 

specific frequency. As can be seen, for the ring resonators of 𝑆𝑃 − 𝑇 , which have the 

highest DC resistance and the lowest conductive thin film thickness values, a thickness 

of at least 62.10 𝜇𝑚 at 3.1 GHz is required, that is 16 times more than the 3.90 𝜇𝑚 it has. 

Therefore, the thin film doesn’t provide enough thickness to keep the current density, and 

this last one will pass through to the substrate and be lost in material losses rather than 

generating the desired frequency resonance. The thicker ring resonators 𝑆𝑃 − 𝑇 , on the 

other hand, which are the ones with the lowest DC resistance values, required a thin film 

thickness is 6.65 𝜇𝑚 at 3.1 GHz, which represents 0.90 of the 7.50 𝜇𝑚 it has. 

The scattering parameters of the different prototypes are measured with the 

measurement setup described in Fig. A.2 of Appendix A. The VNA has been configured 
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to measure the frequency spectrum located between 2 and 7 GHz, with a maximum power 

output, an averaging factor of 200 sweeps per measurement, and the sample point’s 

number is set to 201. The |RCS| is calculated following the procedure described in 

Appendix A, the results for both type of substrates, glossy paper and PET, are shown in 

Fig. 4.18, as illustrated, changing the conductive thin film thickness has a direct impact 

on frequency signature of the UWB chipless RFID transponder. As the thin film thickness 

increases and therefore its conductivity, enhancing the resonance capabilities and 

obtaining sharper dips with greater depths, improving the shape of the frequency response 

   
a) 

 
b) 

Fig. 4.18: Calculated |RCS| from measured scattering parameters for a CC-UWB 
chipless RFID transponder fabricated printing silver-ink with different thin film 
thicknesses on: a) glossy paper 𝑆𝐺 − 𝑇 = 2.8 µ𝑚, 𝑆𝐺 − 𝑇 = 3.2 µ𝑚 and 
𝑆𝐺 − 𝑇 = 3.7 µ𝑚, b) PET 𝑆𝑃 − 𝑇 = 3.9 µ𝑚, 𝑆𝑃 − 𝑇 = 4.2 µ𝑚, 𝑆𝑃 − 𝑇 =
6.2 µ𝑚, 𝑆𝑃 − 𝑇 = 6.4 µ𝑚, and 𝑆𝑃 − 𝑇 = 7.5 µ𝑚 
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and approaching it to the simulated shape of the copper thin film on bond paper in  

Fig. 4.13b. 

Table 4.7 presents the silver-ink based CC-UWB chipless RFID transponders |RCS| 

performance values for all manufactured prototypes. For the prototypes fabricated with 

silver-ink on glossy paper (SG), approximately an average of 1 dB peak magnitude 

improvement is achieved from 𝑆𝐺 − 𝑇  to 𝑆𝐺 − 𝑇 , and no significant changes (around 

0.5 dB) are experienced from 𝑆𝐺 − 𝑇  to 𝑆𝐺 − 𝑇 . The resonance capabilities given by 

the dip depth are improved in 2.4 dB average from 𝑆𝐺 − 𝑇  to 𝑆𝐺 − 𝑇  and no meaningful 

changes are observed from 𝑆𝐺 − 𝑇  to 𝑆𝐺 − 𝑇  (0.9 dB). In the case of the prototypes 

fabricated on PET substrate, the 𝑆𝑃 − 𝑇  and 𝑆𝑃 − 𝑇  samples, have the poorest 

conductivity, and thin film thickness way below the required minimum skin depth. Thus, 

they are not able to produce a frequency response according to the expected shape shown 

in Fig. 4.18b. Nevertheless, a major enhancement is experienced from 𝑆𝑃 − 𝑇  to  

𝑆𝑃 − 𝑇 , obtaining a well-defined frequency response in accordance to the simulated one. 

The peak magnitude calculations also show no significant changes from 𝑆𝑃 − 𝑇  to 

𝑆𝑃 − 𝑇 , and from 𝑆𝑃 − 𝑇  to 𝑆𝑃 − 𝑇  up to 1.5 dB. However, a considerable change in 

the resonance capabilities of the frequency dips is obtained from 𝑆𝑃 − 𝑇  to 𝑆𝑃 − 𝑇 , 

where an avarage dip depth of 4.8 dB achieved. In general, for the 𝑆𝑃 − 𝑇  and 𝑆𝑃 − 𝑇  

samples, degradations can be observed of around 3 dB in the peak magnitude with respect 

Parameter 
Frequency 
peak/dip 

Glossy paper PET 

SG-T1 SG-T2 SG-T3 SP-T3 SP-T4 SP-T5 

Peak 
magnitude 

(dBm2) 

1st -26.4 -24.9 -24.4 -25.1 -25.3 -24.2 

2nd -25.8 -24.9 -24.2 -25.1 -24.5 -23.5 

3rd -23.8 -23.5 -23.3 -24.4 -24.2 -22.9 

Average -25.3 -24.4 -23.9 -24.9 -24.7 -23.5 

Dip depth 
(dB) 

1st 4.0 7.2 8.5 7.6 7.7 12.6 
2nd 5.2 9.3 10.3 9.9 9.9 16.6 
3rd 12.0 12.0 12.3 11.0 10.7 13.4 

Average 7.1 9.5 10.4 9.5 9.4 14.2 

 

Table 4.7: Calculated frequency peak magnitudes and dips depths for the CC-UWB 
chipless RFID transponders fabricated on different substrates and thin film thicknesses 
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to the copper thin film on bond paper simulation of Fig. 4.18b, and around 18 dB and 14 

dB in their dip depth respectively. 

Now that the printed conductive thin film thickness/conductivity influence on the 

RF performance of the UWB chipless RFID transponders fabricated has be assessed, and 

the baseline for their characterization has been established. Furthers studies involving 

other metallic inks based on copper can be carry-out and are explained in the next section. 

4.3.1.3 Copper-Inks based Prototypes 

As discussed in subsection 3.1.2, although copper is cheaper than silver and 

therefore a suitable candidate for the fabrication of UWB chipless RFID transponders, 

copper-based inks are more challenging to fabricate than silver ones due to the oxidation 

process. Additionally, the previous section has taught us the importance of the conductive 

thin film thickness to achieve higher values of conductivity. Therefore, in this section, the 

frequency response of the CC-UWB chipless RFID transponder fabricated using a 

copper-based ink is investigated. For that reason, a water-based ink formulation is 

synthetized using copper flakes and 40% of silver-coating at the Technische Universität 

Chemnitz premises by its personnel. Thicker conductive thin films as the ones studied in 

the previous section are printed, to improve the final conductivity values and compensate 

the expected degradations. The manufactured prototypes are depicted in Fig. 4.19 and are 

flexography printed on either glossy paper or PET. 

Table 4.8 presents the results of the average measured conductive thin film 

thickness taken with the laser-scanning microscope at Technische Universität Chemnitz. 

The DC resistance values of each individual ring resonator are measured using digital 

multimeter Volticraft model VC830. The conductivity values are estimated using the 

measured conductive thin film thickness, the DC resistances, and the ring resonators 

physical dimensions, as explained in Appendix B. As can be seen, once again, as the layer 

thickness increases, the measured resistance decreases, and the obtained resistance values 

are in general higher than the ones presented in Table 4.6 for the working silver-ink based 

prototypes but lower than the ones that didn’t produce a satisfactory frequency response. 

Thus, an enhancement with respect to these last ones can be expected but with 

performances below the ones with lower DC resistance values.  
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 The scattering parameters of the different prototypes are measured with the 

measurement setup described in Fig. A.2 of Appendix A, The VNA has been configured 

to measure the 2 – 6.5 GHz frequency spectrum, with a maximum power output, an 

averaging factor of 200 sweeps per measurement, and the sample point’s number is set to 

201. Fig. 4.20a and Fig. 4.20b shows the |RCS| results for both type of substrates, glossy 

paper and PET respectively, calculated following the procedure described Appendix A. 

As per the silver-ink based prototypes, increasing the conductive thin film thickness 

enhances the frequency signature.  

In general, the copper-ink based UWB chipless RFID transponders performance is 

poorer than their silver-ink counterparts, as expected by the DC resistance measurements. 

However, comparing the results against the silver-ink printed prototype 𝑆𝑃 − 𝑇 , where 

no satisfactory response is obtained, but an average conductivity of 1.28 × 105 S/m is 

achieved. The copper-ink based UWB chipless RFID transponders present better results 

with comparable conductivity values, this due to their thicker thicknesses and their lower 

 
a) 

 
b) 

Fig. 4.19: Copper-based ink flexography printed CC-UWB chipless RFID 
transponders on: a) glossy paper with conductive thin film thicknesses 
𝐶𝐺 − 𝑇 = 5.4 µ𝑚, 𝐶𝐺 − 𝑇 = 7.7 µ𝑚 and 𝐶𝐺 − 𝑇 = 12.2 µ𝑚 b) PET with 
conductive thin film thicknesses 𝐶𝑃 − 𝑇 = 7.5 µ𝑚, 𝐶𝑃 − 𝑇 = 9.7 µ𝑚, 
𝐶𝑃 − 𝑇 = 11.7 µ𝑚 
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relations to the minimum required skin depth, which means that more power is kept in 

the conductive strips enabling the resonance. 

Table 4.9 presents the copper-ink based CC-UWB chipless RFID transponders 

|RCS| calculated performance values for all manufactured prototypes. Once again, a 

consistent improvement in the peak magnitude and dip depth is experienced for both, the 

copper-ink on glossy paper (CG) and the copper-ink on PET (CP) samples. Although, the 

achieved values are still below their silver-based counterparts, it is interesting to point 

out, that the values of the last dip depth, which is mainly produced by the resonance 

 
a) 

 
b) 

Fig. 4.20: Calculated |RCS| from measured scattering parameters for a copper ink-
based CC-UWB chipless RFID transponder fabricated with different thin film 
thicknesses on: a) glossy paper with conductive thin film thicknesses 
𝐶𝐺 − 𝑇 = 5.4 µ𝑚, 𝐶𝐺 − 𝑇 = 7.7 µ𝑚 and 𝐶𝐺 − 𝑇 = 12.2 µ𝑚 b) PET with 
conductive thin film thicknesses 𝐶𝑃 − 𝑇 = 7.5 µ𝑚, 𝐶𝑃 − 𝑇 = 9.7 µ𝑚, 
𝐶𝑃 − 𝑇 = 11.7 µ𝑚  
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between the disk and the third resonator, are comparable to the ones obtained in  

Table 4.7, especially for the thicker conductive thin films with values around 7 dB and 9 

dB for the glossy paper and PET substrates respectively.  

In general, for the 𝐶𝐺 − 𝑇  and 𝐶𝑃 − 𝑇  samples, degradations can be observed of 

around 5 dB in the peak magnidute with respect to the copper thin film on bond paper 

simulation of Fig. 4.18b, and around 25 dB and 22 dB in their dip depth respectively.  

There’s still room for research on printed electronics regarding the synthesis of 

conductive inks based on copper particles, and even more challenges are faced with 

respect to the aluminum ones. Nevertheless, with respect to the RFID with chipless 

transponders technology, it is still of great interest, due to their price advantage, to 

evaluate the performance of chipless RFID transponders, fabricated using copper or 

aluminum conductive thin films and in this way, set the baselines for future works 

comparisons in this area. Therefore, in the next subsection the RF performance of 

aluminum or copper conductive thin films based UWB chipless RFID transponders, 

fabricated using the alternative manufacturing process described in section 3.3 is 

evaluated. 

Parameter 
Frequency 
peak/dip 

Glossy paper PET 

CG-T1 CG-T2 CG-T3 CP-T1 CP-T2 CP-T3 

Peak 
maximum 

(dBm2) 

1st -29.1 -28.5 -26.9 -28.2 -27.5 -26.6 

2nd -28.6 -28.0 -26.7 -27.4 -26.6 -25.8 

3rd -26.9 -26.5 -25.8 -26.4 -25.8 -25.3 

Average -28.2 -27.7 -26.5 -27.3 -26.6 -25.9 

Dip depth 
(dB) 

1st 0.6 0.8 1.4 0.9 2.1 3.6 
2nd 1.0 0.8 2.6 2.2 4.3 5.8 
3rd 6.2 7.1 6.8 7.8 8.3 9.9 

Average 2.6 2.9 3.6 3.6 4.9 6.4 

 

Table 4.9: Calculated frequency peak magnitudes and dips depths for the CC-UWB 
chipless RFID transponders fabricated on different substrates printing copper-based 
conductive thin film with different thicknesses 
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4.3.1.4 Aluminum or Copper Strips based Fabrications 

Regardless of the mass production technique used to manufacture the UWB 

chipless RFID transponder to the lowest cost possible, initial research on the types of raw 

materials that can be used for fabrication needs to be conducted. To evaluate their impact 

on the UWB chipless RFID transponder’s RF response and establish a comparison 

baseline for future developments with other technologies. Hence, is deemed necessary to 

exploit other alternatives to fabricate prototypes using metals like aluminum or copper 

and conduct these studies [47]. For that reason, the CC-UWB chipless RFID transponders 

are realized with the alternative manufacturing process described section 3.3 using copper 

or aluminum tape, for the conductive thin films, on either commercial bond paper or PET 

as a substrate. The fabricated prototypes are depicted in Fig. 4.21 [47]. 

The scattering parameters of the different prototypes are measured with the 

measurement setup described in Fig. A.3 of Appendix A, The VNA has been configured 

to measure the frequency spectrum located between 2 and 6 GHz, with a power control 

of 3 dB, an averaging factor of 20 sweeps per measurement and a total of 401. The |RCS| 

is calculated following the procedure described in Appendix A. The results for both type 

of substrates, bond paper and PET, are shown in Fig. 4.22, and Table 4.10 presents the 

correspondent |RCS| calculated performance values for all manufactured prototypes. The 

obtained results show well defined frequency responses in accordance to the simulation 

values obtained in Fig. 4.13b for bond paper substrate, the measurements show a 

degradation of 1.5 dB average for the peak magnitude and around 11.3 dB for the dip 

depth with respect to the simulated values, no frequency shift is experienced. 

 

Fig. 4.21: CC-UWB chipless RFID transponders fabricated using copper and 
aluminum thin films on: a) bond paper, b) PET [47] 
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Furthermore, a better performance in terms of peak magnitude and frequency depth can 

be observed for the aluminum and copper prototypes than the metallic-ink ones depicted 

in Fig. 4.18 and Fig. 4.20, based on silver and copper inks respectively, and which 

performance values are resumed in Table 4.7. The results presented in Table 4.9 confirm 

once more, that better resonance depths are obtained for UWB chipless RFID 

transponders fabricated on PET. Both aluminum and copper produce similar frequency 

responses despite their different conductivity values, with the additional advantage for 

aluminum that its cost is at least 65% less than copper [47]. 

The measurements results obtained confirmed that by fabricating the UWB chipless 

transponders with materials like copper or aluminum on bond paper or PET, a cheaper 

 
a) 

 
b) 

Fig. 4.22: Calculated |RCS| from measured scattering parameters for CC-UWB 

chipless RFID transponder fabricated with either aluminum or copper thin films on: 

a) bond paper, b) PET [47] 
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UWB chipless transponders can be realized. Adding a potential further reduction to its 

production cost with respect to their silver-ink printed counterparts in case a mass 

production technique like printed electronics is also applied. Therefore, these materials 

are suitable and a promising solution to manufacture low-cost UWB chipless RFID 

transponders on flexible substrates like bond paper or PET. Furthermore, the alternative 

manufacturing process can be used to produce low-cost prototypes in an expedite way, to 

conduct experimental test on the designed geometries or set the grounds for further RF 

performance comparisons with their printed counterparts [47]. The next subsection 

presents a clear example, on how the copper strip CC-UWB chipless RFID transponder 

can be used to evaluate the influence of multiple arrays placed together. 

4.3.1.5 Space Perturbation of Multiple Chipless RFID Transponders  

 As explained in subsection 4.2.1, placing two or more arrays at irregular periodicity 

causes a space perturbation that can also produce a multi-band design. Subsection 4.2.2 

discussed the difference in the reflectivity between one single and a periodic infinite array 

of DD, the later reaching the maximum theoretical calculated value of 1. The previous 

intuitively supposed that adding more periods to the UWB chipless RFID transponder 

could create an incremental effect on the |RCS|.  

Parameter 
Frequency 
peak/dip 

Bond paper PET 

Aluminum Copper Aluminum Copper 

Peak  
magnitude 

 (dBm2) 

1st -21.3 -20.9 -19.4 -19.6 

2nd -21.7 -21.5 -20.6 -21.0 

3rd -23.3 -23.3 -22.2 -22.0 

Average -22.1 -21.9 -20.7 -20.9 

Dip  
depth (dB) 

1st 19.4 16.1 27.7 28.8 
2nd 16.1 15.9 23.5 19.6 
3rd 16.1 19.5 21.4 16.2 

Average 17.2 17.2 24.2 21.5 

 

Table 4.10: Calculated frequency peak magnitudes and dips depths for the 
CC-UWB chipless RFID transponders fabricated with aluminum or copper thin films 
on different substrates 
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In this subsection the influence of a space perturbation for 𝐷 >>  𝑑 is investigated. 

For that reason, five CC-UWB chipless RFID transponder are modelled, and sequentially 

placed as illustrated in the schematic of Fig. 4.23a, to form constellations with different 

amounts/sets of UWB chipless RFID transponders. Simulations are conducted using CST 

Microwave Studio to analyze the |RCS| individual contribution that each UWB chipless 

RFID transponder adds to the whole constellation. The simulations results are shown in 

Fig. 4.23b and, as can be seen, as a new UWB chipless transponder is added to the 

previous constellation, the |RCS| values consequently increase, which means more power 

can be backscattered towards the receiver, and different received power values are 

obtained for different sets located at the same distance. 

 The five CC-UWB chipless transponders shown in Fig. 4.24a, are fabricated with 

the alternative manufacturing process described in section 3.3, using copper for the 

conductive strips, and bond paper as a substrate. The |RCS| results are shown  

Fig. 4.24b, they are calculated following the procedure described in Appendix A, and the 

 
a) 

 
b) 

Fig. 4.23: Multiple sets of CC-UWB chipless RFID transponders: 
a) placement schematic and sequence, b) simulated |RCS| response for different 
constellations [60] 
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measured scattering parameters of the different prototypes constellations placed 

sequentially as depicted. They are measured with the measurement setup described in  

Fig. A.3 of Appendix A. The VNA has been configured to measure the frequency 

spectrum located between 2 and 6 GHz, with a power control of 0 dB, an averaging factor 

of 30 sweeps per measurement and a total of 401 frequency samples [60].  

 The measurement results obtained are in accordance to the expected simulated ones, and 

a progressive increase in the |RCS| is observed, as the number of CC-UWB chipless RFID 

transponders in the constellation is incremented. The performance values are calculated 

for all constellations and are resumed in Table 4.11. A significance peak magnitude 

 
a) 

 
b) 

Fig. 4.24: CC-UWB chipless RFID transponders fabricated using copper strips on 
bond paper: a) picture of all five transponders, b) calculated |RCS| from measured 
scattering parameters for different sets [60] 
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enhancement in the order 7.2 dB average is experience from one transponder to a set of 

two, and progressively increases to reach a 13.7 dB average to the set of five constellation. 

The dip depths on the other hand, are slightly reduced as the more CC-UWB chipless 

RFID transponders are added to each new constellation.  

The previous results could serve as a basis to use the received |RCS| to 

simultaneously detect and identify multiple UWB chipless RFID transponders. This 

feature can be advantageously to determine the amount of UWB chipless RFID 

transponders placed close and side by side in the interrogation zone. Calculating the 

received |RCS| or received power values and setting proper values for power thresholds, 

further studies results in this regard will be presented in chapter 6 [60].  

Another application for this feature, is looking at Table 4.11 as the result of five 

different UWB chipless RFID transponders, where each has its own peak magnitude and 

dip depth, increasing considerable its |RCS| and therefore its reader detection capabilities, 

but having as a trade-off, making the simultaneous detection more difficult to achieve. 

This increased |RCS| capability is exploited in the next sections. 

Parameter 
Frequency 
peak/dip 

Constellation  

1 2 3 4 5 

Peak  
magnitude 

(dBm2) 

1st -21.5 -15.1 -12.5 -10.3 -7.9 

2nd -22.1 -14 -11.8 -9.9 -7.2 

3rd -22.4 -15.3 -13.4 -12.2 -9.7 

Average -22.0 -14.8 -12.6 -10.8 -8.3 

Dip depth 
 (dB) 

1st 14.3 15.0 15.4 12.8 12.5 
2nd 17.2 14.3 12.6 13.0 14.3 
3rd 15.5 17.2 16.2 17.1 15.8 

Average 15.7 15.5 14.7 14.3 14.2 

 

Table 4.11: Calculated frequency peak magnitudes and dips depths for the 
CC-UWB chipless RFID transponders constellations 
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4.3.2 Concentric Rings UWB Chipless RFID Transponder 

 In the previous subsection, it has been shown than an elements array of three rings 

and one disk generates a frequency response that can be used in the design of UWB 

chipless RFID transponders. Different investigations were conducted to characterize the 

reflection properties of this type structure and the importance of a robust coding technique 

to overcome small frequency variations due to the substrate or ink has been highlighted. 

In this subsection, the concentric rings (CR) UWB chipless RFID transponder is proposed 

with a novel coding technique based on frequency response distinction, that together with 

the SFM reader developed in chapter 5, constitutes an automatic UWB RFID system 

capable to detect the embedded identification codes. The CR-UWB chipless RFID 

transponder element geometry shown in Fig. 4.25a and is designed to produce three 

frequency peaks and four dips within a 1.9 GHz bandwidth between the 4.0 – 5.9 GHz. 

The core of the model is focused on the single array element geometry shown in  

Fig. 4.25a and is slight variation of its predecessor, it consists of five metallic concentric 

rings placed on a substrate. The model is achieved by first considering just one array 

element and then repeat it to form a 2 × 2 grids by placing a new one at a distance 𝐷 from 

  
a) b) 

Fig. 4.25: CR-UWB chipless RFID transponder’s geometry of a) one array element 
based on five concentric rings, b) all four arrays of elements  
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the closest neighbor, the final four arrays geometry composing one single transponder is 

shown Fig. 4.25b. 

Fig. 4.26 shows the |RCS| simulation results for eight different transponders, the 

simulations were conducted considering a silver thin film on bond paper and a separation 

distance 𝐷 of 2.8 mm. To illustrate the coding technique, a pulse position encoding is 

schematized to differentiate in a simple way between two different identification codes. 

Nevertheless, the whole shape of the frequency response of the transponder should be 

considered as one unique code, as the main goal is to allocate eight different identification 

within one quarter of the UWB frequency bandwidth and serve as templates that can be 

reproduced all through the remaining three sections of UWB spectrum. To generate the 

different frequency responses, a simple rule of thumb based on frequency peak position 

 

Fig. 4.26: CR-UWB chipless RFID transponder |RCS| simulation results for the 
different geometries configurations  
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was used, six different target center frequencies are set, and the resonators dimensions 

are changed considering fabrication dimension restrictions to produce the peaks near of 

those frequencies. The frequency responses are generated changing the dimensions of all 

resonators for each single UWB chipless RFID transponder to achieved the desired peaks 

and dips configurations rather than modifying just the one resonator corresponding to a 

specific peak as conventionally proposed [34] [59]. Furthermore, due to the coupling 

characteristics between resonating rings for this type of structure, it can be noticed by 

simple visual inspection, that all eight transponders generate frequency responses that 

differ not only on the position of the peak but on also on its width, magnitude and dip 

depth, characteristic that will be exploited during detection in chapter 6.  

The frequency position and peak bandwidth differences are summarized in  

Table 4.12. Analyzing the specific case of code 000 and 010, a difference of 300 MHz 

bandwidth and 100 MHz position shift can be observed for the first peak, up to a 100 

MHz bandwidth and 100 MHz position difference for the second peak and third peaks, as 

well as a 100 MHz bandwidth and no position difference for the third peak. All these 

distinct characteristics provide rich information that can be used to recognize the UWB 

chipless RFID transponders, if a proper encoding methodology based on these differences 

together with a proper computer detection technique are implemented. 

Code 

Peak bandwidth  

(GHz) 

Peak center  

frequency (GHz) 

1st 2nd 3rd 1st 2nd 3rd 

000 0.5 0.6 0.7 4.3 4.9 5.4 

001 0.5 0.8 0.7 4.3 4.9 5.6 

010 0.8 0.5 0.6 4.4 5.0 5.4 

011 0.8 0.6 0.7 4.4 5.0 5.6 

100 0.5 0.5 0.5 4.5 4.9 5.4 

101 0.4 0.5 0.9 4.4 4.9 5.6 

110 0.8 0.3 0.5 4.6 5.0 5.4 

111 0.5 0.7 0.6 4.5 5.1 5.6 

 

Table 4.12: CR-UWB chipless RFID transponders frequency response characteristics  
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The eight-different physical configurations realized are presented in Table 4.13, as 

can be noticed, due to the frequency band and fabrication restrictions, a minimum ring 

width 𝑤 of 0.3 mm and maximum of 1.1 mm, as well as a minimum separation gap 𝑔 of 

0.5 mm and a maximum of 1.7 mm are considered as physical design restrictions to 

prevent major performance degradations due to the printing technology. These 

dimensions are used to realize the eight prototypes that should serve as a proof of concept 

of an UWB chipless RFID transponder, with a novel encoding based on whole frequency 

signature differences and a capacity of three bits within a 1.9 GHz bandwidth. 

4.3.2.1 Fabricated Prototypes 

The different identification codes combinations of the UWB chipless RFID 

transponder based on the periodic concentric rings’ structures are fabricated at the 

Technische Universität Chemnitz premises, using silver-ink based screen printing 

technology on PET, to guarantee the best performance possible, for the given design 

dimensions requirements. Fig. 4.27 shows a picture of one single array element of each 

of the eight-different UWB chipless RFID transponders fabrications. As can be seen, each 

prototype has its unique shape with different resonators radius, widths and gaps. 

Code 
Physical dimension (mm) 

𝑟 𝑤  𝑤  𝑤  𝑤  𝑤  𝑔  𝑔  𝑔  𝑔  

000 12.2 1.0 0.4 0.4 0.4 0.3 1.7 1.1 1.1 0.9 

001 12.2 1.0 0.4 0.3 0.5 0.3 1.7 1.1 1.3 1.0 

010 12.2 0.6 0.5 0.4 0.3 0.3 1.3 1.9 1.1 0.6 

011 12.0 1.0 0.4 0.5 0.3 0.3 1.7 1.7 0.8 0.5 

100 11.6 1.1 0.3 0.3 0.4 0.3 1.7 1.1 0.6 0.8 

101 11.8 1.0 0.4 0.3 0.4 0.3 1.7 1.0 0.8 1.2 

110 11.9 0.5 0.4 0.4 0.4 0.3 1.2 1.7 1.1 0.8 

111 11.8 1.0 0.4 0.4 0.4 0.3 1.7 1.1 1.1 0.8 

 

Table 4.13: CC-UWB chipless RFID transponders different physical dimensions 
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The electrical parameters of CR-UWB chipless RFID transponders are resumed in 

Table 4.14. The layer thicknesses of each single resonator are measured with the 

Technische Universität Chemnitz’s Keyence laser-scanning microscope VK-9700, 

following the procedure described in detail in Appendix B. The two-points DC resistance 

values of each individual ring resonator, starting from the outer 𝑅  to the inner one 𝑅 , 

are measured using digital multimeter Volticraft model VC830. The conductivity and skin 

depth are calculated considering the conductive thin film thickness, the DC resistances, 

and the ring resonators physical dimensions. 

The resistance values above 2 Ω have been highlighted in Table 4.14, as part of a quick 

quality check control to evaluate the performance of the respective measured CR-UWB 

chipless RFID transponders response. The third ring resonator of identification code 001 

has the highest measured resistance value of 2.77 Ω, which corresponds to the lowest 

conductive thin film thickness of 4.74 𝜇m and the smallest ring width of 0.3 mm, despite 

it has an acceptable estimated conductivity value of 3.05 × 106 S/m. It is important to 

notice that the identification codes 010 and 101 have the highest number of rings with 

resistance values above 2 Ω, all 5 and 4 respectively. Therefore, frequency response 

degradations are expected with respect to other identification codes. In general, all ring 

    

Fig. 4.27: Picture of one array element of each eight CC-UWB chipless RFID 
transponders fabricated using silver ink on PET 
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resonators have thin film thickness than are around or above their respective minimum 

required skin depth thickness, which shall guarantee that at least 1/𝑒 of the current density 

remains within it. 

The scattering parameters of the CR-UWB chipless RFID transponders are 

measured with the measurement setup described in Fig. A.3 of Appendix A. The VNA 

has been configured to measure the frequency spectrum located between 2 and 6 GHz, 

with a power control of 0 dB, an averaging factor of 20 sweeps per measurement and a 

total of 201 frequency samples. The |RCS| is calculated following the procedure described 

in Appendix A. The results are shown Fig. 4.28, and the performance values as well as 

the measured frequency signature characteristics are resumed in Table 4.15. In general, 

all transponders follow the simulated response shape, a shift of 100 MHz to a lower 

    

Fig. 4.28: CR-UWB chipless RFID transponders calculated |RCS| from measured 
scattering parameters 
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frequency is experienced with respect to the simulation due to the PET substrate, 

degradations can be observed in the peak magnitudes ranging between 3 and 4 dB, and 

dip depths of up to 10 dB with respect to the simulated values. However, as expected per 

the resistance measurements, the identification codes 010 shows a performance 

degradation with respect to the other identification codes, its third resonance dip is not 

properly generated, and its third and fourth peak amplitudes are below the average.  

Similar analysis can be conducted for identification codes 011, 100 and 101, 

correlating the |RCS| with the electric parameters of Table 4.14. Identification code 110 

second peak is not generated properly either, which could compromise its functionally in 

a peak detection-based system. However, its unique frequency response characteristic is 

kept when compared to all identification codes, which means it still fulfills the main 

objective of this coding technique that focuses on the whole frequency response, and 

Parameter 
Frequency 
peak/dip 

Identification code 

000 001 010 011 100 101 110 111 

Peak 
magnitude 

(dBm2) 

1st -17.0 -17.3 -16.7 -16.9 -16.3 -18.6 -15.0 -16.8 

2nd -16.2 -16.1 -18.7 -17.6 -16.7 -17.9 -21.3 -15.7 

3rd -17.4 -17.2 -18.2 -18.2 -17.2 -16.3 -16.7 -16.5 

Average -16.9 -16.9 -17.9 -17.6 -16.7 -17.6 -17.7 -16.3 

Dip depth 
(dB) 

1st 5.1 4.6 5.5 6.6 3.7 3.6 7.8 5.8 

2nd 8.0 6.8 5.1 10.2 1.3 3.8 0.1 8.9 

3rd 4.7 7.1 0.9 7.0 7.5 9.0 2.2 6.7 

4th 8 11.03 8.0 11.0 10.1 13.0 12.4 12.7 

Average 6.5 7.4 4.9 8.7 5.7 7.4 5.6 8.5 

Peak 

bandwidth 

(GHz) 

1st 0.5 0.4 0.8 0.7 0.5 0.4 0.8 0.5 

2nd 0.5 0.8 0.5 0.6 0.4 0.5 0.2 0.7 

3rd 0.6 0.6 0.5 0.6 0.6 0.9 0.7 0.5 

Center 

frequency 

(GHz) 

1st 4.1 4.1 4.0 4.2 4.3 4.2 4.5 4.3 

2nd 4.7 4.7 4.8 4.9 4.7 4.7 4.9 4.9 

3rd 5.3 5.4 5.2 5.4 5.2 5.4 5.2 5.4 

 

Table 4.15: Calculated frequency peak magnitudes and dip depths for the CR-UWB 
chipless RFID transponders 
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explores the differences between each identification code rather than concentrating in one 

specific frequency peak or dip, which can be easily influenced by the substrate, 

conductive thin film, handling, or other fabrication process deviations. Therefore, the next 

section explores the implementation of the same coding principle using an already 

published UWB chipless RFID transponder based on octagons. 

4.4 Concentric Octagons UWB Chipless Transponders 

In this section, another two UWB chipless RFID transponder are presented, both 

structures are based on concentric octagons (CO) and designed to be interrogated by the 

time-domain UWB RFID reader of chapter 5, to perform signal detection and decoding 

studies. Furthermore, the CO-UWB chipless RFID transponder design 1 (D1) composes 

together with the time-domain RFID reader a fully automatic and operational UWB RFID 

system to be implemented in real test-case scenarios in the different venues mentioned in 

chapter 1. The CO-UWB chipless RFID transponder design 2 (D2), is meant to conduct 

experiments on simultaneous detection of multiple UWB chipless RFID transponders 

containing different identification codes. 

4.4.1 Concentric Octagons UWB Chipless Transponder Design 1  

The concentric octagons chipless RFID transponder is the one proposed by 

Betancourt et. al. in [49] and its geometry is depicted in Fig. 4.29a. It consists of six 

concentric octagons rings and one concentric octagon patch, designed to generate five 

frequency dips in the 2 – 10 GHz frequency range. Nevertheless, for this investigation, 

only the 3.8 – 8.8 GHz frequency response is of interest, to work with the IR-reader 

presented in chapter 5, and be fabricated using the different venues substrates for the real 

test-case scenarios. The original proposed coding is physically achieved placing shorts 

between resonators to produce a sort of dip OOK modulation technique like the ones 

reviewed in subsection 2.3.2 for the spiral and C-like resonators [25] [31]. However, as 

explained, this type of coding approach is realized by shifting the unwanted dip to a higher 

frequency, which implies the designed higher frequency dips might be affected in an 

UWB design. Moreover, it also generates shifts in the remaining frequency dip original 

designed position, which makes it difficult to apply a simple rule to perform its detection, 
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and rather these frequency shifts need to be considered for every new identification code, 

completely losing the essence of applying a simple OOK as coding technique. Therefore, 

here again a coding technique based on the differences in the frequency response is 

proposed, using the original developed mechanical shorts-based physical coding 

principle, and selecting only specific frequency responses, which differ significantly 

 
a) 

 
b) 

Fig. 4.29: COD1-UWB chipless RFID transponder’s a) geometry of one array 
element with 𝑙  = 22.4 mm, 𝑙  = 18.8 mm, 𝑙  = 15.3 mm, 𝑙  = 12.4 mm, 𝑙  = 10.5 
mm, 𝑙  = 9.0 mm, 𝑙  = 6.6 mm, 𝑤 = 𝑤 = 𝑤  = 22.4 mm, 𝑤 = 0.7 mm and 𝑤 =
 𝑤  = 0.6 mm, b) |RCS| simulation results 
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between codes, and produce variations in the received frequency pulse from the time-

domain reader described in chapter 5. 

Four different chipless UWB transponders with a periodicity of four array elements 

each are simulated considering a silver thin film, and the results are shown in Fig. 4.29b. 

As can be noticed, the dips depth and position vary from one identification code to 

another, product of employing the shorts-based coding technique. Furthermore, the 

identification codes according to the proposed original coding technique would be 11111, 

00011, 11001, and 11011 respectively, where 1 corresponds to the presence of a dip and 

a 0 to its absence, as explained previously, the frequency dip shifts are evident for all 

UWB chipless RFID transponders, which could lead to a wrong identification if an OOK 

detector is employed, as they are completely shifted from its meant position. Therefore, 

a new identification code is assigned to each chipless RFID transponder, as shown in the 

figure 11111 → 00, 00011 → 01, 11001 → 10 and 11011 → 11. Thus, four different 

identification codes with a completely different frequency response are generated. 

Nevertheless, as the whole frequency bandwidth has been already used to produce this 

UWB chipless RFID transponders, the frequency responses cannot be reproduced in other 

sections like in the case of the CR-UWB chipless RFID transponder. 

4.4.1.1 Prototypes Fabrication 

A picture of all four different identification codes prototypes, fabricated printing 

silver-ink on PET is shown in Fig. 4.30a, the physical configuration is performed with 

the help of a silver ink pen for codes 01, 10 and 11. As explain previously, the COD1-

UWB chipless RFID transponders, are meant to be used in real test-case scenarios, using 

the respective venues tickets. Thus, Fig. 4.30b shows a picture of a few prototypes 

fabricated printing silver ink on the different venues’ substrates: cruise ship and metro 

station plastic cards, soccer stadium and airport paper tickets. In this case, only the soccer 

stadium prototypes are coded after printing with the silver pen as explained in [49], and 

the rest were printed at once adding shorts to the required resonators during the printing 

process. 

The scattering parameters of the COD1-UWB chipless RFID transponders, 

fabricated on the different venues substrates, are measured with the measurement setup 
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described in Fig. A.2 of Appendix A. The VNA has been configured to measure the 

frequency spectrum located between 3.8 and 8.8 GHz, maximum output power, an 

averaging factor of 200 sweeps per measurement and a total of 401 frequency samples. 

The |RCS| is calculated following the procedure described in Appendix A, the results are 

shown in Fig. 4.31 and the performance values as well as the measured dip frequency 

position are resumed in Table 4.16. 

In general, the prototypes fabricated on PET present results consistent with the 

expected simulated ones, and the differences between identification codes can be clearly 

seen by simple human inspection. The fourth dip depth of identification codes 00 and 01 

goes from 11.0 dBm2 to 4.2 dBm2 respectively, which represents a degradation of 7 dB 

due to this short-based coding technique. 

Taking the identification code 00 on PET substrate graph as a reference, the 

frequency dips have been enumerated to illustrate the influence of the change in substrate 

in their position. The shift to a lower frequency due to the paper-based airplane ticket is 

 
a) 

 
b) 

Fig. 4.30: Picture of each eight COD1-UWB chipless RFID transponders 
identification codes fabricated using a) silver ink on PET b) venues substrates 
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Fig. 4.31: COD1-UWB chipless RFID transponder fabricated on the different venues 

substrates calculated |RCS| for identification codes a) 00 b) 01 c) 10 d) 11  
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around 300 MHz in average, while the paper-based soccer stadium and cruise ship/metro 

station plastic card substrates both produce 1.1 GHz shift in average, which locates the 

originally designed first dip outside the frequency bandwidth of interest. The |RCS| 

presents a general degradation going from an average maximum peak magnitude of -13.0 

dBm2 for the PET prototype to -15.6 dBm2 for the airplane ticket, -16.7 dBm2 for the 

cruise ship/metro station plastic card and -17.9 dBm2 soccer stadium ticket. Furthermore, 

the different dip depths are also degraded, for example, the depth of the 3rd dip of the 

prototype on PET goes from 12.2 dB to 1.6 dB for the airplane ticket, 7.3 dB for cruise 

ship/metro station plastic card and 8.8 dB for the soccer stadium ticket. Therefore, all 

UWB chipless RFID transponders experience performance variations due to the change 

of substrates. Moreover, the fourth frequency dip of identification code 01 practically 

disappears for the airplane ticket substrate, going from 4.2 dB on PET to 0.2 dB on the 

airplane ticket, which in an OOK detector implementation, it will be most probably 

recognized as a dip absence, leading to its wrong recognition. 

Although the COD1-UWB chipless RFID presents a unique frequency response for 

the selected configurations, its coding procedure and effects on the corresponding 

spectrum signature, limits the use of this technique to generate more identification codes 

in a structured manner. For that reason, one last design also based on octagons is proposed 

in the next subsection, with the objective to generate better resonance dips and modify 

the time-domain RFID reader sent signal, to investigate the simultaneous detection of 

multiple UWB chipless RFID transponders with different identification codes.  

4.4.2 Concentric Octagons UWB Chipless Transponder Design 2 

The COD2-UWB chipless RFID transponders are a modified version of the ones 

described in the previous subsection, they have been designed to work in the frequency 

range from 4 to 8 GHz and conduct studies on the simultaneous detection of two UWB 

chipless RFID transponders having the same or different identification codes. Fig. 4.32a 

illustrates the geometry of chipless RFID transponders to generate two frequency 

responses. They are named A and B and consist of one single element with one ring and 

one patch octagonal resonators each.  
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The COD2-UWB chipless transponders coding technique also differs from the 

original proposed technique in [49] and the adaptation presented in the previous 

subsection. Here, the codification used for these two transponders is the dip’s frequency 

shift generated by changing the dimensions of the resonators’ width, as per the DD-UWB 

chipless RFID transponders presented in section 4.2. Fig. 4.32b shows their simulated 

|RCS| using CST Microwave Studio considering an aluminum thin film on bond paper 

substrate. Considering the results obtained in section 4.3.1.5, where same identification 

codes were studied product of a constructive interference effect that increased the overall 

|RCS|. The expected effect for the frequency response of two different identification 

codes placed side by side, is a destructive interference. Therefore, the frequency shift 

coding for these two transponders is chosen to generate frequency responses different 

enough, to guarantee its successful individual detection, and the generated response of 

the combination of the two identification codes (i.e. A + B) produce a third frequency 

response which is also different from the first two identification codes which originally 

 
a) 

 
b) 

Fig. 4.32: COD2-UWB chipless RFID transponder: a) geometries, 
b) |RCS| simulation results for the two geometries and the combination of two 
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generated it, as shown in Fig. 4.32b. This difference allows that the generated frequency 

response of the combined UWB chipless RFID transponder can be processed as an extra 

identification code.  

4.4.2.1 Prototype 

A photograph of the UWB chipless RFID transponders is shown on Fig. 4.33, they 

are fabricated with the alternative manufacturing process described section 3.3, using 

aluminum tape for the conductive strips on a PET substrate. The scattering parameters of 

the different prototypes are measured with the measurement setup described in Fig. A.3 

of Appendix A. The VNA has been configured to measure the frequency spectrum located 

between 3 and 8 GHz, with a power control of 3 dB, an averaging factor of 20 sweeps per 

measurement and a total of 401 frequency points. The |RCS| is calculated following the 

procedure described in Appendix A. The results shown in Fig. 4.33b, are in accordance 

with the simulated values, a shift to a lower frequency of around 200 MHz can be 

  
a) 

 
b) 

Fig. 4.33: COD2- UWB chipless RFID transponder: a) picture, b) calculated |RCS|  
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observed for the prototype A, and unlike its predecessor, with this coding technique, no 

major dip degradations are experienced in the higher frequencies.  

Finally, Table 4.18 resumes the performance results for this specific UWB chipless 

RFID transponder. An average degradation of around 1 dB is observed peak magnitude 

with respect to the simulated values, and around 7 dB for the dip depth.  

 

4.5 Summary 

In this chapter, we have discussed the most important parameters to design UWB 

chipless RFID transponders, several prototypes based on five different simple structures 

were fabricated using two different manufacturing techniques, fabrication specifications 

and their frequency response measured, analyzed and characterized. 

Novel prototypes fabricated using low-cost materials like aluminum or copper 

conductive strips on either PET or bond paper substrates were presented. These UWB 

chipless RFID transponders are suitable to be produced with alternative mass-production 

techniques and are a promising solution to further reduce the manufacturing cost of 

chipless RFID technologies.  

The peak magnitude and frequency dip depth terms are introduced in the chipless 

RFID technology, to evaluate the performance of the UWB chipless RFID transponders 

frequency responses and be able to compare between different designs. 

 Tranponder 

code 

Peak magnitude 

(dBm2) 
Frequency dip depth 

(dB) 
1st 2nd 

A -22.1 -23.2 22.5 

B -22.5 -28.4 11.3 

Average -22.3. -25.8 16.9 

A + B -22.3. -25.8 7.5 

 

Table 4.17: Calculated frequency peak magnitudes and dips depths for the two COD2-
UWB chipless RFID transponders 
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To conduct a final evaluation among all fabricated structures, one specific prototype 

of each geometry and type of fabrication has been chosen, and their main parameters are 

resumed in Table 4.18. The peak magnitude and dip depth values are calculated averaging 

the different peaks and dip depths results, to obtain one single comparison parameter per 

UWB chipless RFID transponder. 

The results show, that the highest |RCS| peak magnitudes are obtained for the silver-

ink printed periodic structures CR and COD1, which should mean that they have the 

higher detectability among all, in terms of received power at the reader. COD1 has around 

5 dB more |RCS| than CR with similar peak standard deviations of 1.5 dB and 1.2 dB 

respectively. However, its dip depth has a higher deviation of 6.7 dB than the 3.3 dB of 

CR due to the employed dip absence/presence shorts-technique to achieve the coding. 

The highest resonance dip depths, on the other hand, are the ones obtained for the 

prototypes fabricated with alternative processes and lower bulk-conductivity than silver 

metals: copper and aluminum. 

Although, these UWB chipless RFID transponders are not designed to improve the 

theoretical state-of-the-art in terms of coding capacity, based solely on structures design 

to achieve more peaks in less frequency band like being done conventionally. They 

uniqueness relies on the novel coding technique implemented and are designed to be 

Parameter 
UWB chipless RFID transponder 

DD CC CR COD1 COD2 

Amount of codes 4 1 8 4 2 

Conductive strip Aluminum Copper Silver-ink Silver-ink Aluminum 

Substrate Bond paper PET PET PET PET 

Periods 1 1 4 4 1 

Frequency band (GHz) 3 - 9 3 - 6 4 - 6 4 - 9 4 - 8 

Peak magnitude (dBm2) -26.2 -20.9 -17.2 -12.2 -24.05 

Peak std (dB) 1.5 1.0 1.2 1.5 2.5 

Dip depth (dB) 13.9 21.5 6.8 13.7 16.9 

Dip depth std (dB) 0.9 5.3 3.3 6.7 5.6 

 

Table 4.18: Calculated frequency peak magnitudes and dips depths for the different UWB 
chipless RFID transponders 
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detected in a real-case application scenario. Therefore, their main purpose is to be part of 

a real system, where their identification codes will be successfully recognized in a fully 

automatic way, by the UWB RFID readers used to interrogate these UWB chipless RFID 

transponders and obtain their frequency signature. The reader architectures used to obtain 

the frequency response will be discussed in the next chapter.



 

104 
 

 RFID Readers for Chipless Transponders 

The main objective of this chapter is to introduce the fundamentals of the UWB 

RFID reader for chipless transponders and describe two main design architectures based 

on frequency and time domains, which are founded on the conventional radar principles. 

UWB RFID readers are meant to detect when an UWB chipless transponder is placed 

within its coverage area, determine its identification code, and, in some cases, its location 

and track its movements. They may include a wide variety of platforms for different 

application scenarios, depending on the chipless transponder and how the information 

needs to be retrieved and analyzed. A general understanding on how the current radar 

technology can also be applied to the UWB chipless RFID reader is discussed [61]. 

UWB RFID readers for chipless transponders follow the basic principles of 

conventional radar design and are built on these foundations to interrogate the UWB 

chipless RFID transponder and retrieve its signature. The main functional components 

employed, the basic principles of radars and their implementation to detect UWB chipless 

RFID transponders are discussed. 

5.1 Background 

5.1.1 The Radar Range Equation 

Radar stands for radio detection and ranging, is meant to detect objects and 

determine their range, angle or velocity. The basic concept of a radar system using the 

electromagnetic spectrum to transmit a waveform and receive a backscatter from the 

target is depicted in Fig. 5.1. 

The transmitter generates a waveform of power 𝑃 , which is sent through the 

transmit antenna of gain 𝐺  into free space, where it propagates at the speed of light 𝑐. 

The main objective of the antenna is to concentrate the waveform energy in a specific 

direction, namely the area of interest, where a target should be detected. The waveform 

beam broadens as it propagates through free space from the radar, and loses strength with 
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increasing distance (path loss), the power density 𝑝 at a specific distance 𝑟 from the 

antenna is given by [61] 

 𝑝 =  
𝑃 𝐺

4𝜋𝑟
 (5.1) 

Once the waveform reaches the target, some of the incident energy is absorbed and 

another amount is backscattered according to the target specific RCS. The backscattered 

waveform attenuates again as it propagates through free space toward the direction of the 

transceiver and is incident upon the receiving antenna of effective aperture 𝑎 , then the 

power received can be expressed by [61] 

 𝑃 =  
𝑃 𝐺 𝑎

(4𝜋𝑟 )
𝑅𝐶𝑆 (5.2) 

the effective aperture of any antenna can also be written as [61] 

 𝑎 =  
𝜆 𝐺

4𝜋
 (5.3) 

and the received power becomes [61] 

 𝑃 =  
𝑃 𝐺 𝐺 𝜆

(4𝜋) 𝑟
𝑅𝐶𝑆 (5.4) 

Equation (5.4) is known as the radar equation. It provides the relation between the free 

space losses, antenna gains, wavelength, received and transmit power of a radar system. 

As shown in Fig. 5.1, the radar waveform must make a two-way journey to the 

target and back, the distance or range to the target is given by 𝑟, so the waveform travels 

a total distance of 2𝑟 at a speed of 𝑐. If time 𝑡 that it takes the waveform to travel from 

the radar to the target and back is known, then the range can also be calculated as [61] 

   

Fig. 5.1: Radar system basic principle, Tx: transmit waveform, Rx: receive waveform 
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 𝑟 =  
𝑐𝑡

2
 (5.5) 

5.1.2 Range Resolution 

The resolution is the UWB readers’ ability, like in a radar system, to distinguish 

between two or more UWB chipless RFID transponders that are closely spaced, whether 

in angle or space. Fig. 5.2a illustrates the concept. The UWB reader transmits a single 

pulse of duration 𝜏, which is backscattered by two UWB chipless RFID transponders 

located at 𝑟  and 𝑟  distances from the RFID reader antennas, separated a distance ∆𝑟 

from each other. In the case ∆𝑟 is large enough, the RFID reader should receive two 

distinctive signals as shown in Fig. 5.2b, and the chipless RFID transponders are resolved 

in range. In Fig. 5.2c, the chipless RFID transponders are located so close together that 

the received signals overlap, producing a composite signal, which means that the chipless 

RFID transponders are not resolved in range, and since they both carry embedded 

 

Fig. 5.2: Range resolution: a) concept, b) resolved signals, c) unresolved signals, 
d) limit  
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information, they combine destructively, which means, no identification code could be 

retrieved from neither of them [62]. 

Fig. 5.2d shows the limit, when the pulses arrive exactly one after the other, and 

this specific distance value can be found replacing 𝑡 by 𝜏 and 𝑟 by ∆𝑟 in equation (5.5) 

 ∆𝑟 =  
𝑐𝜏

2
 (5.6) 

where ∆𝑟 is named the range resolution, two UWB chipless RFID transponders spaced a 

distance greater than ∆𝑟 will be resolved in range (Fig. 5.2b), while transponders spaced 

by less than ∆𝑟 will not (Fig. 5.2c) for a pulse of duration 𝜏 [62]. A pulse duration of 1 ns 

result in a range resolution of 15 cm, which could make the simultaneous detection of 

multiple chipless RFID transponders quite difficult, when separated at distances smaller 

than that. Furthermore, to achieve finer resolutions, shorter pulses are required, 

nevertheless, they will have less energy and therefore make the detection more 

challenging [62]. 

5.1.3 Frequency Band Selection 

The selection of the frequency band of the RFID system with chipless transponders 

is based on several requirements. As discussed in chapter 4, the design of chipless RFID 

transponders based on scattering structures require larger bandwidths, as well as, to 

implement additional features like the simultaneous detection of multiple chipless RFID 

transponders, a high range resolution is needed, as discussed in section 5.1.2. 

The UWB technology spreads the signal over a very wide frequency range allowing 

the transmission of information at very low power levels. Because the targeted RFID 

system with chipless transponders range is low, it may be classified as a short-range 

device (SRD), having low capability to interfere with other radio equipment. The 

European Telecommunications Standard Institute (ETSI) has issued a standardization 

allocating the unlicensed UWB frequencies between 3.1 GHz and 10.6 GHz with a signal 

width no less than 500 MHz and with a radiated power density of -41 dBm/MHz for the 

frequency bands: 3.1 to 4.8 GHz and 6 to 9 GHz, -70 dBm from 4.8 to 6 GHz and  

-65 dBm from 9 to 10.6 GHz [63], [64].  
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The previous UWB spectrum specifications should serve as a baseline for the 

design and implementation of the RFID Systems with chipless transponders. Provided 

that the transponder is merely a passive device and can’t generate power by itself, the 

supply of the required power relies completely in the reader part and need to be optimized 

to guarantee the achievement of the target reading range. Moreover, the influence of the 

path loss increases with the frequency, thereby limiting the chipless RFID transponder 

reading range for its higher frequency components due to a decrease in the received 

signal-to-noise ratio (SNR). Therefore, two different sections of the UWB frequency band 

are chosen to guarantee maximum reading capabilities: 3.8 – 5.7 GHz, and 4 – 9 GHz for 

the frequency domain and time domain readers respectively.  

5.2 Frequency Domain Reader Test System 

The working principle of the frequency domain reader to detect UWB chipless 

RFID transponders is depicted in Fig. 5.3. As discussed in chapter 4, the strength of the 

backscattered waveform from the UWB chipless RFID transponder is frequency 

dependent. Therefore, the UWB reader transmits an increasing sequence of stepped 

frequency waveforms to fully scan the desired frequency band, each waveform is shifted 

by a constant frequency offset Δ𝑓, and they impinge in the UWB chipless RFID 

   

Fig. 5.3: Obtaining UWB chipless RFID transponder frequency profile from stepped 
frequency measurements 
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transponder to obtain its signature at each specific frequency. The UWB chipless RFID 

transponder backscatters the waveforms including changes in amplitude strength and 

phase shift. Then, the waveforms are measured at the receiver and recorded for further 

analysis, as illustrated in Table 5.1.  

The conventional approach to decode the UWB chipless RFID transponder 

frequency response is to initially detect it, record its frequency signature and determinate 

its identification code, which depends on the coding technique and decoding algorithm 

being employed. Operations such as determine the embedded code of the signature data, 

thresholding or averaging for noise reduction would be performed. As well as 

normalization to enable UWB chipless RFID transponders measured at different distances 

to be compared with a consistent basis. The frequency signature data is then correlated 

with a stored database and the best code match or best codes matches could be assigned 

with various ranking levels of confidence as further explained in chapter 6. 

5.2.1 Stepped Frequency Waveforms 

The frequency domain UWB RFID reader is indeed based on the reflective radar 

front-end model shown in Fig. 5.4a. The simple frequency domain UWB reader for 

chipless RFID transponder consist of a stepped frequency generator, transmit and receive 

antennas, mixer to down convert the received signal and a processing section to perform 

further signal operations. 

Sequence of pulses Backscattered amplitude and phase 

𝑓  𝐴(𝑓 ), 𝜃(𝑓 )  

𝑓 =  𝑓 +  ∆𝑓 𝐴(𝑓 ), 𝜃(𝑓 ) 

𝑓 =  𝑓 +  2∆𝑓 𝐴(𝑓 ), 𝜃(𝑓 ) 

𝑓  =  𝑓 +  3∆𝑓 𝐴(𝑓 ), 𝜃(𝑓 ) 

⋮ ⋮ 

𝑓 =  𝑓 + (𝑁 − 1)∆𝑓 𝐴(𝑓 ), 𝜃(𝑓 ) 

   

Table 5.1: Amplitude and phase response of the UWB chipless RFID transponder, 
obtained at each frequency step 
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Fig. 5.4b shows the transmitted waveform shape, which consist of a wideband, stepped 

frequency modulated waveform with a sweeping bandwidth 𝛽 = 𝑁∆𝑓, and transmission 

time ∆𝑡 =  𝑡  – 𝑡  , The starting frequency is represented by 𝑓  and is generated at time 

𝑡  . The slope of the waveform is given by 
∆

. The stepped angular frequency 𝜔(𝑛) is 

given by 

 

 𝜔(𝑛) =  𝜔 +  2𝜋𝑛∆𝑓      0 ≤ 𝑛 ≤  𝑁 (5.7) 
 

the unwrapped instantaneous phase angle 𝜙(𝑡) of the waveform can be obtained 

integrating the previous equation  

 

𝜙(𝑡) =  ∫ 𝜔(𝑡)𝑑𝑡 = (𝜔 +  2𝜋𝑛∆𝑓)𝑡 +  𝜃 ,   𝑡 +  𝑛∆𝑡 ≤ 𝑡 ≤ (𝑛 + 1)∆𝑡,  
0 ≤ 𝑛 ≤  𝑁 (5.8) 

 
a) 

 
b) 

Fig. 5.4: UWB RFID reader for chipless transponders: a) basic architecture, b) SF 
transmit and receive waveforms 
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where 𝜃  is an arbitrary phase shift generated at the transmitter, the transmitted 

waveform 𝑠(𝑡) can thus be written as 

 

 𝑠 (𝑡) = 𝐴 (𝜔) ∙ cos 𝜙(𝑡)      𝑡  ≤ 𝑡 ≤  𝑡 , 0 ≤ 𝑛 ≤  𝑁 (5.9) 

 𝑠 (𝑡) = 𝐴 (𝜔) ∙ cos (𝜔 +  2𝜋𝑛∆𝑓)𝑡 +  𝜃      (5.10) 

 

𝐴 (𝜔) is the frequency dependent voltage amplitude of the transmit waveform. The 

transmit waveform propagates through space at the speed of light 𝑐 and is backscattered 

by the UWB chipless transponder to the transceiver. The received waveform arrives to 

the transceiver with a specific time delay 𝑡 , a modified amplitude and phase shift 

 𝑠 (𝑡) = 𝐴 (𝜔) ∙ cos (𝜔 +  2𝜋𝑛∆𝑓)(𝑡 − 𝑡 ) +  𝜃  (5.11) 

 

The voltage amplitude of the received waveform 𝐴 (𝜔) is determine by the 

target’s RCS, pathloss and transceiver parameters (e.g.: antenna gain). At the receiver, 

the backscattered waveform frequency is shifted by multiplying or mixing it with a LO 

signal 𝑠 (𝑡) =  cos(𝜔 𝑡 + 𝜃  ). Considering that the LO signal drives the mixer into 

saturation, the output amplitude of the mixer depends only of the product between its 

voltage conversion gain 𝑎  and the amplitude of the received signal 

𝑠 (𝑡) =  𝑠 (𝑡) ∙  𝑠 (𝑡) 

             = 𝑎 𝐴 (𝜔) cos (𝜔 +  2𝜋𝑛∆𝑓)(𝑡 −  𝑡 ) + 𝜃 cos(𝜔 𝑡 + 𝜃  ) 

             =
1

2
𝑎 𝐴 (𝜔) cos(2𝜋𝑛∆𝑓𝑡 − (𝜔 +  2𝜋𝑛∆𝑓)𝑡 +  𝜃  −  𝜃 ) 

            + cos (2𝜔 +  2𝜋𝑛∆𝑓)𝑡 − (𝜔 +  2𝜋𝑛∆𝑓)𝑡 +  𝜃 +  𝜃  (5.12) 
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The baseband signal 𝑠 (𝑡) contains two frequency components, a low frequency 

given by 2𝜋𝑛∆𝑓 and a high frequency one with 2𝜔 +  2𝜋𝑛∆𝑓. By selecting the proper 

low-pass filter F with cut-off frequency 𝜔  and unity pass band gain, the higher frequency 

components is disregarded, and the resulting signal 𝑠 (𝑡) depends only on the frequency 

steps size and the phase term 𝜃  from which the amplitude can be easily further processed.  

 

𝑠 (𝑡)  =
𝑎 𝐴 (𝜔)

2
cos(2𝜋𝑛∆𝑓𝑡 − (𝜔 +  2𝜋𝑛∆𝑓)𝑡 +  𝜃  −  𝜃 ) (5.13) 

5.2.2 Reader Architecture 

A discrete SFM front-end using off-the-shelf high-performance components was 

built to evaluate the proposed UWB chipless RFID system architecture [65], coding 

technique, detection performance, and post-processing algorithms. The system was 

developed in the lower 3.8 – 5.7 GHz part of the UWB frequency band, to maximize the 

reading distance by avoiding higher frequencies path loss, guarantee the commercial 

availability of the components, and enough bandwidth to design the chipless RFID 

transponders. 

 The chosen UWB RFID reader architecture is shown in Fig. 5.5. The analog front- 

end sends a stepped frequency increasing signal to scan the environment and in case an 

UWB chipless RFID transponder is placed in its detection zone, it receives the 

backscattered signal and converts it to digital form for further processing.  

A photograph of the realized transceiver is shown in Fig. 5.6, it consists of the 

above-mentioned frequency band transceiver module and a GenesysTM Virtex-5 field 

programmable gate array (FPGA) development board for control and interfacing with a 

host computer via joint test action group (JTAG) and universal serial bus (USB) interface. 

 For the transmission, the FPGA generates and increasing sequence of bits, that the 

10 bits DAC model AD7533JNZ-ND from Analog Devices [66], translates into the input 

voltages to the Hittite VCO evaluation board 108648-HMC586LC4B [67]. The VCO 

forwards the specific frequency signal of up to 5 dBm to the Pasternack 10 dB coupler 

model PE2204-10 [68], and via the 20 dB attenuator to reduce the delivered power to the 
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Chengdu AINFO Inc. horn antenna model LB-OH-159-10-C-SF with variable increasing 

gain between 7 dBm at 4GHz to 14 dBm at 8 GHz [69].  

The receiver amplifies the signal received from the other horn antenna by means of 

the MITEQ LNA with variable gain of 40 dB at 4 GHz to 42 dB at 6 GHz and variable 

noise figure between 0.45 dB and 0.90 dB [70]. The LNA sends the amplified signal to 

one of the Mini-Circuits mixers model ZX05-153+, which performs the down conversion 

of the signal considering the local oscillator (LO) frequency, generated by another Hittite 

 

Fig. 5.5: Discrete UWB RFID reader for chipless transponders system architecture  
 

    

Fig. 5.6: Photograph of the discrete UWB SFM RFID reader for chipless transponders 
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VCO set to its starting frequency, and divided into two different paths to feed the two 

different Mini-Circuits low pass filter model VLF-2500 [71]. Both of which filter the 

signals with frequencies below 2.7 GHz and sends them to Analog Devices gain detector 

evaluation board model AD8302-EVALZ [72]. The gain detector makes a comparison 

between the two down-converted signals coming from 10 dB coupler and the LNA, and 

its output values converted to bits by the Analog Devices 8-bit analog to digital converter 

(ADC) AD7819 [73]. The main task of the digital back end is to control the hardware.  

5.2.3 Test System Results 

To verify the functionality of the frequency domain test system, an algorithm was 

developed to control the reader front-end, be able to transmit a stepped frequency train 

and record the received signal. The reader is placed on a table with the antennas pointing 

to the ceil as shown in Fig. 5.6. The reader is programmed to scan 371 different frequency 

points starting from 3.8256-GHz to 5.6971-GHz in average steps of around 5 MHz. 

The fabricated UWB chipless RFID transponders based on dipoles, open conical 

resonators, concentric circles and octagons, are placed at different distances from the 

reader’s antennas, hold by hand to emulated system normal working conditions, and their 

spectral signature is recorded for the above specified frequency bandwidth. The obtained 

results are compared to their VNA measured counterparts showing good agreement, the 

presence of the peaks and dips is verified and therefore the SFM UWB front-end reader 

is capable to retrieve their frequency response. 

The eight fabricated UWB chipless transponders based on concentric rings are also 

measured individually when hold by hand at an approximated distance of 10 cm, Fig. 5.7 

shows their normalized according to the procedure that will be described in  

subsection 6.2.2. Once again, the presence of peaks and dips can be verified and compared 

to their CST simulated or VNA measured counterparts shown in Fig. 4.26 and Fig. 4.28 

respectively. In general, the obtained results with the UWB SFM reader are in good 

agreement with the expected shape for all UWB chipless RFID transponders. However, 

the second peak for the UWB chipless transponder with identification code 110 is 

completely missing, which in case of a detection technique based on the peaks’ analysis, 

it would not be possible to decode this specific transponder. Nevertheless, by simple 
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visual inspection, it can be seen, that all identification codes have several differences 

when compared point-to-point along the whole frequency bandwidth, characteristic that 

will be exploited further at the time to implement the UWB chipless RFID transponders 

detector in chapter 6. 

To analyze further the obtained results, five different measurements of the UWB 

chipless RFID transponder with identification code 100 are taken with the UWB SFM 

reader, the results are shown in Fig. 5.8a. As can be seen, there are also slightly 

differences between different measurements of the same code under normal working 

conditions. They are coming from the imperfections of the UWB SFM reader (cable 

losses, variable power, path loss, etc.) and from the movement of the UWB chipless RFID 

transponder held by hand. Fig. 5.8b shows the standard deviation between same 

    

Fig. 5.7: UWB SFM reader front-end measurements of chipless RFID transponders 
based on concentric rings 
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frequency samples for this specific identification code. The detector should be able to 

identify the right code even though the backscattered frequency response has slightly 

differences for the same code, which should not be greater than the ones observed for 

different codes in Fig. 5.7. 

5.3 Time Domain Reader 

The working principle of the time domain reader to detect UWB chipless RFID 

transponders is depicted in Fig. 5.9. The IR UWB RFID reader transmits a short pulse 

𝑠 (𝑡), which travel and is attenuated through the free space as explained in section 5.1, 

then is modified in its shape according to impulse response of the UWB chipless RFID 

 
a) 

 
b) 

Fig. 5.8: UWB chipless RFID transponder with identification code 100: a) five 
different frequency response measurements with the UWB SFM reader, b) calculated 
standard deviation 
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transponder 𝐻 (𝑡) and backscattered to the reader again and is received with an amplitude 

attenuation 𝐴 , the receive signal 𝑠 (𝑡) is given by 

𝑠 (𝑡) =  𝐴 𝐻 (𝑡) ∗  𝑠 (𝑡) (5.14) 

 

5.3.1 Novelda Radar 

The time domain UWB RFID reader is indeed based on the impulse radio 

commercially available Novelda development kit with reference NVA-R641 UWB radar, 

the used front-end model is shown in Fig. 5.10a. The Novelda radar based UWB reader 

for chipless RFID transponder consist of a pulse generator, transmit and receive antennas, 

sampler to discretize the received signal, and a processing section to perform further 

signal operations. 

The development kit is based on the second generation of radar IC NVA6201 from 

Novelda, working in the frequency band from 4 to 9 GHz. The low power short 

microwave pulse with duration of less than one nanosecond shown in Fig. 5.10b is sent 

through the transmit antenna and is backscattered from the UWB chipless RFID 

transponder with the identification code embedded in it. 

 

 

Fig. 5.9: Time domain reader working principle  
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5.3.2 Test System Results 

To verify the functionality of the time domain test system, an algorithm was 

developed to control the reader front-end, be able to transmit a pulse and record the 

a) 

b) 

Fig. 5.10: Novelda radar: a) basic architecture [88], b) Gaussian pulse shape 
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received signal. The reader is placed on a table with the antennas pointing to the wall. 

The reader is programmed to average 100 pulses. 

The fabricated COD2-UWB chipless RFID transponders are placed at different 

distances from the reader’s antennas, hold by tripods as shown in Fig. A.4 of  

Appendix A, and their spectral signature is recorded. The obtained results are compared 

to their VNA measured counterparts showing good agreement as shown in Fig. 5.11, the 

presence of the peaks and dips is verified and therefore the IR UWB front-end reader is 

capable to retrieve their frequency response.  

5.4 Summary 

In this chapter, the UWB RFID reader working principles have been discussed, two 

main UWB RFID readers based on SFM and IR radar were presented. The readers are 

used to interrogate the UWB chipless RFID transponders fabricated in this investigation 

work, store their response, and use them to perform the detection of the UWB chipless 

RFID transponders, which will be explained in the next chapter. 

    

Fig. 5.11: COD2-UWB chipless RFID transponder calculated |RCS| 
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 Detection of UWB Chipless RFID Transponders 

This chapter introduces the detection methodology to automatically identify the 

UWB chipless RFID transponder’s identification code designed in chapter 4, and which 

frequency response is obtained with the UWB RFID readers presented in chapter 5 under 

normal working conditions. Three different types of detectors based on conventional 

architectures are used to process the received signal and recognize the transmitted 

identification code. 

6.1 Background 

The UWB RFID system with chipless transponders shall guarantee the successful 

recognition of every identification code of the UWB chipless RFID transponders, when 

individually or simultaneously placed in its interrogation zone, and under its normal 

operational conditions. Researches are investigating different coding techniques to 

achieve this task and extract the information embedded in the chipless RFID transponders 

backscattered signal. Nevertheless, as mentioned in section 2.3, most of the by now 

proposed geometries are being decoded post-processing their time or frequency response 

by means of a calibration technique. Then, by simple human eye visual-inspection and 

based on arbitrary selection criteria, the identification codes are claimed to be 

recognizable, without in fact, a computer system performing this operation. Preradovic 

et. al. proposed an RFID system with chipless transponders in [27], based on a reader that 

transmits 15 dBm of power to interrogate the chipless transponders, and then proposes 

the use of a peak detector to identify different transponders, the experiment was 

conducted recognizing only two different identification codes. Vena et. al. in [34] 

detected the UWB chipless RFID transponders insensitive to polarization by analyzing 

its group delay response, the decoding takes place after its frequency response is post-

processed with the calibration technique explained in Appendix A, to subtract the 

channel’s effects. The same calibration technique is being used in other works to extract 

the UWB chipless RFID transponder’s frequency response, and then perform the 

decoding by visual inspection [7], [32], [49]. Another approach proposed by Lu et. al. 
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considers the use of an adaptive direct path cancellation methodology, to detect the 

frequency encoded transponder [74], which allows extracting the backscattered chipless 

RFID transponder signal and then decode in the conventional way by analyzing the peaks 

and dips. However, these approaches still do not represent a real case detection scenario. 

Nevertheless, Kalansuriya et. al. proposed to recognize the UWB chipless RFID 

transponder identification codes based on a signal space representation by means of a 

minimum distance detector, and the chipless RFID transponders are measured connecting 

them directly to the ports of a VNA [75]. 

As explained in chapter 2, another important requirement of the UWB RFID system 

with chipless transponders, is the capability to simultaneously identify multiple chipless 

RFID transponders placed in its interrogation zone. That is, when several objects with 

different RFID chipless transponders attached to them are passing through the UWB 

RFID reader’s interrogation zone. The different type of objects, as well as the amount of 

each one, should be recognized according to the UWB chipless RFID transponder stored 

identification code, and this information used for further processing.  

The chipless RFID transponders are usually fabricated using metallic resonators, 

which produce a unique RF signature for each identification code, as presented in  

chapter 4. Adding extra resonance frequencies to implement any type of anti-collision 

protocol in UWB chipless RFID transponder, simply translates in a change in the chipless 

RFID transponder’s overall frequency response, when seen from the used spectrum 

perspective, and it could finally mean that many different identification codes are 

generated to identify just one single object in a multiple transponder scenario [60]. On 

the other hand, if the decoding is to be conducted without implementing any anti-collision 

protocol at the UWB chipless RFID transponder side, the coding technique itself should 

provide enough robustness to help to overcome or detect the collision as explained in 

subsections 4.3.1.5 and 4.4.2 [60] [58] [76]. The reader, on the other hand, should increase 

its complexity and processing load to be able to perform the collision detection and 

successfully decode the type and amount of UWB chipless RFID transponders. 

Rezaiesarlak and Manteghi implemented in [77] and [78], a short-time matrix pencil 

method (STMPM) to decode multiple chipless RFID transponder for different reader’s 

configurations. Azim and Karmakar used in [79], a linear frequency modulated (LFM) 

signal as an interrogation signal and a fractional Fourier transform (FrFT) is employed to 
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separate the responses from multiple transponders, and Anee et. al. proposed in [80], a 

collision detection method based on frequency-modulated continuous-wave (FMCW) 

radar. 

Here, three different detectors are proposed to recognize under normal working 

conditions the UWB chipless RFID transponders developed in chapter 4, and which 

frequency response is obtained with the VNA considering the influence of 

communication channel, which will be described in detail further in the next section. 

6.2 The Communication Channel 

The radio channel is the physical medium where the communication between the 

UWB RFID reader and the UWB chipless RFID transponder takes place, and the 

impairments effects it introduces to the UWB chipless RFID transponder’s backscattered 

signal need to be investigated accordingly. The propagation effects have been previously 

discussed in subsection 5.1.1, and the normalization procedure used to overcome this, 

will be explained in this section. Additionally, the effect when the communication 

channel corrupts the received signal by adding white Gaussian noise is introduced, and 

the design of the optimum receivers to perform the detection and decoding of the 

frequency-coded UWB chipless RFID transponders. The UWB chipless RFID system 

shall guarantee the successful decoding of the different coded UWB chipless RFID 

transponders placed in the identification zone, and under its normal operational 

conditions. Therefore, the influence of the radio channel on the decoding and overall 

system reliability must be assessed. The noise is one of the major impairments being 

present in all communications channels [81]. A noisy signal could cause an UWB chipless 

RFID transponder identification code to be wrongly identified as other, compromising 

the reliability of the system. Therefore, the importance to study the noise influence over 

the UWB chipless RFID transponder received signal is evidenced. Furthermore, since the 

UWB RFID transponder is chipless, the implementation of a dynamic channel coding 

algorithm at its side, to help to cope with the signal impairments produced by the noisy 

channel is not possible. Thus, the UWB RFID reader must have the capability to 

overcome this problem, and the UWB chipless RFID transponder coding must be robust 

enough to guarantee the successful detection, and in this way, avoid confusion between 
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different codes when the received signal is influenced by a noisy channel [60] [58] [76] 

[82]. 

6.2.1 AWGN Channel Modeling and Detection 

To achieve a successful implementation of the UWB chipless RFID system, a reliable 

decoding of each UWB chipless RFID transponder under normal radio channel 

conditions, namely the influence of its different effects, must be performed. The received 

signal from an UWB chipless RFID transponder may become practically undetectable to 

the human eye under the influence of a noisy. Consequently, the need to study the 

implementation of an algorithm capable to perform the successful decoding of different 

coded UWB chipless RFID transponders under these noisy conditions becomes 

imperative. 

To reach this goal, first, the behavior of the channel must be understood and 

characterized, to be able to implement a statistical viable channel model. The simplest 

mathematical model for a noisy communication channel is the additive noise channel that 

can be mathematically described by [81] 

 𝑠 (𝑡) = s (𝑡) + 𝑛(𝑡) (6.1) 

where s (𝑡) represents the m-th UWB chipless RFID transponder backscattered signal 

being corrupted by an additive random noise process 𝑛(𝑡), and 𝑠 (𝑡) is the received 

signal at the detector. Assuming that the main source of noise comes from the electronic 

components and the amplifiers inside the receiver, it can be considered as thermal noise, 

which has a statistical characteristic of being Gaussian. Then, the channel can be modeled 

as an additive white Gaussian noise with zero-mean and a spectral density of  . The 

main goal of an optimal detector is to analyze the received signal 𝑠 (𝑡), and take the 

optimal decision of the UWB chipless RFID transponder’s transmitted code s (𝑡) that 

minimizes the probability of detection error [81]. 

 To proceed with further mathematical analysis and simplify the operations, the 

different waveforms in Eq. (6.1) are converted to vectors using any orthonormal basis. 

𝑠 (𝑡) is represented by a vector 𝑠  ∈  ℝ , and in a similar way, the same operation can 

be applied to the remaining waveforms 𝑛(𝑡), and 𝑟(𝑡). The final vector additive noisy 

channel model is expressed by [81] 
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 s⃗ =  𝑠 + 𝑛 (6.2) 

The probability density function of the Gaussian noise vector 𝑛 is determinate by [81] 

 𝑝(𝑛) =  
1

𝜋𝑁
𝑒

‖ ⃗‖

 (6.3) 

Equation that serves as a based to develop the different detector’s architectures discussed 

in the following subsections. 

6.2.2 Free-Space Path Loss Modeling and Normalization 

As explained in subsection 5.1.1, the received signal experiences propagation losses 

and these were expressed by the radar range equation in Eq. (5.4). Therefore, the noisy 

channel model of Eq. (6.1) can be extended to include these losses as follow 

 𝑠 (𝑡) = A ∗ s (𝑡) + 𝑛(𝑡) (6.4) 

 where A  represents the attenuation experienced by the transmitted signal, it 

varies according to the distance of the UWB chipless RFID transponder to the receiving 

antenna. To overcome this effect and make the signals comparable and independent of 

the distance, a simple normalization procedure is implemented, defined by [76] 

 𝑠 =
𝑠 − �̅�

σ
 (6.5) 

where, 

�̅�: received signal’s mean  

𝜎: received signal’s standard deviation 

To verify the implementation of the normalization procedure, the scattering 

parameters of the CR-UWB chipless RFID transponders are measured with the 

measurement setup described in Fig. A.3 of Appendix A. The VNA has been configured 

to measure the frequency spectrum located between 3.5 and 6.5 GHz, with a power 

control of 0 dB, an averaging factor of 20 sweeps per measurement and a total of 401 

frequency samples. The measurement results for the CR-UWB chipless RFID 

transponder with identification code 00 placed at distances of 80 cm, 120 cm, and 180 cm 

are shown in Fig. 6.1a, and the normalized results in Fig. 6.1b. As can be seen, the 

normalization procedure helps to overcome the propagation losses and delivers to the 
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detector comparable signals, the detection procedure will be discussed in the next 

subsections. 

 

 
a) 

 
b) 

Fig. 6.1: CR-UWB chipless RFID identification code 00 measured at different 

distances of 80 cm, 120 cm, and 180 cm a) received |𝑆 |, b) normalized |𝑆 | 

according to Eq. (6.5) 
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6.3 Detection and Decoding of Chipless RFID Transponders 

The optimal detection rule is the one that maximizes the conditional probability of 𝑠  

being transmitted given that s⃗ is received 𝑃
⃗

⃗
. It is described mathematically using 

the noise Gaussian probability density function by [81] 

 �̂� = :     𝑃
1

𝜋𝑁
𝑒

⃗  ⃗

 (6.6) 

where  is a positive constant value that does not affect the calculation of the 

maximum and therefore can be dropped [81] 

 �̂� = :     𝑃 𝑒
⃗  ⃗

 (6.7) 

An increasing logarithmic function can be applied to remove the exponential [81] 

 �̂� = :     ln 𝑃 −
‖s⃗ −  𝑠 ‖

𝑁
 (6.8) 

Multiplying by the positive constant  [81] 

 �̂� = :     
𝑁

2
ln 𝑃 −

1

2
‖s⃗ −  𝑠 ‖  (6.9) 

is the m-th UWB chipless RFID transponder probability of occurrence, that is, the 

probability of the UWB chipless RFID transponder m being present in the interrogation 

zone. Assuming all UWB chipless RFID tags to be equiprobable, namely, each 

probability of occurrence is simply given by 1/m. The variable 𝑃  becomes a constant 

therefore it can be dropped from the Eq. (6.9), leaving only the 𝑚 dependent terms, the 

decision rule becomes [81] 

 �̂� = :     [−‖s⃗ −  𝑠 ‖ ] (6.10) 
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6.3.1 Minimum Distance Detector 

Using an intuitive reasoning for Eq. (6.10), it is known that maximizing the negative 

value of a term, it is equivalent to minimizing its positive. Minimizing the quadratic value 

of a term, it is equivalent to minimizing its square root. Then, Eq. (6.10) can be also 

represented by Eq. (6.11), and the whole operation becomes the magnitude calculation of 

a subtraction of the different UWB chipless RFID transponders backscattered signals 

from the corrupted noisy signal, and then selecting the minimum value among them [81]  

 �̂� =  [‖s⃗ −  𝑠 ‖]     (6.11) 

Transforming back the vector signals to the time domain and then considering the signals 

sampling performed by the receiver. The minimum distance detection rule to be 

implemented is given by [81] 

 �̂� = :    [𝑠 (𝑖) −  s (𝑖)]

 

 (6.12) 

The minimum distance detector architecture is illustrated in Fig. 6.2, the detector 

receives the sampled signal and calculates the its Euclidean distance to the each of the 

previously stored templates. Finally, to estimate it chooses the smallest value, which 

represent the nearest neighbor or closest stored signal to received one. 

    

Fig. 6.2: Minimum distance detector architecture   
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6.3.2 Maximum Likelihood Detector 

To derive the maximum likelihood ML detector, the optimal detection rule 

described in Eq. (6.12), is expanded solving the quadratic term [81] 

 �̂� = :     [−(‖s⃗ ‖ +  ‖𝑠 ‖ − 2s⃗ ∙ 𝑠 )] (6.13) 

where ‖s⃗ ‖  is the receive signal energy 𝐸 , ‖s⃗ ‖  does not depends on 𝑚 so it can be 

dropped. Therefore, the ML detection rule becomes [81] 

 �̂� = :     [2s⃗ ∙ 𝑠 − 𝐸 ] (6.14) 

The ML detector architecture is shown in Fig. 6.3, the detector receives the sampled 

signal and calculates the its dot product to the each of the previously stored templates, 

substrates the respective energy. Finally, to estimate it chooses the largest value, which 

represent the most likely stored signal to received one. 

6.3.3 Correlator Detector 

Another type of detector that requires less operations than the optimal maximum 

likelihood rule, is the correlation detector given by [81] 

 �̂� = :     [s⃗ ∙ 𝑠 ] (6.15) 

    

Fig. 6.3: Maximum likelihood detector architecture 
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The correlator detector architecture is shown in Fig. 6.4, like the ML detector, the 

correlator receives the sampled signal and calculates its dot product to the each of the 

previously stored templates and then estimates the sent code by choosing the largest 

value.  

6.3.4 Test Results 

In this section, the decoding results of the UWB chipless RFID transponders using 

minimum distance and ML detectors are presented. The measurement setup is mounted 

in one of the offices at the Technische Universität Dresden. The VNA has been configured 

to measure the frequency spectrum located between 3.8 and 8.8 GHz, with a power 

control of 3 dB, an averaging factor of 20 sweeps per measurement, and the number of 

frequency points ns is set to different values. The DD-UWB chipless RFID transponders 

are measured at different separation distances x from the horn antennas. The UWB 

chipless RFID frequency response s , used as a template to calculate the distance is 

obtained by simply removing the channel influence from the received signal at each 

distance x, as given by Eq. (A.9) of Appendix A. 

The DD-UWB chipless RFID transponders received frequency response 𝑠  is 

given by the measured scattering parameter S . Fig. 6.5a shows the received 𝑠  for all 

four different codes and their counterpart s  calculated subtracting the channel influence 

in Fig. 6.5b. As can be noticed, in the case where no channel influence is removed, it is 

    

Fig. 6.4: Correlator detector architecture 
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not possible to distinguish between UWB chipless RFID transponders by simple visual 

inspection. Hence, the need to implement an algorithm and a proper coding to evaluate 

these signals and to obtain the correct response becomes more evident to improve the 

detection capabilities of the reader. 

Table 6.1 presents the minimum distance detector results between the different  

DD-UWB chipless RFID transponders stored codes templates s . These results serve to 

evaluate how distant are the UWB chipless RFID transponders codes, from the detectors 

perspective. They include the processing time to evaluate the performance of the detector 

and disregard unfounded high processing load claimed by other authors. The values show 

a consistent symmetric behavior, the distance between the received code 00 and stored 

code 01 is the same as the one between from received code 01 and stored code 00, and 

similar for other codes. It is important to point out, that although the coding technique is 

 
a) 

 
b) 

Fig. 6.5: UWB chipless RFID transponder measurements results: a) received S  b) 
calculated s  
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based on the frequency shift principle, it is the whole frequency signature response that 

counts to perform the identification of the codes. Therefore, a higher frequency 

separation, as conventionally done, does not necessary means that the detector will obtain 

a higher performance, as can be noticed codes 00 and 11 have the higher frequency dip 

distance of 3.4 GHz but codes 00 and 10 have the higher distance of 9.3438, as measured 

by the detector. 

Table 6.3 shows the minimum distance detector results, calculated for different 

distances x from the horn antennas and total number of frequency points ns. The minimum 

distance, which represents the detected DD-UWB chipless RFID transponder 

identification code, is represented by the numbers in bold for each scenario. The DD-

UWB chipless RFID transponders were first located at a distance x of 30 cm away from 

the horn antennas. The total number of scans were varied between 101 and 1601 points. 

As can be seen, as the number of scanning points ns increases, the distance between  

DD-UWB chipless RFID transponders also increase. For instance, the distance between 

received signal s , of DD-UWB chipless RFID transponder with identification code 00, 

and template s  of code 11 for x = 30 cm and ns = 101 is 9.7691, and for x = 30 cm and  

ns = 1601 is 38.3961, which represents a distance increase of more than 3 times. 

Furthermore, for ns = 101, the received signal s  of DD-UWB chipless RFID 

transponder with identification code 10 is wrongly identified as code 01, but after the 

number of total samples ns is increased, all DD-UWB chipless RFID transponders codes 

are successfully identified. Hence, the ns becomes a key factor of the UWB reader design 

to be considered along with the UWB chipless RFID transponders coding type to 

guarantee a successful identification under channel impairments. Further calculations are 

  
Measurement 

parameters 

Received 
Code s  

Stored code s  Time 
(ms) 00 01 10 11 

x = 30 cm 
ns = 101 

00 0.0000 6.5287 9.3438 7.4702 0.578 
01 6.5287 0.0000 8.7176 9.1192 0.614 
10 9.3438 8.7176 0.0000 10.9716 1.555 
11 7.4702 9.1192 10.9716 0.0000 1.677 

 

Table 6.1: Minimum distance detector results for different UWB chipless RFID 
transponders based on double-dipoles, according to Eq. (6.12) 
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performed for ns of 401 and distances x of 20 cm and 10 cm, and all DD-UWB chipless 

RFID transponders codes are still successfully identified.  

In a similar way, the UWB chipless RFID transponders based on concentric rings 

are measured. Table 6.3 presents the minimum distance detector results between the 

different CC-UWB chipless RFID transponders stored codes templates s . The values 

show again a consistent symmetric behavior. As can be seen, with this type of frequency 

coding, similar distances as the ones obtained for the DD-UWB chipless transponders are 

Measurement 
parameters 

Received 
Code s  

Stored code s  
Time 
(ms) 

00 01 10 11  

x = 30 cm 
ns = 101 

00 8.4985 9.2880 13.0335 9.7691 0.850 
01 10.1520 7.9034 12.7409 10.7790 0.432 
10 10.9045 9.6852 9.9668 11.3221 1.116 
11 11.3482 11.3198 14.3293 9.2225 0.360 

x = 30 cm 
ns = 201 

00 11.6590 12.9470 17.4911 13.4878 4.573 
01 13.9654 10.9228 17.1259 15.0971 0.701 
10 15.6589 14.3251 13.0013 16.2443 0.637 
11 15.6344 15.9119 19.2953 12.8700 0.570 

x = 30 cm 
ns = 401 

00 17.0566 18.3831 24.7431 19.4902 4.549 
01 20.3854 15.7730 24.2113 21.3197 0.933 
10 22.6515 20.2479 18.9059 22.9407 0.694 
11 23.2029 22.7857 27.5037 18.2015 0.747 

x = 30 cm 
ns = 801 

00 17.0566 18.3831 24.7431 19.4902 4.661 
01 29.0284 22.0783 33.9736 29.4234 0.893 
10 32.2557 28.4394 26.5324 32.0400 0.761 
11 33.0979 31.8935 38.7269 25.4109 0.697 

x = 30 cm 
ns = 1601 

00 33.7093 37.1278 50.5398 38.3961 5.505 
01 39.9656 31.4479 48.2963 41.405 0.878 
10 45.7288 40.5135 37.4894 45.6467 0.850 
11 45.8048 45.3788 55.2679 35.7914 0.837 

x = 20 cm 
ns = 401 

00 12.0272 19.0540 22.6660 21.146 5.866 
01 17.6070 11.8544 20.0444 22.4532 0.675 
10 23.1515 21.7458 11.8081 26.3341 0.612 
11 19.0693 21.8613 24.2025 15.8686 0.622 

x = 10 cm 
ns = 401 

00 7.5699 15.9166 20.8790 17.8636 1.016 
01 18.3378 6.6530 18.4256 21.8406 0.601 
10 23.6268 19.7038 7.2428 23.6071 0.608 
11 19.7705 21.2238 21.8122 9.3326 0.592 

 

Table 6.2: Minimum distance detector results for different UWB chipless RFID 
transponders based on double-dipoles and different measurement parameters, 
according to Eq. (6.12) 
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obtained. The detector only sees the amount of points and not the fabrication type or 

frequency range of the UWB chipless RFID transponders that sends the signal. 

Nevertheless, from the UWB chipless RFID transponders perspective, a comparison is 

made between four double dipoles and eight concentric rings chipless RFID transponders 

measured within a 5 GHz and 2 GHz bandwidth respectively. 

Following the same procedure, the CC-UWB chipless RFID transponders are 

located at a distance x of 30 cm away from the horn antennas, and the total number of 

scans were varying between 101 and 1601 points. Table 6.4 shows the minimum distance 

detector processing times and results, calculated for different total number of samples ns. 

The minimum distance is represented by the numbers in bold for each scenario. The 

results show that unlike the double dipoles based chipless RFID transponder, the 

concentric rings are successfully identified even for ns = 100, and in a similar way, as the 

number of samples increases, the distance between codes also does. There’s a slightly 

increase in the processing times, as the detector must now compare four mores 

identification codes. 

 The next step is the validation of the ML detector with the COD1-UWB chipless 

RFID transponders, their frequency response was measured with the same VNA setup for 

a transponder distance x of 30 cm away from the horn antennas, and the total number of 

scans 401 points. As the detection takes place in the time domain, the inverse fast Fourier 

transform (IFFT) of the S21 is calculated and the results are plotted in Fig. 6.6, to visually 

recognized the difference among identification codes.  

Measurement 
parameters 

Received 
Code s  

Stored code s  Time 
(ms) 000 001 010 011 100 101 110 111 

x = 30 cm 
ns = 101 

000 0.0000 6.8561 6.1325 8.0872 4.6346 7.2978 6.0479 7.7653 2.491 

001 6.8561 0.0000 7.8667 5.7752 7.4769 5.1772 8.7619 5.6207 2.091 

010 6.1325 7.8667 0.0000 4.873 6.4948 8.1473 6.2973 5.2659 1.889 

011 8.0872 5.7752 4.873 0.0000 7.5941 6.4477 7.9222 2.933 2.925 

100 4.6346 7.4769 6.4948 7.5941 0.0000 6.4683 4.1577 6.8767 5.003 

101 7.2978 5.1772 8.1473 6.4477 6.4683 0.0000 7.8607 5.7571 6.903 

110 6.0479 8.7619 6.2973 7.9222 4.1577 7.8607 0.0000 7.1045 2.627 

111 7.7653 5.6207 5.2659 2.933 6.8767 5.7571 7.1045 0.0000 2.976 

 

Table 6.3: Minimum distance detector results for different UWB chipless RFID 
transponders based on concentric rings, according to Eq. (6.12) 
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Measurement 

parameters 
Received 
code s  

Stored code s  Time 
(ms) 000 001 010 011 100 101 110 111 

x= 30 cm 
ns = 101 

000 5.9342 9.2324 8.6777 10.3314 7.6286 9.6098 8.1471 10.1966 0.473 

001 8.8407 5.4435 9.7386 8.1910 9.3909 7.6501 10.1625 8.2210 0.763 

010 8.4827 9.9291 5.7945 7.8094 8.7986 10.1934 8.2102 8.2249 0.654 

011 10.0005 8.1985 7.5395 5.8498 9.6169 8.7499 9.5076 6.7736 0.953 

100 7.6275 9.7567 8.9863 9.9737 6.0458 9.0117 6.8466 9.5535 2.743 

101 9.1289 7.5074 9.9105 8.6159 8.4754 5.3359 9.2829 8.2219 6.220 

110 8.9234 10.9965 9.1505 10.4565 7.8144 10.3248 6.0311 9.9801 0.558 

111 9.6917 8.0216 7.7470 6.4897 8.9807 8.1640 8.7398 5.9562 0.649 

x= 30 cm 
ns = 201 

000 8.3638 12.8843 11.9801 14.4011 10.6393 13.3099 11.6521 12.9588 1.071 

001 12.3393 7.7171 13.7507 11.6461 13.3755 10.7500 14.4027 11.3376 0.915 

010 11.7226 14.0276 8.2516 11.0327 12.1940 14.3224 11.4776 10.7482 0.433 

011 13.9371 11.6556 10.6372 8.3345 13.7905 12.3631 13.3609 10.1240 1.917 

100 10.8840 14.0389 12.6416 14.4377 8.6941 12.9069 9.8762 13.1428 1.270 

101 12.8164 10.7794 14.0743 12.3753 12.1825 7.6453 13.3634 11.5688 0.730 

110 12.7166 15.5573 12.7922 14.6954 10.9673 14.6290 8.5690 13.7464 1.178 

111 12.4565 11.4107 10.4037 10.1996 12.4353 11.6132 12.2710 8.6167 0.844 

x= 30 cm 
ns = 401 

000 12.0549 18.5837 17.0864 20.4582 15.6321 21.1604 16.5173 19.4455 0.700 

001 17.7398 11.0007 19.5214 16.1131 18.8281 16.2282 20.0798 16.3253 0.794 

010 16.7204 19.9829 11.7671 15.4714 17.6686 21.7662 16.9077 15.6366 0.850 

011 19.9801 16.4548 15.1771 11.8834 19.6754 18.1450 19.3752 14.0038 0.724 

100 15.5629 19.5768 17.9603 20.1314 12.3454 18.6558 14.0210 18.7811 2.357 

101 20.1030 15.7296 21.0209 17.3868 17.3980 10.6952 19.9517 17.3120 8.382 

110 17.8064 21.6665 18.4695 20.8608 15.6905 21.8696 12.2358 19.3951 1.195 

111 18.6441 16.3490 14.9662 13.5733 17.9715 17.8133 17.3637 12.2380 1.398 

x= 30 cm 
ns = 801 

000 16.8254 26.5320 24.3344 29.2742 21.4663 26.9309 23.1032 27.0377 1.223 

001 25.0709 15.2476 27.7760 22.9293 27.2559 21.5064 28.9529 22.9800 0.974 

010 23.8844 28.6979 16.3822 22.3999 25.2473 29.0930 23.1304 22.1628 0.84 

011 28.4271 23.4890 21.6582 16.5134 28.0828 24.9224 26.7445 20.3068 0.876 

100 21.4310 28.5597 25.6462 28.9414 17.1694 25.7452 19.1349 26.8836 0.964 

101 25.4798 21.4708 28.1674 24.3712 24.1962 15.0640 26.1174 23.0264 8.041 

110 25.3793 31.5981 25.7845 29.4272 22.0522 29.2003 16.9798 27.7178 1.388 

111 25.5685 23.0072 20.7487 19.6047 25.4038 23.0899 24.1353 16.9832 1.213 

x= 30 cm 
ns = 1601 

000 23.2783 36.5084 35.0232 41.0666 30.2241 39.9940 32.6261 38.4993 1.225 

001 34.4248 21.2930 38.7291 31.8697 36.7656 29.9960 39.6378 31.8251 2.668 

010 33.7212 39.4871 22.5943 29.9797 34.3842 40.8168 32.0049 30.0864 1.122 

011 39.6538 32.3425 29.3779 22.9065 38.7932 34.4523 38.0676 27.3413 1.017 

100 30.1560 38.6687 35.6253 40.2464 23.9134 36.6364 26.8190 37.3159 1.125 

101 37.7110 29.3423 39.6502 33.4369 34.0176 20.8371 37.8060 32.5568 6.552 

110 35.8490 43.5696 36.5112 42.0460 31.0124 42.4012 24.3107 39.0792 0.968 

111 36.4654 31.7981 28.8746 26.6654 35.1829 33.1504 33.9466 23.5928 0.898 

 

Table 6.4: Minimum distance detector results for UWB chipless RFID transponders based 
on concentric rings and different measurement parameters, according to Eq. (6.12) 
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The ML detector results are presented in Table 6.6 for the different substrates, as 

can be seen, all identification codes are detected successfully when selecting the 

maximum as marked in bold. In the case of the prototypes fabricated on PET, two 

different scenarios are calculated, the no noise scenario which is merely the ML between 

stored responses, subtracting the channel influence, basically between the different graphs 

shown Fig. 6.6, and the noise measurement or under normal conditions including the 

channel influence. For each substrate calculation their respective substrate signal template 

is used since, as discussed in subsection 4.4.1, the frequency responses differ considerable 

between same identification codes on different substrates, and one single template for 

each identification code for all different substrate was not possible to realized. Therefore, 

each set of COD1-UWB chipless RFID transponders printed on a specific substrate is 

considered as a complete new set of identification codes. 

To verify the functionality of the last correlation detector, its implementation is 

considered using the Novelda Radar in a simultaneous detection of multiple chipless 

RFID transponders and will be discussed further in the next section. 

 

 

Fig. 6.6: Calculated time domain received S  for the COD1-UWB chipless RFID 
transponder on PET substrate 
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Substrate 
Measurement 

condition 

Received 
code 𝑠  

Stored code s  Time 

(ms) 00 01 10 11 

PET 

No noise 

00 371.14 344.46 322.53 337.66 0.60 

01 344.46 374.95 343.33 363.03 0.50 

10 322.53 343.33 379.77 310.99 0.71 

11 337.66 363.03 320.99 374.30 0.64 

Noise 

00 352.80 339.35 314.02 341.03 4.61 

01 335.89 365.84 334.28 362.32 0.61 

10 319.42 347.49 371.32 322.22 0.60 

11 310.43 341.17 284.43 362.59 0.54 

Stadium Noise 

00 334.15 306.11 272.80 310.70 4.63 

01 278.88 341.50 264.17 269.53 0.58 

10 329.39 308.48 360.87 333.69 0.56 

11 325.30 333.93 299.62 336.93 0.58 

Metro/cruise Noise 

00 296.36 286.85 269.47 271.97 4.55 

01 310.28 328.10 310.97 302.87 0.73 

10 302.28 320.08 341.13 291.65 1.03 

11 275.39 281.89 257.02 308.49 1.03 

Airport Noise 

00 378.49 361.45 355.63 363.08 4.63 

01 361.45 379.42 353.83 368.08 0.69 

10 355.63 353.83 383.69 352.41 1.11 

11 363.08 368.08 352.41 380.11 0.56 

 

Table 6.6: Maximum likelihood detector results for UWB chipless RFID transponders 
based on COD1 on different substrates, according to (6.14) 
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6.4 Simultaneous Detection of Multiple UWB Chipless 

Transponders  

Before going into details of the simultaneous detection of multiple UWB chipless 

RFID transponders, the special case shown in Fig. 6.7 must be analyzed. It is meant to 

illustrate the signal responses of two different scenarios. Fig. 6.7a shows multiple UWB 

chipless RFID transponder with same identification codes separated a distance greater 

than the range resolution in a multipath free scenario. Fig. 6.7b considers one single UWB 

chipless RFID transponder placed in a multipath scenario. And Fig. 6.7c is showing the 

received signal considering the ToA of the second pulse is the same in both cases. That 

is, if the transponders are placed in a multipath scenario, the system could not be able to 

distinguish between two transponders or the multipath way of just one. Therefore, in this 

work, the multi-detection studies are conducted in a multipath free scenario due to the 

reader’s limitations, as additional hardware and/or sensors are required to overcome the 

multipath channel effect in UWB chipless RFID transponders (e.g. rake receiver). 

Nevertheless, due to the short-range characteristics of the RFID systems with chipless 

transponders (< 50 cm) achieving a multi-path free channel, represents no major 

inconvenience. 

The LOS and multipath free scenarios for the simultaneous identification of the two 

chipless transponders are illustrated in Fig. 6.8. As explained in section 5.1.2, the radar’s 

range resolution depends on the Novelda radar’s one nanosecond pulse width and it 

    

Fig. 6.7: UWB chipless RFID transponder with same identification code a) multi-
detection scenario, b) multi-path channel scenario c) received signal 
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should be greater than 15 cm. Therefore, the different sets of chipless RFID transponders 

   
Fig. 6.8: Chipless RFID transponders simultaneous multi-detection scenarios: a) A – A, 
two type A located at 10 and 30 cm from the antennas, b) B – B, two type B located at 10 
and 30 cm from the antennas, c) A – B, A located at 10 cm and B at 30 cm from the 
antennas, d) B – A, B located at 10 cm and A at the 30 cm from the antennas, e) A – A + 
B, A located at 10 cm and A + B at 30 cm from the antennas, f) A + B – A, A + B located 
at 10 cm and B at 30 cm from the antennas, (g) A – 2B, A located at 10 cm and 2 B at 30 
cm from the antennas, and (h) 2B – A, 2 B located at 10 cm and A at 30 cm from the 
antennas [76].  
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are placed at 10 or 30 cm away from the antennas and guarantee enough time delay to 

distinguish between each received pulse. A direct LOS to the chipless RFID transponders 

is required to be able to backscatter the signal pulse directly back to the antennas. To 

avoid the influence of multipath components, the antennas are placed at a height of  

80 cm, which is eight times the direct distance between the antennas and the chipless 

RFID transponder located at the closest position. Additionally, the distances from the 

antennas to the rest of the surrounding surfaces are in the order of several meters [76]. 

The UWB chipless RFID transponders are mounted on different tripods, as shown 

in Fig. A.4 of Appendix A, and placed with direct LOS at distances of either 10 or 30 cm 

from the horn antennas. One reference measurement of the backscattered pulse of every 

single transponder A, B and their generated code A + B placed at each distance is required 

to further serve as a comparison template signal in the decoding stage [76].  

The obtained correlation results are shown in Table 6.7, as can be seen, despite the 

variations observed in the frequency domain, the correlation values clearly identify the 

correct UWB chipless RFID transponder from where the pulse is backscattered at each 

specific scenario. Furthermore, the calculations were also performed using only one 

reference pulse per chipless RFID transponder type at either 10 or 30 cm and the decoding 

were still successful [76]. 

The received pulse energy calculations including the path loss are shown in  

Table 6.8, the values are calculated with the help of Eq. (6.16), and show a clear different 

between the case of two UWB chipless RFID transponders placed together to the case 

Scenario 
First pulse Second pulse 

A B A + B A B A + B 

A - A 64.55 49.4 29.96 63.55 48.64 36.77 

A - B 64.1 46.84 34.11 37.08 48.62 28.41 

B - A 52.12 64.65 33.46 61.5 35.59 48.2 

B - B 34.22 64.61 52.89 33.78 61.72 52.29 

AB – AB*  48.08 45.03 61.17 45.55 48.34 63.77 

 

Table 6.7: Correlation detector results for different scenarios, *partial results of 
scenarios A – AB and AB + A, according to Eq. (6.15) [76] 
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when only one transponder is present. Therefore, by setting the proper energy thresholds, 

the right amount of transponders can be assessed [76]. 

 
𝜁 =  |𝑠 (𝑛)|

 

 
(6.16) 

6.5 Summary 

In this chapter, three different detectors used to recognize the identification codes 

embedded in four distinct UWB chipless RFID transponders geometries are introduced. 

A minimum distance detection rule was employed to decode four DD- and eight  

CR-UWB chipless RFID transponders in the frequency domain, and the importance of 

not only proposing a coding technique based on merely on human inspection but rather 

from a computing system point of view has been demonstrated. Highlighting that the 

detector sees the number of samples and not the frequency range of the UWB chipless 

RFID transponders. Therefore, the frequency response shape of the CR-UWB RFID 

transponders could be perfectly replicated in other frequency bands and use only one set 

of templates to recognized other bits placed in a different frequency band without 

significantly increasing the processing time. 

In the same manner, the ML detector is implemented to recognized four COD1-

UWB chipless RFID transponders in the time domain for prototypes printed on four 

different substrates. The detection and coding are performed considering each substrate 

fabrication as a unique set, due to the frequency responses differences obtained. 

 Finally, the simple correlator detector is implemented to study a simultaneous 

detection of multiple chipless RFID transponders having either the same or different 

Received pulse energy (µJ) 

Amount Transponder 10 cm 30 cm 

1 A 0.81 0.69 

2 A 2.59 2.01 

1 B 1.50 1.44 

2 B 3.61 2.82 

   

Table 6.8: Calculated received pulse energy, according to Eq. (6.16) [76]  
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identification codes, place together or separated a distance greater than the range 

resolution. Again, the importance of choosing the configuration to realize a specific 

feature has been point out: either periodic structures to increase |RCS| and reading 

distance or a different single structure to enable the simultaneous detection by analyzing 

its received power. The implementation of the detectors in the readers and test in real case 

scenarios will be presented in next chapter. 
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 System Implementation 

The results of the implementation of two UWB chipless RFID systems with 

chipless transponders are presented in this chapter. The printed UWB chipless RFID 

transponders based on CR and COD1 designed in chapter 4, are interrogated by their 

respective SFM- and IR readers architectures described in chapter 5. For that purpose, the 

detection techniques presented in chapter 6 are realized by means of a detection 

algorithm. 

The developed detection algorithms to control the UWB RFID readers are discussed 

in detail in the following sections, and to understand their functionality, the following 

system restrictions need to be considered: 

1. The UWB chipless transponders must be interrogated with an incident 

waveform orthogonal to its surface, otherwise, frequency variations that 

may lead to wrong identification code detections might be experienced. 

2. The interrogation zone is limited by the transmitted power and the radiation 

pattern of the antennas. This last one, is not homogenous, thus, the UWB 

chipless RFID transponders must be placed in between the two antennas, 

and avoid their near field zone, where the fields behave in a non-linear 

manner. 

3. The UWB RFID reader has no tracking characteristics. Therefore, it cannot 

calculate whether an UWB chipless RFID transponder is entering or 

leaving its interrogation zone and follow its position throughout the whole 

detection process. Which means, the detection procedure must be carried 

out in a sequential way: one or two UWB chipless RFID transponders 

placed or removed at the same time, and once the last one has left the 

identification zone, a new one may be placed to continue with the detection 

procedure. 

4. The detection process takes place in a real test-case scenario, considering 

people holding the UWB chipless transponders by hand. Therefore, the 

detection algorithm must consider, that the UWB chipless RFID 
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transponder has slightly movements while being place, remove or hold by 

hand until it reaches or remains in its rightful position between the antennas 

in the interrogation zone. 

7.1 SFM-UWB RFID System with CR-Chipless Transponders 

The implementation results of the UWB RFID system with chipless RFID 

transponders based on the SFM-reader and the CR-UWB RFID transponders are 

presented in this section. First, all the UWB chipless RFID transponders frequency 

responses measured with the SFM-Reader front-end together with an empty channel 

measurement are stored in the database. The channel measurement is meant to serve as a 

template for the no-transponder detection case, although a simple power detector could 

have been implemented also. To be able to interrogate, detect and recognized the different 

CR-UWB RFID transponders, the controlling and minimum distance detection algorithm 

shown in Fig. 7.1 has been developed. Together with the developed user interface, where 

the amount of detected transponder counting track is kept and different symbolic images 

representing the meaning of the detected identification code are displayed. 

As mentioned previously, the RFID reader shall consider the handling of the UWB 

chipless RFID transponders and it has no tracking capabilities. Therefore, the reader must 

interrogate and recognize the UWB chipless RFID transponder a defined amount of times 

𝑡𝑠 to have enough data, since the decision cannot be based solely in one frequency sweep, 

a counter 𝑠𝑐 is defined to keeps track of this requirement. Once a UWB chipless RFID 

transponder has been detected, a flag is raised, to lock the detection process and avoid 

unnecessary extra scanning, until the transponder leaves the interrogation zone, and a new 

detection process may be started. 

The SFM-UWB reader sweeps the UWB chipless RFID transponder with a total 

number of 𝑛𝑠 frequencies and stores each received response. Then, the received 

frequency response is enhanced with a noise reduction technique and normalized to 

reduce the path-loss effects. The distance to each of the stored signal templates including 

the empty channel measurement is calculated (𝑡𝑐), then the minimum is selected and 

given as the detected identification code. This process is repeated storing each result a 

total number of 𝑡𝑠, then the mode of all the detection is calculated and this value 

represents the detected identification code. The flag is raised to let the algorithm known 
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that an UWB chipless RFID transponder has been placed and successfully detected in its 

interrogation zone, and that it should wait until it has left the interrogation zone to perform 

further detections. If this is the first time the transponder is detected (Flag = 0) then the 

   

Fig. 7.1: UWB SFM-RFID reader detection algorithm 
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correspondent counter is increased, and the symbolic image displayed in the user 

interface, and the process starts all over again with a raised flag. 

 A specific number and a symbol image have been assigned to each identification 

code according to Table 7.1 to illustrated both types of possibilities, and are meant to be 

displayed in the interface, once the detection has taken place. 

The previous algorithm is implemented in the UWB SFM-RFID reader and the CR-

UWB chipless RFID transponder are interrogated sequentially at approximately 10 cm 

from the horn antennas, as shown in Fig. 7.2. A total number of sweeps 𝑡𝑠 = 3 per 

detection to keep the detection time as fast as possible (below 16 seconds). An illustrative 

video of this system is included within the DVD with this thesis.  

The detectors results are shown in Table 7.2, the minimum values are marked in 

bold, as can be seen, all UWB chipless RFID transponders are correctly identified, when 

considering the mode of all the interrogation sweeps. However, identification codes 011, 

100 and 110 are detected incorrectly for the first frequency sweep, due to the placement 

of the UWB chipless transponder. If the transponder is placed while the SFM-RFID is in 

the middle of the scanning sweep, wrong frequency samples are taken for the first half, 

influencing the detector results. The previous, reinforces the approach to consider several 

measurements to perform the detection based on the mode or simply discard the first one. 

A similar effect is experienced if the transponder is removed after the detection process 

has started and that is why an acoustic signal was programmed to let the user know when 

the transponder can be removed. Nevertheless, further studies must be conducted 

Code Number Image 

000 6 Crew 

001 7 Official 

010 8 First responder 

011 4 Pregnant woman 

100 2 Child 

101 1 Adult 

110 5 Handicap 

111 3 Baby 

 
Table 7.1: Identification codes assigned numbers and images 
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considering more real-case scenarios, since each user places the UWB chipless 

transponders at his own pace, and one or more frequency sweeps might be affected in this 

process. For illustration purposes only 3 sweeps were considered as the author has already 

  

a) b) 

  

c) d) 

  

e) f) 

  

g) h) 

Fig. 7.2: FD RFID system sequence of detection: a) No. 2 – child, b) No. 8 – first 
responder, c) No. 5 – handicap, d) No. 4 – pregnant woman, e) No. 6 – crew 
f) No. 1 – adult, g) No. 7 – official, h) No. 3 baby 
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experience with the system. Further test conducted for difference distances and the UWB 

chipless RFID transponders were successfully identify up to a 36 cm distance, as the 

|RCS| per transponder slightly varies, the distance is limited by the UWB chipless RFID 

transponder with less reading range. The detection period of the system including 3 sweep 

measurements rounds the 16 seconds, around 5.3 seconds per individual sweep. This time 

can be significantly decreased performing hardware optimization, developing an 

embedded system solution, and removing the computer-based user interface. To values 

near of the reported processing times in subsection 6.3, where the detectors were 

introduced. 

Due to the bulky and relative long detection period of this system, it is not suitable 

to be implemented in a real evacuation scenario, therefore the system composed with the 

IR radar and the COD1-UWB chipless RFID transponder is chosen to conduct the field 

  Received 
code 𝑠  

Scan  

sequence 

Stored code s  

000 001 010 011 100 101 110 111 

000 

1st 116.11 582.57 422.07 620.32 340.18 488.91 418.64 607.14 

2nd 157.91 398.19 214.57 450.22 256.43 369.84 207.29 317.47 

3rd 151.20 361.70 156.01 390.26 216.67 399.17 183.64 297.28 

001 

1st 430.87 173.90 364.22 314.55 406.26 341.63 484.46 291.66 

2nd 450.66 136.19 475.93 414.41 488.82 435.78 537.06 324.14 

3rd 476.73 101.90 379.48 279.10 313.00 454.43 460.23 341.44 

010 

1st 421.02 476.56 81.96 197.65 221.25 508.60 262.81 306.36 

2nd 513.02 405.80 134.40 259.58 307.10 379.95 268.27 211.82 

3rd 430.59 359.86 90.51 206.58 224.95 373.40 206.48 212.09 

011 

1st 1114.60 706.10 648.60 596.80 763.10 659.70 661.60 386.30 

2nd 637.54 238.24 198.76 136.14 379.39 507.54 446.86 210.96 

3rd 621.56 288.37 218.53 156.38 349.31 567.63 421.10 260.37 

100 

1st 558.83 821.44 583.14 619.89 513.51 648.21 492.06 600.59 

2nd 409.79 578.77 364.53 371.90 220.47 394.71 405.58 476.39 

3rd 462.41 887.74 566.35 689.62 411.88 564.73 541.59 683.51 

101 

1st 1016.5 778.3 1030 1067.7 1002.2 586.4 918.3 681.4 

2nd 743.2 310.2 553.09 464.91 487.11 98.4 646.6 320.06 

3rd 739.29 319.88 529.52 511.00 429.39 170.57 525.1 316.9 

110 

1st 331.75 792.61 500.94 618.75 233.95 625.12 294.24 795.13 

2nd 384.51 739.25 487.88 739.47 339.98 478.93 200.69 579.96 

3rd 419.57 520.33 317.59 605.31 357.91 395.68 213.91 296.33 

111 

1st 1115.70 820.40 945.50 991.70 1103.40 776.10 986.80 587.80 

2nd 661.63 215.19 251.66 260.89 466.16 362.65 510.33 63.01 

3rd 625.69 233.33 216.89 261.89 442.42 374.95 466.80 49.10 

 

Table 7.2: SFM-UWB system detector results 
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test in the different venues premises, since with this IR-system, it takes less than 2 seconds 

to perform the detection. 
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7.2 IR-UWB RFID System with COD1-Chipless Transponders 

 The development of the controlling algorithm for the Novelda IR-radar bases 

system is based on the same consideration as for the SFM-reader and is shown in Fig. 7.3. 

However, as the pulse duration of the reader is in the order of nanoseconds, and the UWB 

    
Fig. 7.3: UWB IR-RFID reader detection algorithm 
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chipless RFID transponder is interrogated at once by once single pulse, its placement 

becomes more critical to variations and more pulse samples need to be taken to guarantee 

successful detection. Therefore, a total number of 𝑝𝑡 pulses are taken (counted by 𝑝𝑐) and 

averaged to conduct one single interrogation scan of the UWB chipless RFID 

transponder. In this case, a peak detector determinate whether something has been placed 

on the interrogation zone or not. If yes, the pulses are averaged and then normalized, and 

then the identification code is estimated using a ML detection rule. The process is 

repeated a 𝑡𝑠 number of times (counted by 𝑠𝑐) and then the mode of the results is 

calculated, and its value given as the identification code placed on the interrogation zone. 

A specific number and a symbol image representing that number have been 

assigned to each identification code according to Table 7.3 are shall be displayed in the 

interface, once the detection has taken place. 

The previous algorithm is implemented in the UWB IR-RFID reader and the 

COD1-UWB chipless RFID transponder are interrogated sequentially at different 

distances from the horn antennas, as shown in Fig. 7.4. Total number of sweeps of used 

pulses 𝑝𝑡 is set to 100 and the total number of samples to 𝑡𝑠 = 10 per detection to keep 

the detection time as fast as possible (below 2 seconds). An illustrative video of this 

system is included in the DVD with this thesis.  

The detectors results taking using the measurement setup based on tripods at 

different distances, are shown in Table 7.4, the maximum values are marked in bold, as 

can be seen, all UWB chipless RFID transponders are correctly identified up to a 50 cm 

distance, when considering the mode of all the interrogation sweeps. The distance is 

limited by the internal configuration of the radar. 

Code Number Image 

00 1 ONE 

01 2 TWO 

10 3 THREE 

11 4 FOUR 

 
Table 7.3: Identification codes assigned numbers and images 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

Fig. 7.4: IR-UWB RFID system sequence of detection: a) ONE b) TWO c) THREE, 
d) FOUR and e) ONE and THREE 
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Similar tests were conducted using the COD1-UWB chipless RFID transponders 

printed on the different venues’ substrates, illustrative videos showing theses test can be 

found on the DVD. 

 The IR-UWB chipless RFID system is taken to each venue to perform real test-

case scenarios, with volunteers holding the venue respective tickets and placing them in 

the interrogation zone of the reader, as illustrated in Fig. 7.5. As the system was not 

developed in a user-friendly way, and no individual training was allowed to manipulate 

the equipment, some user placed incorrectly the UWB chipless RFID transponders in 

front of the cavity of one antenna, as shown in Fig. 7.5a. Therefore, further developments 

are needed to present an optimal end-user friendly solution. 

 

Measurement distance 
Received 
code 𝑠  

Stored code s  

00 01 10 11 

20 cm 

00 70.0 33.9 44.4 36.2 

01 33.9 70.0 43.6 56.6 

10 44.4 43.6 70.0 57.1 

11 36.2 56.6 57.1 70.0 

30 cm 

00 66.2 28.3 39.9 30.8 

01 39.6 59.8 43.1 50.2 

10 50.3 45.8 55.0 53.9 

11 37.3 49.6 60.3 60.4 

40 cm 

00 46.0 33.8 44.5 31.3 

01 31.6 63.1 33.3 48.3 

10 48.2 50.5 53.6 50.1 

11 34.0 58.0 52.5 64.0 

50 cm 

00 52.1 34.0 46.6 40.1 

01 37.7 63.5 44.0 53.2 

10 44.4 44.8 63.4 49.9 

11 35.7 53.2 56.1 64.4 

    

Table 7.4: IR-Reader detector results [82] 
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7.3 Summary 

The final implementation of the UWB RFID systems with chipless transponders 

has been presented in this chapter, the different considerations to develop the algorithms 

and the algorithms themselves have been discussed. Both systems were validated thought 

field test at the premises of the Technische Universität Dresden, verifying their 

functionality.  

Now that the system has been tested and integrated, Table 7.5 presents their 

comparison with previously published works. As can be seen, several types of approaches 

can be found, using readers ranging from laboratory equipment to solutions fabricated on 

PCBs and different frequency bands. Nevertheless, until now, none of them constituting 

a full automatized RFID system, as most of the research has been focusing on the 

transponder design and fabrication, where capacity is merely assigned according to the 

number of achievable frequency peaks/dips. Using the readers just to measure the 

frequency response and giving for granted that the detection will occur if the human eye 

  
a) b) 

  
c) d) 

Fig. 7.5: IR-UWB chipless RFID system pilot demonstrations at: a) Anoeta soccer 
stadium [10], b) Athens international airport (photo courtesy of Vicente Serrulla),  
c) MSC Meraviglia cruise ship [10], d) Bilbao San Mamés metro station [10] 
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is capable to identify it, disregarding the communication channel effects or normal 

working conditions (handling of transponders, movement, etc.), and the fact that a 

computer algorithm must indeed perform the detection. 

The work presented by Preradovic et. al. in [25] considers the use of a VNA as a 

reader, measuring sequentially only two different chipless RFID transponders in an 

anechoic chamber, placing them at fixed positions from the antenna and then performing 

Reference 
Preradovic 

et. al. [25] 

Preradovic 

et. al. [27] 

Koswatta 

et. al. [83] 

Lazaro et. al. 

[84] 

Zheng et. al. 

[85] 
This Work 

Working 

Principle 
Frequency Time Frequency Time 

Frequency 

band (GHz) 
2 – 2.5 5 – 10.7 4 – 8 5 3.1 – 10.6 3.8 – 5.8 4 - 9 

Reader Type VNA Modular PCB 

Pulse 

generator/ high 

speed sampler 

Pulse 

generator/ 

high speed 

oscilloscope 

Modular 
Commercial 

radar 

Requires ref. 

measurement 
Yes No 

Coding type Frequency shift Pulse position Differential 

Detection 

type 
Amplitude & phase Amplitude 

Minimum 

distance 

Maximum 

likelihood 

Tx power 

(dBm) 
-28 > 15 >10 ±5 V. Not available < 3 

Not 

available 

Transponder 

structure 
Antennas + resonators Antennas + transmission line Scatterer 

Capacity bits 

(Theoretical) 
35 23 9 1 8 3 2 

Decoded 

transponders  
2 1 8 4 

Transponder 

substrate 

Taconic 

TLX-0 

Taconic 

TF-290 

Taconic 

TLX-0 
None Rogers 4350 PET 

PET/paper 

/plastic card 

Size (mm2) 88 × 65 108 × 64 Not available 62 × 62 62 × 62 

Reading 

range (cm) 
40 15 1 200 0 36 50 

Multi-

detection 
No Up to 2 

Reading time 

(s) 
Not available < 16 < 2 

Measurement 

conditions 
Anechoic Chamber Normal 

Connected to 

lab. equipment 
Normal 

 

Table 7.5: RFID systems with chipless transponders comparison 
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the measurement. Removing the channel effects by the subtraction of a reference 

measurement, which allows to obtain a larger reading distance, up to 40 cm, and stating 

that the remaining identification codes should be identified using the same procedure of 

recognizing the frequency peaks. Later Preradovic et. al. presented in [27] a modular 

reader that didn’t needed a reference measurement due to the fact that its transmission 

power is above 15 dBm, reaching a reading distance of 15 cm, also placing the chipless 

RFID transponders at a fixed position in an anechoic chamber and presenting the results 

for only two transponders. Basing the detection merely on a peak detection technique 

reduces the handling margin of the transponders in a real application scenario, as 

frequency shifts may occur during the interrogation procedure, and therefore fixed 

positions may be required for a successful detection. 

Similar analysis can be done for the works of Koswatta et. al. [83], Lazaro et. al. 

[84], and Zheng et. al. [85], none of them performing automatic detection, nor providing 

detection times, and placing the chipless RFID transponders at fixed positions from the 

reader. This works on the other hand, presents for the first time two different systems 

programmed to perform the UWB chipless RFID transponders detections automatically 

when sequentially placed by hand at any distance under normal working conditions, as 

its purpose was to be implemented in real test-case scenarios. This is due to the 

implementation of a coding technique that together with detection algorithm enables the 

successful recognition of the identification codes by a computing system, when the UWB 

chipless transponders are placed in the interrogation zone, considering channel 

impairments like noise and path loss. 

The chipless RFID transponders are manufactured by means of printed technology 

on flexible substrates like PET or paper, unlike other works, the whole claimed capacity 

is verified experimentally and automatically detected by the correspondent reader 

applying conventional detection techniques. The proposed chipless RFID transponders 

can be read by the lab equipment, when processed with a calibration technique at 

distances above the 1 m target, as established in section 1.2. Furthermore, the functionally 

of the UWB chipless RFID transponders was verified beyond the target lifetime period 

of three months. 

The SFM-UWB RFID reader is capable to detect 8 different identification codes 

when placed sequentially under normal working conditions, up to a 36 cm distance with 
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a detection speed of 16s and Tx power less than 3 dBm. The IR-UWB RFID reader on 

other hand detects 4 different identification codes and simultaneous detection of two up 

to a 50 cm distance with a reading speed of less than 2 seconds. Furthermore, the UWB 

chipless RFID transponders are fabricated on cheaper substrates like PET or paper and in 

the specific case of IR system, it was tested in the different venues by volunteers holding 

the tickets/cards by hand and the system performing the scans automatically. 
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 Conclusion and Outlook 

This dissertation investigates extensively an innovative UWB RFID system with 

chipless transponders for short range applications (< 50 cm), from chipless RFID 

transponders modeling, simulation and fabrication, to the study and implementation of 

different reader front-ends hardware with its respective decoding algorithms. A novel 

chipless RFID transponders frequency coding technique, that considers the 

communication channel effects and assigns a unique frequency response to each 

transponder is introduced, and which could be easily reproduced in other frequency bands 

to increase capacity, while keeping the same detection template. 

Two novel fully automated prototypes of UWB RFID readers for chipless 

transponders working under normal conditions are presented, capable to automatically 

identify when a chipless RFID transponder is placed within their interrogation zones and 

proceed to the successful recognition of its embedded identification code. The UWB 

RFID readers are based on the SFM or IR radar principles, and the UWB chipless RFID 

transponders on the scattering properties of their geometries. 

A novel chipless RFID transponder coding technique was derived to improve 

system robustness to imperfections caused by manufacturing, operation and channel 

influence. Relevant works investigate the implementation of peaks/dips detection 

techniques, mostly providing a proof of concept by decoding just one or two chipless 

transponders and focusing their analysis to small sections of their frequency response. 

This work focuses on exploiting the differences of the overall backscattered frequency 

signature of each chipless transponders for a specified frequency band and under normal 

working conditions (e.g. chipless transponders held by hand). 

Several UWB chipless RFID transponders prototypes, fabricated using low-cost 

materials like aluminum or copper on bond paper substrate are presented and their 

frequency responses compared against their silver-ink printed electronics manufactured 

counterparts. The developed procedure could serve to produce prototypes in a very short 

period and evaluate the design performance at a very low cost. 
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The peak magnitude and frequency dip depth terms are introduced, to evaluate the 

performance and be able to compare between different UWB chipless RFID transponders 

frequency responses. The first one, as a measure of the reflectivity and the second one of 

the resonance capabilities. 

The SFM RFID system prototype consists of a reader frond-end fabricated using 

high-performance off-the-shelf components, a personal computer with the decoding 

algorithms and eight different chipless transponders. The chipless RFID transponders are 

based on five concentric ring resonators, manufactured with silver-ink based printed 

electronics technology on PET, are differential-coded using changing the ring dimensions 

to obtain different frequency responses, and their identification codes successfully 

automatically retrieved when placed by hand sequentially at the stepped frequency 

reader’s interrogation zone up to a 36 cm distance. 

The pulse RFID system prototype is composed of a commercially available impulse 

radio radar, a personal computer with the pulse control and decoding algorithms and five 

different chipless transponders. The chipless transponder is based on concentric octagons, 

manufactured with silver-ink based printed electronics technology on PET, and 

differential-coded coded by short-circuiting their resonators to generate different 

frequency responses, and their identification codes successfully automatically retrieved 

when placed by hand sequentially at the impulse radio reader’s interrogation zone up to 

a 50 cm distance. 

The primary goal of this work was to introduce the functionality of an UWB RFID 

system with chipless transponders, cheap enough to replace the current barcode 

technology, capable of automatically detecting different chipless transponders when 

placed at its interrogation zone. UWB design specifications were employed to design or 

choose the readers architectures, and chipless RFID transponders based on scatter 

structures suitable for mass production techniques are used. The systems demonstrated 

that different UWB radar architectures can be used to detect and identify several chipless 

RFID transponders. Nevertheless, due to the multi-disciplinary nature of the RFID 

systems with chipless transponders, several further research opportunities can be 

identified: 
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Improvement in the mass production technology to fabricate UWB chipless RFID 

transponders with low-cost metals like aluminum or copper, either by printing technology 

or other alternatives, with enhanced RF performance. 

Improve the detection performance, set the proper detection boundaries for the 

different identification codes, to reduce the probability of error detection by implementing 

conventional hypothesis testing criteria. 

Development of more robust and structured coding techniques, to improve the 

detection performance of the system, as well as to overcome external effects like 

transponder tilting, human body, manufacturing imperfections. Furthermore, it is deemed 

necessary to establish the foundations to evaluate the performance of the different coding 

techniques implemented for chipless RFID transponders, to be able to compare between 

different geometries and coding approaches. 

Design and fabrication of an UWB RFID reader fully integrated on a system on 

chip (SoC) solution, aimed to interrogate the UWB chipless RFID transponders, reducing 

in this way cable losses, current system inaccuracies and improving the link budget, 

including the necessary hardware architecture to implement features like multi-detection, 

multi-tracking and positioning of UWB chipless RFID transponders. And in this way, 

reduced the detection time to less than 1 second.
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Appendix A 

RCS Calculation  

The RCS calculations are performed considering the calibration technique and 

equation described in [34]. The technique is derived here for further understanding of the 

process. First consider the radar range equation described in section 5.1.1 for a chipless 

RFID transponder located a distance 𝑟 from the antennas and 𝑅𝐶𝑆  

 
𝑃

𝑃
=  

𝐺 𝐺 𝜆

(4𝜋) 𝑟
𝑅𝐶𝑆  (A.1) 

The objective is to calculate the chipless RFID transponder 𝑅𝐶𝑆  in terms of the 

measured scattering parameters measured with the VNA. To do so, the transmit and 

received power is expressed first in terms of the signal transmitted and received voltages 

𝑉  and 𝑉  respectively for the same impedance 𝑍 

 

𝑉
𝑍

𝑉
𝑍

=  
𝐺 𝐺 𝜆

(4𝜋) 𝑟
𝑅𝐶𝑆  (A.2) 

cancelling the impedance terms gives 

 
𝑉

𝑉
=  

𝐺 𝐺 𝜆

(4𝜋) 𝑟
𝑅𝐶𝑆  (A.3) 

using the transmission line equivalent circuit described in section 4.1.3, and setting  

𝑉  = 𝑉  and 𝑉 =  𝑉  , the relation  can be expressed in terms of the scattering 

parameter 𝑆  by 

 𝑆∗ =  
𝐺 𝐺 𝜆

(4𝜋) 𝑟
𝑅𝐶𝑆  (A.4) 

which means, by obtaining the 𝑆∗  of a chipless transponder located a distance 𝑟 from 

the antennas, and squaring its value, the power losses including the RCS can be 

calculated. However, the signal path loss and the gain of the antennas still need to be 

assessed to cancel them from the equation and be able to obtain the RCS. Thus, another 
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object which RCS is well known, like a metal plate, is used as a reference and placed at 

the same distance 𝑟 from the antennas, to obtain its 𝑆∗ , and be able to experience the 

same path loss and antennas gain as the chipless RFID transponder. The reference plate’s 

𝑆∗  can also be expressed in terms of its 𝑅𝐶𝑆  by 

 𝑆∗ =  
𝐺 𝐺 𝜆

(4𝜋) 𝑟
𝑅𝐶𝑆  (A.5) 

Then, an expression independent of the pathloss and antenna gains can be obtained 

dividing the chipless RFID transponder 𝑆∗  by the reference plate 𝑆∗  

 
𝑆∗

𝑆∗ =  

𝐺 𝐺 𝜆
(4𝜋) 𝑟

𝑅𝐶𝑆

𝐺 𝐺 𝜆
(4𝜋) 𝑟

𝑅𝐶𝑆
 (A.6) 

the relation becomes 

 
𝑆∗

𝑆∗ =  
𝑅𝐶𝑆

𝑅𝐶𝑆
 (A.7) 

as the reference plate RCS  is well known, the RCS  can be simply calculated by  

 

 𝑅𝐶𝑆 =  
𝑆∗

𝑆∗ 𝑅𝐶𝑆  (A.8) 

nevertheless, as explained in chapter 6, the desired signal 𝑆∗  is influenced by the noisy 

channel 𝑆 , and they cannot be measured directly, the measured received signal 𝑆  

by de VNA is indeed composed of the desired signal 𝑆∗  and the noisy channel 

contribution 𝑆  

 𝑆 = 𝑆∗ + 𝑆  (A.9) 

Therefore, to be able to calculate the 𝑅𝐶𝑆 , three different measurements need to be 

conducted: 

1. The received signal measurement of the chipless RFID transponder 𝑆  

2. A measurement of the reference plate 𝑆 , and 
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3. The noisy channel, which is measured by obtaining the response without 

any object 

And finally, the 𝑅𝐶𝑆  can be calculated by 

 𝑅𝐶𝑆 =  
𝑆 − 𝑆

𝑆  −  𝑆
𝑅𝐶𝑆  (A.10) 



 

175 
 

Measurement Setups 

Fig. A.1 shows the measurement setup to obtain the UWB chipless RFID 

transponders frequency response, It is composed of the UWB chipless RFID transponders 

support, two Chengdu AINFO Inc. LB-OH-159-10-C-SF horn antennas designed to 

operate between 4 and 8 GHz, with an average gain of 10 dBi, and separated 4 cm from 

each other, and an Anritsu Vector Network Analyzer (VNA) model 37397D. The UWB 

chipless RFID transponders are placed on its support separated a distance 𝑥 from the horn 

antennas.  

 

Fig. A.2 shows the measurement setup to obtain the UWB chipless RFID 

transponders frequency response. It is composed of the UWB chipless RFID tags support, 

two vertically polarized horn antennas (Rohde & Schwarz HF906) separated 40 cm from 

each other and capable to operate in the frequency range from 1 to 18 GHz with an 

average gain of 10 dBi, and an Anritsu Vector Network Analyzer (VNA) model 

MS46122A. The UWB chipless RFID transponders are placed on its support separated a 

distance D from the horn antennas.  

Fig. A.3 shows the measurement setup to obtain the UWB chipless RFID 

transponders frequency response. It is composed of the UWB chipless RFID tags support, 

two vertically polarized horn antennas (Rohde & Schwarz HF906) separated 40 cm from 

 

Fig. A.1: VNA 37397D with Chengdu antennas measurement setup 

VNA 

Horn Antennas 

UWB chipless RFID transponders support 

UWB chipless RFID transponders  
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each other and capable to operate in the frequency range from 1 to 18 GHz with an 

average gain of 10 dBi, and an Anritsu Vector Network Analyzer (VNA) model 37397D. 

The UWB chipless RFID transponders are placed on its support separated a distance 𝑥 

from the horn antennas.  

Fig. A.4 shows the measurement setup to obtain the UWB chipless RFID 

transponders frequency response. It is composed of two tripods to support the UWB 

chipless RFID transponders, two Chengdu AINFO Inc. LB-OH-159-10-C-SF horn 

    

Fig. A.2: VNA MS46122A with Rohde & Schwarz antennas measurement setup 
 

    

Fig. A.3: VNA 37397D with Rohde & Schwarz antennas measurement setup 
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antennas designed to operate between 4 and 8 GHz, with an average gain of 10 dBi, and 

the Novelda radar.  

a)                                                     b) 
 

Fig. A.4: IR radar measurement setup: a) top view, b) rear view 
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Appendix B 

Resistance and Skin Depth Calculation 

To be able to understand the influence of the printing process in the RF performance 

of the chipless RFID transponders based on concentric circles, a methodology to estimate 

the resistance and conductivity values from the two-points measured direct-current (DC) 

resistance of each of its concentric rings is required and developed in this section.  

Starting with the resistance definition of a rectangular strip of length 𝑙, width 

𝑤, thickness 𝑇, and conductivity 𝜅, provided that a DC current flows through it, is given 

by [86]  

 𝑅 =  
𝑙

𝜅𝑤𝑇
 (B.1) 

The UWB chipless RFID tags have a ring like geometry with no starting or ending 

point, considering one ring with outer circumference of 2𝜋𝑟 and width 𝑤, an arbitrary 

pair of points need to be chosen to measure a DC resistance with a multimeter, and from 

there estimate the ring total resistance. For that purpose, taking into consideration the 

symmetry of a ring like structure, the resistance dependency on the length, as expressed 

by Eq. (B.1, and assuming that the printed metal strips are homogeneous throughout the 

whole ring structure. Two points separated at equal lengths (180°) from each other are 

picked to locate the multimeter’s probes, as illustrated in Fig. B.1, at these points, the 

string ring is divided in two sections of equal lengths, outer circumferences of 𝜋𝑟 and 

therefore equal resistances. Furthermore, from the multimeter’s perspective, to measure 

the DC resistance R  at these two points, will be equivalent to measure the resistance 

of two resistances in parallel, as also illustrated by the equivalent circuit in Fig. B.1a. 

Therefore, the measured resistance R  can be represented by  

 R =  
R R

R +  R
 (B.2) 

where R  = R  = R are the resistances at both sides of the probes and then the R  can 

be expressed as 
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 R =  
𝑅

2
 (B.3) 

and each section resistance is given by 

 𝑅 =  2R  (B.4) 

if the strip ring is straightened as shown in Fig. B.1b, the whole strip ring resistance 𝑅  

is the result of its serial circuit equivalent, which means four times the multimeters 

measured DC resistance 

 𝑅 = 2𝑅 =  4R =  
𝑙

𝜅𝑤𝑇
 (B.5) 

 

 
a) 

 
b) 

Fig. B.1: UWB chipless RFID transponder two-point resistance: a) measurement 

schematic, and equivalent circuit b) straightened strip ring, equivalent circuit 

 

2𝜋𝑟

2𝜋(𝑟 −  𝑤)

𝑤

𝜋(2𝑟 − 𝑤)

𝑤

𝑅 𝑅

Straightened 
strip ring

Equivalent
strip
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Furthermore, straighten the ring will produce an isosceles trapezoid with parallel 

sides length of 2π(𝑟 −  𝑤) and 2π𝑟, which has the same superficial area as a strip of 

length 𝑙 =  π(2r +  w). The conductivity 𝜅 can be then approximated by 

 𝜅 =  
π(2r +  w)

4R 𝑤𝑇
 (B.6) 

 

The required skin depth to dissipate 1/𝑒 of the power, is calculated by  

 

 δ =  
1

κfμ
  (B.7) 
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Appendix C 

List of Videos 

Test Videos 

Videos elaborated by the author: 

IR Radar - Anoeta Soccer Stadium Tickets 

IR Radar - Anoeta Soccer Stadium Test Session PET 

IR Radar - COD2 

IR Radar - Dipole, Circular, Conical 

IR Radar - Double Dipoles 

IR Radar - Greece Airport Paper Tickets 

IR Radar - Metro Bilbao Plastic Cards 

SFM Reader - CR 

Consortium Videos 

Pilot videos elaborated by the eVACUATE consortium of the system 

demonstrations in which the author participated: 

eVACUATE EU project trials at Athens International Airport 

eVACUATE EU project trials at Metro Bilbao – RFID 

eVACUATE EU project trials at Metro Bilbao 

eVACUATE EU project trials at STX France 
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Curriculum Vitae 

Professional experience 

 

02/2018 – 12/2018 Ph.D. Thesis in RFID with chipless transponders 

10/2017 – 01/2018 Alfatraining Bildungszentrum GmbH, Dresden, Germany 

Position Professional qualification 

Duties  Java SE 8, final grade: 100/100  
 C++ / Microsoft C++ .NET, final grade: 95/100 

 

06/2017 – 09/2017 Ph.D. Thesis in RFID with chipless transponders 

07/2013 – 05/2017 Technische Universität Dresden, Dresden, Germany 

Position Research Associate – Chair for Circuit Design and 
Network Theory 

Duties  Research and development of an ultra-wideband (UWB) 
transceiver system with chipless transponders for the 
automatic, non-contact identification of objects and living 
beings with radio waves (RFID) 

 Development of algorithms with MATLAB to be 
implemented on stepped frequency modulated (SFM) and 
pulse (IR) radar front ends for the detection and decoding 
of UWB chipless RFID transponders 

 Assembly with standard components of a SFM UWB 
reader for chipless RFID transponders (4 - 6 GHz)) 

 Design and modelling of chipless RFID transponders with 
CST Microwave Studio (2 - 11 GHz) 

 Measurement of the frequency response of chipless RFID 
transponders using vector network analyzers 

 FPGA programming with Verilog and ISE Design Suite 
 Record the research results and contribute to their 

publications 
 Presentation of project results in meetings and 

conferences 

12/2011 – 06/2013 Job seeking 

09/2007 – 03/2009 Telefónica Celular S. A., Tegucigalpa, Honduras 

Position   Mobile network quality head 

Duties  Manage department and overall expectations pertaining 
to setting accurate GSM/WCDMA network key 
performance indicators, costs and resources 

 Directly supervise the network design and optimization 
team leaders, engineers and drive testers including the 
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preparation and delivery of staff performance evaluations 
and career 

 Ensure delivery against the department goals and 
objectives, i.e. Meeting key performance indicators 
targets and coordinating overall network design and 
optimization tasks 

 Implements ongoing quality improvement processes 
working with interdepartmental teams 

 Develop and manage the department's metrics for 
performance improvement of all teams 

 Establish and maintain policy for documentation of all 
processes 

 Review documentation before sending it out to external 
customers 

 

03/2006 – 08/2007 Telefónica Celular S. A., Tegucigalpa, Honduras 

Position Mobile network senior optimization engineer 

Duties  Coordinate all the Network optimization tasks to meet the 
key performance indicators goals 

 Maintain the GSM radio network performance, such as: 
Accessibility, retainability, mobility and service integrity 

 Analyze the key performance indicators to investigate and 
solve the network quality problems 

 Plan and implement frequency reuse plans to achieve a 
high-quality network with minimum interference 

 Plan and implement neighboring cells plans to achieve a 
high call retainability within the network 

 Implement new radio access network features and 
database parameter tuning 

 Audit and set the radio and core network parameters 
 

09/2004 – 02/2006 Telefónica Celular S. A., Tegucigalpa, Honduras 

Position   Mobile network traffic planning and statistics engineer 

Duties  Collect and analyze relevant information to build the 
demand model of the GSM network  

 Develop optimization techniques for what-if analysis of 
network demand and topology 

 Plan the GSM Network capacity expansion to meet the 
projected traffic growth 

 Collaborate with other team members to identify, develop 
and implement base-lining and forecasting methods 

 Solicit network nodes capacity expansions when needed, 
to maintain the target congestion levels 

 Deliver overall network utilization reports for monitoring 
the traffic and efficiency of the network  

 Provide network statistics as require 
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Academic qualifications 

 

2009 – 2011 Universität Kassel, Germany 

M. Sc. Electrical Communication Engineering 

Final grade: 1.3 (very good) 

1999 – 2006 Universidad Nacional Autónoma de Honduras, 

Honduras 

Ingeniero Eléctrico Industrial  

Final grade: 80% (good) 

 

Skills and competences 

 

Languages German:     Good  

English:      Fluent 

Spanish:     Mother tongue 

Social skills and 

competences 

Teamwork, willingness to help, tolerance, intercultural 

competence  

IT-skills  

and competences 

C++/ Microsoft Visual C++ .NET, Java SE 8, MATLAB, 

Verilog, Altium PCB Designer, CST Microwave Studio, 

Microsoft Office, Ericsson TEMS, Aircom Enterprise, 

Business Object  

Equipment Vector Network Analyzer, Spectrum Analyzer, Ambios 

Technology surface profilometer, SENTECH SENpro 

spectroscopic ellipsometer, Zygo NewView 5000 white ligth 

interferometer, TePla 200-G Plasma ashing, Oxford 

Plasmalab 80 PECVD, Pfeiffer PLS 500 depositio, Karl Süss 

MA4 mask aligner 

 

Awards 

 

Best student paper  

award 

2016, IEEE International Conference on Ubiquitous 

Wireless    Broadband (ICUWB) 
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Academic excellence 

award 

2001, Universidad Nacional Autónoma de Honduras 

Academic excellence 

award 

2000, Universidad Nacional Autónoma de Honduras 

Best student in integral 

calculus award    

2000, Universidad Nacional Autónoma de Honduras 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


