140 research outputs found

    Alternative gate dielectrics and application in nanocrystal memory

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Commercialization of germanium based nanocrystal memory

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007.Includes bibliographical references.This thesis explores the commercialization of germanium-based nanocrystal memories. Demand for smaller and faster electronics and embedded systems supports the development of high-density, low-power non-volatile electronic memory devices. Flash memory cells designed for ten years of data retention require the use of a thick tunneling oxide. This compromises writing and reading speed as well as endurance. A smaller device size can be achieved and speed and can be improved by decreasing the oxide thickness. However, significant charge leakage will occur if the oxide is too thin, which will reduce the data retention time dramatically. This imposes a limit to the amount by which the oxide thickness can be decreased in conventional devices. Research has shown that by incorporating nanocrystals in the tunnel oxide, charge traps are created which reduce charge leakage and improve endurance through charge-storage redundancy. By replacing the conventional floating gate memory with one using Si or Ge nanocrystals, the nonvolatile memory exhibits high programming speed with low programming voltage and superior retention time, and yet is compatible with conventional silicon technology. This thesis provides an analysis of competing technologies, an intellectual property analysis, costs modeling as well as ways to improve nanocrystal memories in order to compete with other forms of emerging technologies to replace conventional Flash memories.by Kian Chiew Seow.M.Eng

    Scalable and high-sensitivity readout of silicon quantum devices

    Get PDF
    Quantum computing is predicted to provide unprecedented enhancements in computational power. A quantum computer requires implementation of a well-defined and controlled quantum system of many interconnected qubits, each defined using fragile quantum states. The interest in a spin-based quantum computer in silicon stems from demonstrations of very long spin-coherence times, high-fidelity single spin control and compatibility with industrial mass-fabrication. Industrial scale fabrication of the silicon platform offers a clear route towards a large-scale quantum computer, however, some of the processes and techniques employed in qubit demonstrators are incompatible with a dense and foundry-fabricated architecture. In particular, spin-readout utilises external sensors that require nearly the same footprint as qubit devices. In this thesis, improved readout techniques for silicon quantum devices are presented and routes towards implementation of a scalable and high-sensitivity readout architecture are investigated. Firstly, readout sensitivity of compact gate-based sensors is improved using a high-quality factor resonator and Josephson parametric amplifier that are fabricated separately from quantum dots. Secondly, an integrated transistor-based control circuit is presented using which sequential readout of two quantum dot devices using the same gate-based sensor is achieved. Finally, a large-scale readout architecture based on random-access and frequency multiplexing is introduced. The impact of readout circuit footprint on readout sensitivity is determined, showing routes towards integration of conventional circuits with quantum devices in a dense architecture, and a fault-tolerant architecture based on mediated exchange is introduced, capable of relaxing the limitations on available control circuit footprint per qubit. Demonstrations are based on foundry-fabricated transistors and few-electron quantum dots, showing that industry fabrication is a viable route towards quantum computation at a scale large enough to begin addressing the most challenging computational problems

    Nanocrystals for nanodot memories : ion beam synthesis and electrical studies

    Get PDF
    [no abstract

    Nanodot-based organic memory devices

    Get PDF
    In this study, resistor-type, diode-type, and transistor-type organic memory devices were investigated, aiming at the low-cost plastic integrated circuit applications. A series of solution-processing techniques including spin-coating, inkjet printing, and self-assembly were employed to fabricate these devices. The organic resistive memory device is based on a novel molecular complex film composed of tetracyanoquinodimethane (TCNQ) and a soluble methanofullerene derivative [6,6]-phenyl C61-butyric acid methyl ester (PCBM). It has an Al/molecules/Al sandwich structure. The molecular layer was formed by spin-coating technique instead of expensive vacuum deposition method. The current-voltage characteristics show that the device switches from the initial \u27low\u27 conduction state to \u27high\u27 conduction state upon application of external electric field at room temperature and return to \u27low\u27 conduction state when a high current pulse is applied. The on/off ratio is over 106. Each state has been found to remain stable for more than five months, even after the external electric field is removed. The PCBM nanodots wrapped by TCNQ molecules can form potential wells for charge trapping, and are believed to be responsible for the memory effects. A rewritable diode memory device was achieved in an improved configuration, i.e., ITO-PEDOT:PSS-PCBM/TCNQ-Al, where a semiconductor polymer PEDOT:PSS is used to form p+-N heterojunction with PCBM/TCNQ. It exhibits a diode characteristic (low conductive) before switching to a high-conductive Poole-Frenkel regime upon applying a positive external bias to ITO. The on/off ratio at +1.0 V is up to 105. Simulation results from Taurus-Medici are in qualitative agreement with the experimental results and the proposed charge storage model. The transistor-type memory device is fabricated on a heavily doped n-type silicon (n+-Si) substrate with a 100 nm thick thermally-grown oxide layer. The n+-Si serves as the gate electrode, while the oxide layer functions as the control gate dielectric. Gold nanoparticles as the charge storage units are deposited on the substrate by electrostatic self-assembly method. A self-assembled multilayer of polyelectrolytes, together with a thin spin-coated poly(4-vinyl phenol) layer, covers the gold nanoparticles and separates them from the poly(3-hexyl thiophene) channel. Conducting polymer PEDOT:PSS is inkjet printed to form the source/drain electrodes. The device exhibits significant hysteresis behavior in its Ids-Vgs characteristics. The charge storage in gold nanodots (diameter = 16 nm) was confirmed by comparing with devices having no gold nanoparticles, although the effects of interfacial traps may be also significant. The data retention time of the transistor memory is about 60 seconds, which needs to be further improved. It appears that this is the first demonstration of memory effects in an organic transistor caused by charge storage in metal nanodots in the gate dielectric. Therefore, the approach reported in this work offers a new direction to make low-cost organic transistor memories

    Study of organic molecules and nano-particle/polymer composites for flash memory and switch applications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 205-218).Organic materials exhibit fascinating optical and electronic properties which motivate their hybridization with traditional silicon-based electronics in order to achieve novel functionalities and address scaling challenges of these devices. The application of organic molecules and nano-particle/polymer composites for flash memory and switch applications is studied in this dissertation. Facilitating data storage on individual small molecules as the approach the limits in miniaturization for ultra-high density and low power consumption media may enable orders of magnitude increase in data storage capabilities. A floating gate consisting of a thin film of molecules would provide the advantage of a uniform set of identical nano-structured charge storage elements with high molecular area densities which can result in a several-fold higher density of charge-storage sites as compared to quantum dot (QD) memory and even SONOS devices. Additionally, the discrete charge storage in such nano-segmented floating gate designs limits the impact of any tunnel oxide defects to the charge stored in the proximity of the defect site. The charge retention properties of molecular films was investigated in this dissertation by injecting charges via a biased conductive atomic force microscopy (AFM) tip into molecules comprising the thin films. The Kelvin force microscopy (KFM) results revealed minimal changes in the spatial extent of the charge trapping over time after initial injection. Fabricated memory capacitors show a device durability over 105 program/erase cycles and hysteresis window of up to 12.8 V, corresponding to stored charge densities as high as 5.4x 1013 cm-2, suggesting the potential use of organic molecules in high storage capacity memory cells. Also, these results demonstrate that charge storage properties of the molecular trapping layer can be engineered by rearranging molecules and their a-orbital overlaps via addition of dopant molecules. Finally, the design, fabrication, testing and evaluation of a MEMS switch that employs viscoelastic organic polymers doped with nano-particles as the active material is presented in this dissertation. The conductivity of the nano-composite changes 10,000-fold as it is mechanically compressed. In this demonstration the compressive squeeze is applied with electric actuation. Since squeezing initiates the switching behavior, the device is referred to as a "squitch". The squitch is essentially a new type of FET that is compatible with large area processing with printing or photolithography, on rigid or flexible substrates and can exhibit large on-to-off conduction ratio.by Sarah Paydavosi.Ph.D

    CHARACTERIZATION OF METAL-OXIDE-SEMICONDUCTOR STRUCTURES AT LOW TEMPERATURES USING SELF-ALIGNED AND VERTICALLY COUPLED ALUMINUM AND SILICON SINGLE-ELECTRON TRANSISTORS

    Get PDF
    I incorporate an Al-AlOx-Al single-electron transistor (SET) as the gate of a narrow (~ 100 nm) metal-oxide-semiconductor field-effect transistor (MOSFET). Near the MOSFET channel conductance threshold, Coulomb blockade oscillations are observed at about 20 millikelvin, revealing the formation of a Si SET at the Si/SiO2 interface. Based on a simple electrostatic model, the two SET islands are demonstrated to be closely aligned, with an inter-island capacitance approximately equal to 1/3 of the total capacitance of the Si transistor island, indicating that the Si transistor is strongly coupled to the Al transistor. This vertically-aligned Al and Si SET system is used to characterize the background charges in a MOS structure at low temperature, which may also be sources of decoherence for Si quantum computation. A single charge defect, probably either a single charge trap at the Si/SiO2 interface or a single donor in the Si substrate, is detected and the properties of the defect are studied in this dissertation

    Embedding Logic and Non-volatile Devices in CMOS Digital Circuits for Improving Energy Efficiency

    Get PDF
    abstract: Static CMOS logic has remained the dominant design style of digital systems for more than four decades due to its robustness and near zero standby current. Static CMOS logic circuits consist of a network of combinational logic cells and clocked sequential elements, such as latches and flip-flops that are used for sequencing computations over time. The majority of the digital design techniques to reduce power, area, and leakage over the past four decades have focused almost entirely on optimizing the combinational logic. This work explores alternate architectures for the flip-flops for improving the overall circuit performance, power and area. It consists of three main sections. First, is the design of a multi-input configurable flip-flop structure with embedded logic. A conventional D-type flip-flop may be viewed as realizing an identity function, in which the output is simply the value of the input sampled at the clock edge. In contrast, the proposed multi-input flip-flop, named PNAND, can be configured to realize one of a family of Boolean functions called threshold functions. In essence, the PNAND is a circuit implementation of the well-known binary perceptron. Unlike other reconfigurable circuits, a PNAND can be configured by simply changing the assignment of signals to its inputs. Using a standard cell library of such gates, a technology mapping algorithm can be applied to transform a given netlist into one with an optimal mixture of conventional logic gates and threshold gates. This approach was used to fabricate a 32-bit Wallace Tree multiplier and a 32-bit booth multiplier in 65nm LP technology. Simulation and chip measurements show more than 30% improvement in dynamic power and more than 20% reduction in core area. The functional yield of the PNAND reduces with geometry and voltage scaling. The second part of this research investigates the use of two mechanisms to improve the robustness of the PNAND circuit architecture. One is the use of forward and reverse body biases to change the device threshold and the other is the use of RRAM devices for low voltage operation. The third part of this research focused on the design of flip-flops with non-volatile storage. Spin-transfer torque magnetic tunnel junctions (STT-MTJ) are integrated with both conventional D-flipflop and the PNAND circuits to implement non-volatile logic (NVL). These non-volatile storage enhanced flip-flops are able to save the state of system locally when a power interruption occurs. However, manufacturing variations in the STT-MTJs and in the CMOS transistors significantly reduce the yield, leading to an overly pessimistic design and consequently, higher energy consumption. A detailed analysis of the design trade-offs in the driver circuitry for performing backup and restore, and a novel method to design the energy optimal driver for a given yield is presented. Efficient designs of two nonvolatile flip-flop (NVFF) circuits are presented, in which the backup time is determined on a per-chip basis, resulting in minimizing the energy wastage and satisfying the yield constraint. To achieve a yield of 98%, the conventional approach would have to expend nearly 5X more energy than the minimum required, whereas the proposed tunable approach expends only 26% more energy than the minimum. A non-volatile threshold gate architecture NV-TLFF are designed with the same backup and restore circuitry in 65nm technology. The embedded logic in NV-TLFF compensates performance overhead of NVL. This leads to the possibility of zero-overhead non-volatile datapath circuits. An 8-bit multiply-and- accumulate (MAC) unit is designed to demonstrate the performance benefits of the proposed architecture. Based on the results of HSPICE simulations, the MAC circuit with the proposed NV-TLFF cells is shown to consume at least 20% less power and area as compared to the circuit designed with conventional DFFs, without sacrificing any performance.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    ์‹ ์ถ•์„ฑ ์žˆ๊ณ  ์ฐฉ์šฉ ๊ฐ€๋Šฅํ•œ ํƒ„์†Œ ๋‚˜๋…ธํŠœ๋ธŒ ๊ธฐ๋ฐ˜ ์ „์ž ๊ธฐ์ˆ 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๋ฐ”์ด์˜ค์—”์ง€๋‹ˆ์–ด๋ง์ „๊ณต, 2020. 8. ๊น€๋Œ€ํ˜•.Networks of carbon nanotubes (CNTs) are a promising candidate for use as a basic building block for next-generation soft electronics, owing to their superior mechanical and electrical properties, chemical stability, and low production cost. In particular, the CNTs, which are produced as a mixture of metallic and semiconducting CNTs via chemical vapor deposition, can be sorted according to their electronic types, which makes them useful for specific purposes: semiconducting CNTs can be employed as channel materials in transistor-based applications and metallic CNTs as electrodes. However, the development of CNT-based electronics for soft applications is still at its infant stage, mainly limited by the lack of solid technologies for developing high-performance deformable devices whose electrical performances are comparable to those fabricated using conventional inorganic materials. In this regard, soft CNT electronics with high mechanical stability and electrical performances have been pursued. First, wearable nonvolatile memory modules and logic gates were fabricated by employing networks of semiconducting CNTs as the channel materials, with strain-tolerant device designs for high mechanical stability. The fabricated devices exhibited low operation voltages, high device-to-device uniformity, on/off ratios, and on-current density, while maintaining its performance during ~30% stretching after being mounted on the human skin. In addition, various functional logic gates verified the fidelity of the reported technology, and successful fabrication of non-volatile memory modules with wearable features has been reported for the first time at the time of publication. Second, the networks of semiconducting CNTs were used to fabricate signal amplifiers with a high gain of ~80, which were then used to amplify electrocardiogram (ECG) signals measured using a wearable sensor. At the same time, color-tunable organic light-emitting diodes (CTOLEDs) were developed based on ultra-thin charge blocking layer that controlled the flow of excitons during different voltage regimes. Together, they were integrated to construct a health monitoring platform whereby real-time ECG signals could be detected while simultaneously notifying its user of the ECG status via color changes of the wearable CTOLEDs. Third, intrinsically stretchable CNT transistors were developed, which was enabled by the developments of thickness controllable, vacuum-deposited stretchable dielectric layer and vacuum-deposited metal thin films. Previous works employed strain-tolerant device designs which are based on the use of filamentary serpentine-shaped interconnections, which severely sacrifice the device density. The developed stretchable dielectric, compatible with the current vacuum-based microfabrication technology, exhibited excellent insulating properties even for nanometer-range thicknesses, thereby enabling significant electrical performance improvements such as low operation voltage and high device uniformity/reproducibility, which has not been realized in the most advanced intrinsically stretchable transistors of today.ํƒ„์†Œ ๋‚˜๋…ธํŠœ๋ธŒ๋Š” ๋›ฐ์–ด๋‚œ ์ „๊ธฐ์ , ํ™”ํ•™์ , ๊ทธ๋ฆฌ๊ณ  ๊ธฐ๊ณ„์  ํŠน์„ฑ์„ ๊ฐ–๊ณ  ์žˆ์–ด ์ฐจ์„ธ๋Œ€ ์œ ์—ฐ ์ „์ž์†Œ์ž์˜ ํ•ต์‹ฌ ์†Œ์žฌ ์ค‘ ํ•˜๋‚˜๋กœ ๊ฐ๊ด‘์„ ๋ฐ›๊ณ  ์žˆ์œผ๋‚˜, ์•„์ง๊นŒ์ง€ ์ด๋ฅผ ์ด์šฉํ•œ ์‹ค์šฉ์ ์ธ ์œ ์—ฐ ์ „์ž์†Œ์ž์˜ ๊ฐœ๋ฐœ์€ ์‹คํ˜„๋˜์ง€ ์•Š๊ณ  ์žˆ๋‹ค. ์ด๋Š” ํƒ„์†Œ ๋‚˜๋…ธํŠœ๋ธŒ์˜ ์ „๊ธฐ์  ํŠน์„ฑ๋Œ€๋กœ ์™„๋ฒฝํžˆ ๋ถ„๋ฅ˜ํ•ด ๋‚ผ ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ , ํƒ„์†Œ ๋‚˜๋…ธํŠœ๋ธŒ๋ฅผ ์†Œ์ž์˜ ์›ํ•˜๋Š” ์œ„์น˜์— ์ •ํ™•ํžˆ ์›ํ•˜๋Š” ์–‘๋งŒํผ ๋„คํŠธ์›Œํฌ ํ˜•ํƒœ ํ˜น์€ ์ •๋ ฌ๋œ ํ˜•ํƒœ๋กœ ์ฆ์ฐฉํ•˜๋Š” ๊ธฐ์ˆ , ๊ทธ๋ฆฌ๊ณ  ์œ ์—ฐ ์ „์ž์†Œ์ž๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ๋‹ค๋ฅธ ๋ฌผ์งˆ๋“ค์˜ ๊ฐœ๋ฐœ ๊ธฐ์ˆ ์˜ ๋ถ€์žฌ ๋•Œ๋ฌธ์ด๋‹ค. ์ง€๋‚œ 10์—ฌ๋…„๊ฐ„ ํ•ด๋‹น ๊ธฐ์ˆ ๋“ค์€ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์—ฐ๊ตฌ๋˜์–ด์ง€๊ณ  ์žˆ์œผ๋‚˜, ํƒ„์†Œ ๋‚˜๋…ธํŠœ๋ธŒ๋ฅผ ํ™œ์šฉํ•œ ์šฐ์ˆ˜ํ•œ ์œ ์—ฐ ์ „์ž์†Œ์ž ๊ฐœ๋ฐœ์„ ์œ„ํ•œ ํ•ต์‹ฌ ๊ธฐ์ˆ ๋“ค์˜ ๋ฐœ์ „์€ ์•„์ง ์ดˆ๊ธฐ ๋‹จ๊ณ„์— ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด ๋…ผ๋ฌธ์„ ํ†ตํ•ด ํƒ„์†Œ ๋‚˜๋…ธํŠœ๋ธŒ๋ฅผ ์œ ์—ฐ ์ „์ž์†Œ์ž์— ์ ์šฉ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์„ ์†Œ๊ฐœํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ฒซ๋ฒˆ์งธ๋กœ ํƒ„์†Œ ๋‚˜๋…ธํŠœ๋ธŒ์™€ ์œ ์—ฐ ์ „์ž์†Œ์ž์˜ ์†Œ์ž ๋””์ž์ธ์„ ์ด์šฉํ•˜์—ฌ ํ”ผ๋ถ€์œ„์— ์ฆ์ฐฉ ๊ฐ€๋Šฅํ•œ ๋น„ํœ˜๋ฐœ์„ฑ ๋ฉ”๋ชจ๋ฆฌ ์†Œ์ž๋ฅผ ์ œ์ž‘ํ•˜์˜€๊ณ , ํ•ด๋‹น ๊ธฐ์ˆ ์„ ์ด์šฉํ•˜์—ฌ ํ”ผ๋ถ€์œ„์—์„œ ์•ˆ์ „ํ•˜๊ฒŒ ๋™์ž‘ํ•  ์ˆ˜ ์žˆ๋Š” ๋‹ค์–‘ํ•œ ๊ธฐ์ดˆ ํšŒ๋กœ๋“ค์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ํƒ„์†Œ ๋‚˜๋…ธํŠœ๋ธŒ ๊ธฐ๋ฐ˜ ๋ฉ”๋ชจ๋ฆฌ ์ „์ž ์†Œ์ž ๋ฐ ํšŒ๋กœ๋Š” ๋‹ค์–‘ํ•œ ์™ธ๋ถ€ ์‘๋ ฅ์ด ๊ฐ€ํ•ด์ ธ๋„ ์•ˆ์ •์ ์œผ๋กœ ๋™์ž‘์„ ํ•˜์˜€๊ณ , ๊ฐœ๋ฐœ๋œ ๊ธฐ์ˆ ์„ ํ†ตํ•ด ๋ณด๋‹ค ์‹ค์šฉ์ ์ธ ํƒ„์†Œ ๋‚˜๋…ธํŠœ๋ธŒ ๊ธฐ๋ฐ˜ ์œ ์—ฐ ์ „์ž ์†Œ์ž์˜ ์ œ์ž‘ ์กฐ๊ฑด์„ ํ™•๋ฆฝํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋‘๋ฒˆ์งธ๋กœ ์œ„์— ๊ฐœ๋ฐœ๋œ ๊ธฐ์ˆ ์„ ๋ฐ”ํƒ•์œผ๋กœ, ๋ณด๋‹ค ๋ณต์žกํ•œ ํƒ„์†Œ ๋‚˜๋…ธํŠœ๋ธŒ ๊ธฐ๋ฐ˜ ์œ ์—ฐ ํšŒ๋กœ ๋ฐ ๊ตฌ๋™์ „์••์— ๋”ฐ๋ผ ๋ฐœ๊ด‘์ƒ‰์ด ๋ณ€ํ™˜ํ•˜๋Š” ์ƒ‰๋ณ€ํ™˜ ์†Œ์ž๋ฅผ ์ œ์ž‘ํ•˜์—ฌ ํ•ด๋‹น ์†Œ์ž๋“ค์ด ํ”ผ๋ถ€์œ„์— ๋ถ€์ฐฉ๋˜์–ด ์ž˜ ์ž‘๋™๋˜๋„๋ก ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด ๋‘ ๊ฐ€์ง€ ์›จ์–ด๋Ÿฌ๋ธ” ์ „์ž์†Œ์ž๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์‹ฌ์ „๋„๋ฅผ ์ธก์ •ํ•˜์—ฌ ํƒ„์†Œ ๋‚˜๋…ธํŠœ๋ธŒ ๊ธฐ๋ฐ˜ ์ „์ž์†Œ์ž๋ฅผ ํ†ตํ•ด ํ•ด๋‹น ์‹ ํ˜ธ๋ฅผ ์ฆํญ์‹œํ‚ค๊ณ , ์‹ ํ˜ธ์˜ ์ƒํƒœ๋ฅผ ์ƒ‰๋ณ€ํ™˜ ์†Œ์ž๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋Š” ์‹ฌ์ „๋„ ๋ชจ๋‹ˆํ„ฐ ์‹œ์Šคํ…œ์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์„ธ๋ฒˆ์งธ๋กœ ์ง„๊ณต ์ฆ์ฐฉ์ด ๊ฐ€๋Šฅํ•œ ์œ ์—ฐ ์ ˆ์—ฐ์ฒด๋ฅผ ๊ฐœ๋ฐœํ•˜์—ฌ, ๊ธฐ์กด์˜ ์œ ์—ฐ ์ „์ž์†Œ์ž๋“ค์ด ๊ฐ€์ง€๊ณ  ์žˆ๋˜ ๊ทน๋ช…ํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜์˜€๋‹ค (๋†’์€ ๊ตฌ๋™ ์ „์••, ๋‚ฎ์€ ์ง‘์ ๋„, ๋Œ€๋ฉด์  ์†Œ์ž ์„ ๋Šฅ ๊ท ์ผ๋„ ๋“ฑ). ๊ธฐ์กด์˜ ์•ก์ƒ ๊ธฐ๋ฐ˜ ์ฆ์ฐฉ์„ ์œ„์ฃผ๋กœ ํ•œ ์œ ์—ฐ ์ „์ž ์†Œ์ž๋“ค์€ ๋ฌด๊ธฐ๋ฌผ์งˆ ๊ธฐ๋ฐ˜ ์ „์ž์†Œ์ž ๋Œ€๋น„ ๊ทน์‹ฌํ•œ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋Š”๋ฐ, ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ์ ˆ์—ฐ๋ฌผ์งˆ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ํƒ„์†Œ ๋‚˜๋…ธํŠœ๋ธŒ ๊ธฐ๋ฐ˜ ์œ ์—ฐ ์ „์ž์†Œ์ž์— ์ ์šฉํ•˜์—ฌ ๊ทธ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค.Chapter 1. Introduction 1 1.1 Discovery of CNTs and their benefits for soft electronic applications 1 1.2 Electrical sorting of CNTs 5 1.3 Deposition methods of solution-processed semiconducting CNTs 7 1.4 Conclusion 23 1.5 References 24 Chapter 2. Stretchable Carbon Nanotube Charge-Trap Floating-Gate Memory and Logic Devices for Wearable Electronics 32 2.1 Introduction 32 2.2 Experimental section 34 2.3 Results and discussion 36 2.4 Conclusion 62 2.5 References 63 Chapter 3. Wearable Electrocardiogram Monitor Using Carbon Nanotube Electronics and Color-Tunable Organic Light-Emitting Diodes 67 3.1 Introduction 67 3.2 Experimental section 70 3.3 Results and discussion 73 3.4 Conclusion 97 3.5 References 98 Chapter 4. Medium-Scale Electronic Skin Based on Carbon Nanotube Transistors with Vacuum-Deposited Stretchable Dielectric Film 102 4.1 Introduction 102 4.2 Experimental section 106 4.3 Result and discussion 111 4.4 Conclusion 135 4.5 References 136Docto
    • โ€ฆ
    corecore