43 research outputs found

    Coordination Control of Distributed Spacecraft System

    Get PDF

    Review of advanced guidance and control algorithms for space/aerospace vehicles

    Get PDF
    The design of advanced guidance and control (G&C) systems for space/aerospace vehicles has received a large amount of attention worldwide during the last few decades and will continue to be a main focus of the aerospace industry. Not surprisingly, due to the existence of various model uncertainties and environmental disturbances, robust and stochastic control-based methods have played a key role in G&C system design, and numerous effective algorithms have been successfully constructed to guide and steer the motion of space/aerospace vehicles. Apart from these stability theory-oriented techniques, in recent years, we have witnessed a growing trend of designing optimisation theory-based and artificial intelligence (AI)-based controllers for space/aerospace vehicles to meet the growing demand for better system performance. Related studies have shown that these newly developed strategies can bring many benefits from an application point of view, and they may be considered to drive the onboard decision-making system. In this paper, we provide a systematic survey of state-of-the-art algorithms that are capable of generating reliable guidance and control commands for space/aerospace vehicles. The paper first provides a brief overview of space/aerospace vehicle guidance and control problems. Following that, a broad collection of academic works concerning stability theory-based G&C methods is discussed. Some potential issues and challenges inherent in these methods are reviewed and discussed. Then, an overview is given of various recently developed optimisation theory-based methods that have the ability to produce optimal guidance and control commands, including dynamic programming-based methods, model predictive control-based methods, and other enhanced versions. The key aspects of applying these approaches, such as their main advantages and inherent challenges, are also discussed. Subsequently, a particular focus is given to recent attempts to explore the possible uses of AI techniques in connection with the optimal control of the vehicle systems. The highlights of the discussion illustrate how space/aerospace vehicle control problems may benefit from these AI models. Finally, some practical implementation considerations, together with a number of future research topics, are summarised

    Advances in Spacecraft Systems and Orbit Determination

    Get PDF
    "Advances in Spacecraft Systems and Orbit Determinations", discusses the development of new technologies and the limitations of the present technology, used for interplanetary missions. Various experts have contributed to develop the bridge between present limitations and technology growth to overcome the limitations. Key features of this book inform us about the orbit determination techniques based on a smooth research based on astrophysics. The book also provides a detailed overview on Spacecraft Systems including reliability of low-cost AOCS, sliding mode controlling and a new view on attitude controller design based on sliding mode, with thrusters. It also provides a technological roadmap for HVAC optimization. The book also gives an excellent overview of resolving the difficulties for interplanetary missions with the comparison of present technologies and new advancements. Overall, this will be very much interesting book to explore the roadmap of technological growth in spacecraft systems

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems

    Spacecraft nonlinear attitude control with bounded control input

    Get PDF
    The research in this thesis deals with nonlinear control of spacecraft attitude stabilization and tracking manoeuvres and addresses the issue of control toque saturation on a priori basis. The cascaded structure of spacecraft attitude kinematics and dynamics makes the method of integrator backstepping preferred scheme for the spacecraft nonlinear attitude control. However, the conventional backstepping control design method may result in excessive control torque beyond the saturation bound of the actuators. While remaining within the framework of conventional backstepping control design, the present work proposes the formulation of analytical bounds for the control torque components as functions of the initial attitude and angular velocity errors and the gains involved in the control design procedure. The said analytical bounds have been shown to be useful for tuning the gains in a way that the guaranteed maximum torque upper bound lies within the capability of the actuator and, hence, addressing the issue of control input saturation. Conditions have also been developed as well as the generalization of the said analytical bounds which allow for the tuning of the control gains to guarantee prescribed stability with the additional aim that the control action avoids reaching saturation while anticipating the presence of bounded external disturbance torque and uncertainties in the spacecraft moments of inertia. Moreover, the work has also been extended blending it with the artificial potential function method for achieving autonomous capability of avoiding pointing constraints for the case of spacecraft large angle slew manoeuvres. The idea of undergoing such manoeuvres using control moment gyros to track commanded angular momentum rather than a torque command has also been studied. In this context, a gimbal position command generation algorithm has been proposed for a pyramid-type cluster of four single gimbal control moment gyros. The proposed algorithm not only avoids the saturation of the angular momentum input from the control moment gyro cluster but also exploits its maximum value deliverable by the cluster along the direction of the commanded angular momentum for the major part of the manoeuvre. In this way, it results in rapid spacecraft slew manoeuvres. The ideas proposed in the thesis have also been validated using numerical simulations and compared with results already existing in the literature

    Dynamics and Control of Spacecraft Rendezvous By Nonlinear Model Predictive Control

    Get PDF
    This doctoral research investigates the fundamental problems in the dynamics and control of spacecraft rendezvous with a non-cooperative tumbling target. New control schemes based on nonlinear model predictive control method have been developed and validated experimentally by ground-based air-bearing satellite simulators. It is focused on the autonomous rendezvous for a chaser spacecraft to approach the target in the final rendezvous stage. Two challenges have been identified and investigated in this stage: the mathematical modeling of the targets tumbling motion and the constrained control scheme that is solvable in an on-line manner. First, the mathematical description of the tumbling motion of the target spacecraft is proposed for the chaser spacecraft to rendezvous with the target. In the meantime, the practical constraints are formulated to ensure the safety and avoid collision during the final approaching stage. This set of constraints are integrated into the trajectory planning problem as a constrained optimization problem. Second, the nonlinear model predictive control is proposed to generate the feedback control commands by iteratively solving an open-loop discrete-time nonlinear optimal control problem at each sampling instant. The proposed control scheme is validated both theoretically and experimentally by a custom-built spacecraft simulator floating on a high-accuracy granite table. Computer software for electronic hardware for the spacecraft simulator and for the controller is designed and developed in house. The experimental results demonstrate the effectiveness and advantages of the proposed nonlinear model predictive control scheme in a hardware-in-the-loop environment. Furthermore, a preliminary outlook is given for future extension of the spacecraft simulator with consideration of the robotic arms

    AUTONOMOUS SPACECRAFT RENDEZVOUS WITH A TUMBLING OBJECT: APPLIED REACHABILITY ANALYSIS AND GUIDANCE AND CONTROL STRATEGIES

    Get PDF
    Rendezvous and proximity operations are an essential component of both military and commercial space missions and are rising in complexity. This dissertation presents an applied reachability analysis and develops a computationally feasible autonomous guidance algorithm for the purpose of spacecraft rendezvous and proximity maneuvers around a tumbling object. Recent advancements enable the use of more sophisticated, computation-based algorithms, instead of traditional control methods. These algorithms are desirable for autonomous applications due to their ability to optimize performance and explicitly handle constraints (e.g., safety, control limits). In an autonomous setting, however, some important questions must be answered before an algorithm implementation can be realized. First, the feasibility of a maneuver is addressed by analyzing the fundamental spacecraft relative dynamics. Particularly, a set of initial relative states is computed and visualized from which the desired rendezvous state can be reached (i.e., backward reachability analysis). Second, with the knowledge that a maneuver is feasible, the Model Predictive Control (MPC) framework is utilized to design a stabilizing feedback control law that optimizes performance and incorporates constraints such as control saturation limits and collision avoidance. The MPC algorithm offers a computationally efficient guidance strategy that could potentially be implemented in real-time on-board a spacecraft.http://archive.org/details/autonomousspacec1094560364Major, United States Air ForceApproved for public release; distribution is unlimited

    AAS/GSFC 13th International Symposium on Space Flight Dynamics

    Get PDF
    This conference proceedings preprint includes papers and abstracts presented at the 13th International Symposium on Space Flight Dynamics. Cosponsored by American Astronautical Society and the Guidance, Navigation and Control Center of the Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude dynamics; and mission design

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF
    corecore