110 research outputs found

    SMT-based Abstract Temporal Planning

    Get PDF
    These are the proceedings of the International Workshop on Petri Nets and Software Engineering (PNSE’14) in Tunis, Tunisia, June 23–24, 2014. It is a co-located event of Petri Nets 2014, the 35th international conference on Applications and Theory of Petri Nets and Concurrency and ACSD 2014, the 14th International Conference on Application of Concurrency to System Design.An abstract planning is the first phase of the web service composition in the PlanICS framework. A user query specifies the initial and the expected state of a plan in request. The paper extends PlanICS with a module for temporal planning, by extending the user query with an LTL_k-X formula specifying temporal aspects of world transformations in a plan. Our solution comes together with an example, an implementation, and experimental results

    Model Checking and Model-Based Testing : Improving Their Feasibility by Lazy Techniques, Parallelization, and Other Optimizations

    Get PDF
    This thesis focuses on the lightweight formal method of model-based testing for checking safety properties, and derives a new and more feasible approach. For liveness properties, dynamic testing is impossible, so feasibility is increased by specializing on an important class of properties, livelock freedom, and deriving a more feasible model checking algorithm for it. All mentioned improvements are substantiated by experiments

    Machine-Readable Privacy Certificates for Services

    Full text link
    Privacy-aware processing of personal data on the web of services requires managing a number of issues arising both from the technical and the legal domain. Several approaches have been proposed to matching privacy requirements (on the clients side) and privacy guarantees (on the service provider side). Still, the assurance of effective data protection (when possible) relies on substantial human effort and exposes organizations to significant (non-)compliance risks. In this paper we put forward the idea that a privacy certification scheme producing and managing machine-readable artifacts in the form of privacy certificates can play an important role towards the solution of this problem. Digital privacy certificates represent the reasons why a privacy property holds for a service and describe the privacy measures supporting it. Also, privacy certificates can be used to automatically select services whose certificates match the client policies (privacy requirements). Our proposal relies on an evolution of the conceptual model developed in the Assert4Soa project and on a certificate format specifically tailored to represent privacy properties. To validate our approach, we present a worked-out instance showing how privacy property Retention-based unlinkability can be certified for a banking financial service.Comment: 20 pages, 6 figure

    TOOL-ASSISTED VALIDATION AND VERIFICATION TECHNIQUES FOR STATE-BASED FORMAL METHODS

    Get PDF
    To tackle the growing complexity of developing modern software systems that usually have embedded and distributed nature, and more and more involve safety critical aspects, formal methods (FMs) have been affirmed as an efficient approach to ensure the quality and correctness of the design, that permits to discover errors yet at the early stages of the system development. Among the several FMs available, some of them can be described as state-based, since they describe systems by using the notions of state and transitions between states. State-based FMs are sometimes preferred since they produce specifications that are more intuitive, being the notions of state and transition close to the notions of program state and program execution that are familiar to any developer. Moreover, state-based FMs are usually executable and permit to be simulated, so having an abstraction of the execution of the system under development. The aim of the thesis is to provide tool-assisted techniques that help the adoption of state-based FMs. In particular we address four main goals: 1) identifying a process for the development of an integrated framework around a formal method. The adoption of a formal method is often prevented by the lack of tools to support the user in the different development activities, as model editing, validation, verification, etc. Moreover, also when tools are available, they have usually been developed to target only one aspect of the system development process. So, having a well-engineered process that helps in the development of concrete notations and tools for a FM can make FMs of practical application. 2) promoting the integration of different FMs. Indeed, having only one formal notation, for doing different formal activities during the development of the system, is preferable than having a different notation for each formal activity. Moreover such notation should be high-level: working with high level notations is definitely easier than working with low-level ones, and the produced specifications are usually more readable. This goal can be seen as a sub-goal of the first goal; indeed, in a framework around a formal method, it should also be possible to integrate other formal methods that better address some particular formal activities. 3) helping the user in writing correct specifications. The basic assumption of any formal technique is that the specification, representing the desired properties of the system or the model of the system, is correct. However, in case the specification is not correct, all the verification activities based on the specification produce results that are meaningless. So, validation techniques should assure that the specification reflects the intended requirements; besides traditional simulation (user-guided or scenario-based), also model review techniques, checking for common quality attributes that any specification should have, are a viable solution. 4) reducing the distance between the formal specification and the actual implementation of the system. Several FMs work on a formal description of the system which is assumed to reflect the actual implementation; however, in practice, the formal specification and the actual implementation could be not conformant. A solution is to obtain the implementation, through refinements steps, from the formal specification, and proving that the refinements steps are correct. A different viable solution is to link the implementation with its formal specification and check, during the program execution, if they are conformant

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Actes des Cinquièmes journées nationales du Groupement De Recherche CNRS du Génie de la Programmation et du Logiciel

    Get PDF
    National audienceCe document contient les actes des Cinquièmes journées nationales du Groupement De Recherche CNRS du Gé}nie de la Programmation et du Logiciel (GDR GPL) s'étant déroulées à Nancy du 3 au 5 avril 2013. Les contributions présentées dans ce document ont été sélectionnées par les différents groupes de travail du GDR. Il s'agit de résumés, de nouvelles versions, de posters et de démonstrations qui correspondent à des travaux qui ont déjà été validés par les comités de programmes d'autres conférences et revues et dont les droits appartiennent exclusivement à leurs auteurs

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency
    corecore