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ABSTRACT

Static CMOS logic has remained the dominant design style of digital systems for

more than four decades due to its robustness and near zero standby current. Static

CMOS logic circuits consist of a network of combinational logic cells and clocked

sequential elements, such as latches and flip-flops that are used for sequencing com-

putations over time. The majority of the digital design techniques to reduce power,

area, and leakage over the past four decades have focused almost entirely on opti-

mizing the combinational logic. This work explores alternate architectures for the

flip-flops for improving the overall circuit performance, power and area. It consists

of three main sections.

First, is the design of a multi-input configurable flip-flop structure with embedded

logic. A conventional D-type flip-flop may be viewed as realizing an identity function,

in which the output is simply the value of the input sampled at the clock edge. In

contrast, the proposed multi-input flip-flop, named PNAND, can be configured to

realize one of a family of Boolean functions called threshold functions. In essence,

the PNAND is a circuit implementation of the well-known binary perceptron. Unlike

other reconfigurable circuits, a PNAND can be configured by simply changing the

assignment of signals to its inputs. Using a standard cell library of such gates, a tech-

nology mapping algorithm can be applied to transform a given netlist into one with

an optimal mixture of conventional logic gates and threshold gates. This approach

was used to fabricate a 32-bit Wallace Tree multiplier and a 32-bit booth multiplier

in 65nm LP technology. Simulation and chip measurements show more than 30%

improvement in dynamic power and more than 20% reduction in core area.

The functional yield of the PNAND reduces with geometry and voltage scaling.

The second part of this research investigates the use of two mechanisms to improve

the robustness of the PNAND circuit architecture. One is the use of forward and
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reverse body biases to change the device threshold and the other is the use of RRAM

devices for low voltage operation.

The third part of this research focused on the design of flip-flops with non-volatile

storage. Spin-transfer torque magnetic tunnel junctions (STT-MTJ) are integrated

with both conventional D-flipflop and the PNAND circuits to implement non-volatile

logic (NVL). These non-volatile storage enhanced flip-flops are able to save the state of

system locally when a power interruption occurs. However, manufacturing variations

in the STT-MTJs and in the CMOS transistors significantly reduce the yield, leading

to an overly pessimistic design and consequently, higher energy consumption. A

detailed analysis of the design trade-offs in the driver circuitry for performing backup

and restore, and a novel method to design the energy optimal driver for a given yield is

presented. Efficient designs of two nonvolatile flip-flop (NVFF) circuits are presented,

in which the backup time is determined on a per-chip basis, resulting in minimizing

the energy wastage and satisfying the yield constraint. To achieve a yield of 98%,

the conventional approach would have to expend nearly 5X more energy than the

minimum required, whereas the proposed tunable approach expends only 26% more

energy than the minimum. A non-volatile threshold gate architecture NV-TLFF

are designed with the same backup and restore circuitry in 65nm technology. The

embedded logic in NV-TLFF compensates performance overhead of NVL. This leads

to the possibility of zero-overhead non-volatile datapath circuits. An 8-bit multiply-

and-accumulate (MAC) unit is designed to demonstrate the performance benefits of

the proposed architecture. Based on the results of HSPICE simulations, the MAC

circuit with the proposed NV-TLFF cells is shown to consume at least 20% less

power and area as compared to the circuit designed with conventional DFFs, without

sacrificing any performance.
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Chapter 1

INTRODUCTION

Over the past fifty years, CMOS technology has been miniaturized by nearly four

orders of magnitude, spread over twenty process generations. This went hand-in-hand

with efforts to reduce power consumption at the device, circuit, and architecture lev-

els. One of the far reaching consequences of scaling below 32 nanometer has been

the inability to increase clock frequency due to the exponential increase in power

consumption. When this situation was reached nearly two decades ago, the micro-

electronics industry undertook a paradigm shift in computing – moving from single

core processors to multi-core processors. This allowed operating each core with lower

clock frequencies, while improving performance (system throughput) by increasing

the amount of concurrency or parallel computation. Since its adoption in early 2000,

the multi-core strategy was supremely successful, enabling the rise of cloud computing

with massive numbers of high performance server farms, and the proliferation of high

performance mobile systems with the ubiquitous smartphone.

For all practical purposes, device scaling has almost stopped, and is expected

to end within the next three to five years. Furthermore, the multi-core strategy

has also reached its end, and no significant additional performance gains can be

expected by simply increasing the number of cores. Yet, at the same time, there are

two new paradigm shifts in computing are beginning to take place that will have a

disruptive influence on the microelectronics industry. One of them is the explosive

rise of applications based on new computation paradigms such as machine learning

that require the processing of massive amounts of data in real-time, and the other is

the natural evolution of embedded systems referred to as the “Internet of Things”
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(IoT), in which sensing, computing, actuation and communication functions are all

to be integrated into one or a few chips that can be embedded in almost any object

on the planet (home appliances, buildings, roads, jet engines, automobiles, etc.).

These two new developments will require either further exponential improvements in

performance without the concomitant increase in power consumption, or ultra energy-

efficient devices that can function with harvested energy and remain operational for

many decades.

The vast majority of digital circuits employ a tried and tested style of logic –

commonly referred to as static CMOS logic (SCMOS). Its dominance is due primarily

to its high robustness and (ideally) near zero static power dissipation. A digital

circuit implemented using SCMOS logic is a multi-level circuit comprised of network

of combinational logic cells and sequencing elements (latches or flip-flops). Each

logic cell is a complementary structure that computes a scalar (i.e., single output)

Boolean function of its inputs, by establishing a conducting path between one of the

two supply rails to its output. In spite of all the changes that have taken place in

digital microelectronics, SCMOS logic has been the dominant design style for the past

four decades. As a result, techniques for reducing the dynamic and standby power

in such circuits have been thoroughly investigated, and have been incorporated into

modern design practices and design tools. Examples of techniques to reduce dynamic

power include logic synthesis and restructuring to reduce switching activity, gate

sizing, technology mapping, retiming, and voltage scaling. The use of dual supply

and device threshold voltages, dynamic control of body bias, clock and power gating,

etc., are some of the well known ways to reduce standby power. Thus it appears

that there is little or no additional opportunities left for improving the performance

and power of CMOS digital design. This is indeed the case for CMOS combinational

logic. However one aspect of digital circuits that has not changed is the sequential
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components in a design, i.e., the flipflops, which serve as sequencing elements in

datapaths and control logic. It is this aspect that this dissertation explores.

1.1 The Challenges of Power Reduction

It is known that the power consumption of a digital design consists of dynamic

power and static power. Dynamic or switching power is due to charging and discharg-

ing of capacitive loads. It’s power consumption P can be represented by the product

of energy per transition and transition rate, as shown in Equation 1.1. CL · V 2
dd is the

energy stored in the output load CL, and the transition rate f0→1 is the frequency of

output transitions between 0 to 1. fCK is the clock frequency and SA is the switching

activity.

P = Energy/transistion · transition rate

= CL · V 2
dd · f0→1

= CL · (V 2
dd/2) · fCK · SA

(1.1)

Reducing the dynamic power is accomplished by reducing the impact of each

term in Equation 1.1. Due to the quadratic dependence on voltage, voltage scaling

has the greatest impact on reducing the dynamic power. However, this strategy

is not sustainable with technology scaling. The reason is that transistor threshold

voltage Vt can not be scaled by the same factor as a transistor’s physical dimensions.

First, lowering Vt can result in an exponential increase in leakage current. However,

maintaining a Vt while reducing the supply voltage Vdd, reduces the gate overdrive

Vdd − Vt, which reduces the circuit’s speed. An alternative is to use multiple supply

voltages to minimize the performance degradation. This results in several voltage

islands cross the system. Some voltage islands which lie on the critical path are

powered by a high voltage to boost performance while other non-critical parts are

powered by a lower voltage in order to save on power consumption. The amount of
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power saving depends on the ratio between critical and non-critical paths and the

voltage partitioning granularity. Furthermore, the complexity of the design increases

substantially due the the need for routing multiple supply lines and voltage shifting

between islands.

Another way to reduce the dynamic power is to reduce the output load CL, which

includes the parasitic capacitances associated with the transistors and the intercon-

nect. Parasitic capacitances of devices are reduced with scaling, reducing their switch-

ing delay. In the meantime, thinner and closer wiring at lower geometries results in

higher parasitic resistances and coupling capacitances. At 40nm and below, wire delay

dominates the total delay between logic gates. Parasitics of logic gate is determined

by standard cell layout. A careful layout can minimize parasitics and improve gate

performance. DRC rules become more complicated, and major innovation on layout

is less likely on lower geometry. Synthesis and P&R tools can also help to reduce CL

by optimizing mapping and routing algorithm.

Yet another way of reducing the dynamic power of a SCMOS circuit is to reduce

the swiching activity (SA) on gate outputs, which in turn reduces the frequency of

charging and discharging interconnect and gate capacitances. There is no general

method to reduce the SA of a circuit, as it is mostly data and structure dependent.

One source of switching that can be minimized is due to glitching – spurious transis-

tions that are caused by unequal delays on paths terminating at inputs of logic gates.

In SCMOS, this can be minmized by balancing signal paths.

Dynamic power is linearly proportional to the clock frequency fCK . Frequency

scaling and clock gating are applied to eliminate unnecessary switching in circuit. At

the system level, clock frequency can be reduced for non-critical tasks, and in the

extreme case, reduced to zero by gating the clock signal in a sleep mode. Dynamic

voltage and frequency scaling is a power management technique that combines Vdd
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and fCK scaling to optimize trade-offs between power and performance in computer

system.

Static or sub-threshold leakage power is the power that is dissipated when there

is no signal activity. It is the result of current flowing through a transistor even when

its gate voltage is below the threshold voltage and the transistor is supposed to be

comptelely turned off. In bulck CMOS, it increases exponentially with scaling and

in small geometry devices, equals or even exceeds the dynamic power as shown in

Fig. /reffig:powerscaling. Sub-threshold leakage also depends on design and fabrica-

tion parameters such as channel length, doping, gate oxide thickness, etc. Abbas and

Olivieri (2014). Equation 1.2 shows how drain leakage current is related to threshold

voltage and transistor voltage bias. Is0 is the sub-threshold saturation current, n is

the sub-threshold slope factor whose value is around 1, q/kT is thermal voltage. Low-

ering Vt would cause exponential grows on leakage current. FinFet and UTBSOI are

implemented to suppress leakage path in body. UTBSOI has back-gate bias which can

be used for Vt tuning.Logic gates with multiple Vt can also be mixed to boost critical

path performance while suppress leakage and power using slack on non-critical path.

In systems where leakage dominates, power gating can also be applied on partially

or on the whole system to cut-off leakage in deep sleep mode. In such situations, all

data in gated units would be lost when power gating is applied. Therefore additional

steps to restore the data are needed before computation can be resumed.

ID = Is0 · e(Vgs−Vt)q/nKT (1− e−Vdsq/kT ) (1.2)

1.2 Intermittently Powered Systems

All the methods mentioned above have already been implemented in digital sys-

tem design. However, the rapidly growing transistor count in microprocessor and the
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Figure 1.1: Trends of major sources of power dissipation in nano-CMOS transistor
Abbas and Olivieri (2014).

demanding of increasing battery-life as well as keeping cost low drives chip design

towards a new challenge. In some implementation like large scale IoT network, pro-

viding computing energy to each object is very costly, especially for devices located

on remote source. In this case, prolong the computing time by providing alternate

energy source is necessary. Circuit that obtain their energy from ambient energy

sources are proposed to release this problem. Some of the more common ambient

energy sources (AES) include solar, piezoelectric, vibration, airflow, and thermoelec-

tric Priya and Inman (2008). However, the energy that can be harvested is highly

unreliable in terms of magnitude, magnitude variation and variation in timeMa et al.

(2015). The energy that can be tapped is usually only a very small fraction of total

transmitted energy. System powered by these energy resources have to be designed

to tolerant intermittent power lose.
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Current digital systems are generally architected for continuous operation. The

logic circuits and memory such as SRAM or DRAM is volatile. i.e., the information

(state of the computation and state of memory) is lost when the power supply is

disrupted. Batteries or super-capacitors can be applied to smooth out the rapid

changing of power supply. However, they usually require long charging time and

would increase mass, area, and cost of system Rodriguez Arreola et al. (2015). Recent

approaches remove the middle energy storage part and directly powered the system

by AES. Therefore, accurately predicting an impending power disruption, and saving

the state to non-volatile memory (NVM) is critical for all but the simplest devices.

Three state-of-art systems are proposed to address this new challenge.

1. Mementos Ransford et al. (2011) assumes implementation of RFID-scale

device which has two segments of flash memory. It inserts trigger point at

compile time on three mode: loop-latch mode that trigger point is placed at each

loop latch; function-return mode that it is placed after function call; timer-aided

mode, the trigger point is only placed when timer flag is up. At each trigger

point, Mementos estimates remaining energy by sample voltage from on-chip

ADC and compare it with checkpoint threshold voltage. Voltage lower than

threshold would trigger a checkpointing procedure. Checkpointing procedure

carefully backed up registers, stack pointer, program counter with proper header

and tailer, then mark other checkpoint for erasure. When energy is plentiful,

state would be recovered from active checkpoint, then the whole segment would

be marked erasable.

2. QUICKRECALL Jayakumar et al. (2014) is based on FRAM instead of

flash memory, which significantly reduced backup and restore time. FRAM

is used as unified memory in QUICKRECALL. During operation, it acts as
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the conventional RAM as well as ROM. Unlike Mementos which insert trigger

point during compile time, QUICKRECALL checkpointing is triggered by ISR.

A comparator monitors vdd by comparing its value with trigger voltage. When

vdd is lower than trigger voltage, it would generate a digital signal and issue

ISR. When low voltage interrupt occurs, the system only need to backup general

purpose registers (GPRs), status register (SR), stack pointer (SP) and program

counter (PC). compare with Mementos, checkpointing overhead is significantly

reduce.

3. Hibernus Balsamo et al. (2015): Similar as QUICKRECALL , checkpoint-

ing is triggered by comparator in Hibernus. Instead of one trigger threshold

voltage, Hibernus has two threshold voltage. VH is the threshold voltage for

hibernate, and VR is the threshold voltage for restore. VR is set higher to add

hysteresis, allowing the system to restore without taking the VDD below VH .

Hibernus use normal RAM and registers for active operation, and use FRAM as

backup memory only. Hibernate process would push registers and entire RAM

to FRAM first, then general registers, and finally the SP and PC.

In all these systems, a center non-volatile memory is assumed in the system.

During backup and restore, data would be transferred between non-volatile memory

and the place they are actually used. The trigger voltage should be set such that

the energy stored in parasitic and decoupling capacitors are higher than the energy

required to complete the whole backup process. In small device that total capacitance

is not enough, extra capacitor like supper capacitor would be added to the system.

Another potential circuit architecture for intermittent power system is non-volatile

logic (NVL). With the help of emerging non-volatile technology, it is possible to

integrate logic circuit with non-volatile device to form non-volatile logic. NVM is
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close to the logic circuit that do computing, is would be able to avoid data movement.

Compare with conventional solution, NVL has potential to consume less energy and

delay during backup and restore. Instantaneous backup and restore with low power

operation would be very important for energy harvesting IoTs.

1.3 Emerging Non-volatile Memory Devices

Normal digital systems are designed to operate with continuous power supply.

During the operation, memory like SRAM or DRAM would receive computation re-

sult and feed input data to processor. The stored data would be lost when power-off.

All data that need to be stored during power-off would be moved into non-volatile

memory. Non-volatile memory (NVM) is a type of memory that can sustain its stor-

age information even when power is turned off. The traditional NVMs include hard

disk drive, optical disk, read-only memory, flash memory, etc. This NVMs have dis-

advantages like limited write endurance (number of program cycles), long access time

and high write/read energy cost. Recently, more emerging NVM technologies be-

come popular in both industrial and academia. Comparing with traditional ones, the

emerging NVMs provide much more advantages such as zero leakage power, high den-

sity and better technology scaling. In this section, several emerging NVM techniques

are listed.

1. Floating gate transistor or flash memory: Floating gate transistor in flash

memory is the most mature technology for flash drive and solid state drive that

is already under volume production. The information is stored as amount of

trapped charge in the floating gate. The density of flash memory is increased

through 3D array processing and multi-bit storage. However, other merits such

as performance, endurance, data retention time and energy efficiency decline

substantially in technology scaling Grupp et al. (2012), which leaves doubt if
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flash memory can be adapted to fit requirements of future technology.

2. RRAM (Resistive random-access memory): RRAM is two terminal device

with dielectric material as insulating film. Information is stored as resistance

values, which can be changed by providing current flow through opposite direc-

tion. Comparing with SRAM, RRAM has higher density, similar read latency

and lower leakage power Mittal et al. (2015).

3. CBRAM (Conductive bridging memory) or PMC(Programmable met-

allization cell): CBRAM is a registered trademark for PMC technology. PMC

is also a two terminal resistive memory technology, including an active metal

(Ag, Cu, etc) terminal, inert metal (Ni, Pt, W, etc) terminal and a solid elec-

trolyte thin film (Ag-doped chalcogenide Ag−Ge30Se70) sandwiched in between

Mahalanabis et al. (2014); Valov et al. (2011). The PMC can be back-end in-

tegrated with standard CMOS technology. It has many attractive properties

such fast write speed, low write energy and high reliability.

PCM is a two terminal resistive memory that use the crystallization property

of chalcogenide glass to storing data. The resistance value is depends on the

material state, and can be changed between low resistance state (crystalline)

and high resistance state (amorphous)by current pulses. PCM cell typically has

1T1R structure, which is much smaller than SRAM and DRAM cell. However,

the high write current density, long write latency and limited endurance ( 109−

1012 write cycles) still make big challenges for PCM to be extensively applied

on mobile devices .

4. PCM (Phase change memory): PCM is a two terminal resistive memory

that use the crystallization property of chalcogenide glass to store data. The

resistance value depends on the material state, which can be changed between
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low resistance state (crystalline) and high resistance state (amorphous)by ap-

plying current pulses. PCM cell typically has 1T1R structure, which is much

smaller than SRAM and DRAM cell. However, the high write current density,

long write latency and limited endurance ( 109 − 1012 write cycles) still make

big challenges for PCM to be extensively applied on mobile devices .

5. FeRAM (Ferroelectric memory): FeRAM cell has similar 1T1C structure

as DRAM except that it uses a ferroelectric layer in its capacitor. In ferroelectric

material, applied electric field doesn’t change linearly with stored charge. The

information is stored in the polarization of ferroelectric material. Even though

FeRAM has high endurance (∼ 116), its low density and high manufacturing

cost make it less attractive on next generation technology Endoh et al. (2016).

6. MRAM (Magnetoresistive memory): MRAM uses magnetic tunnel junc-

tion (MTJ) as non-volatile bit storage. The endurance can be as high as

FeRAM. Couple of methods can be applied on flipping magnetization. Among

them, spin transfer torque(STT) is widely explored recently due to its high write

endurance, high density, high speed and relative low write energy Mittal et al.

(2015); Fong et al. (2012). STT base MRAM is also referred as STT-MRAM,

the memory cell is referred as STT-MTJ.

7. DWM (Domain wall memory): DWM device is a three terminal devices

with two parts: ferromagnetic nanowire containing domain wall and MTJ for

state reading Currivan-Incorvia et al. (2016). The domain wall can be displaced

by current flow through the nanowire, the magnetization under the MTJ decides

the resistance state of MTJ. In theory, DWM device can store multi-bit data

by containing more than one domain walls. The research of DWM is still on

preliminary stage. It physical mechanism and device characteristics are still
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need to be explored.

1.4 Static CMOS Logic vs Threshold Logic

Realizing systems with low power consumption and high performance is the main

research topic in recent years, especially on mobile applications. Large amount of tech-

niques have been thoroughly studied to balance performance and power consumption,

including voltage scaling, power gating, clock gating, etc. Further optimization on

digital circuit becomes very difficult since most possible techniques have been already

tried. The only exception is how logic function is computed. In static CMOS logic

gate, the boolean function is evaluated by establishing a conducting path from VDD

(GND) to the output though a stack of PMOS (NMOS) transistors.The commercial

digital circuit synthesis and optimization tools are all based on static CMOS logic.

An alternate logic family called threshold logic provides another promising way to

compute boolean function, which has the potential to realize the same function with

a more compact circuit. By integrating threshold logic gates into main stream auto-

mated design flow, we demonstrated that further power and area reduction is feasible

without scarifying performance Kulkarni et al. (2012); Yang et al. (2015a); Kulkarni

et al. (2016).

Threshold logic is represented by a kind of computing units that evaluate threshold

function. A Boolean function f(x1, x2, · · · , xn) is a threshold function if there exist

n weights (w1, w2, · · · , wn) and a threshold T such that

f(x1, x2, · · · , xn) =


1 if

n∑
i=1

wixi ≥ T

0 otherwise.

(1.3)

Without loss of generality, we assume that wi and T are both integers. The

function can also be represented by [w1, w2, · · · , wn;T ] or simply [w;T ] where w is
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weight vector. Threshold logic is a (small) subset of boolean function. For exam-

ple, f(a, b, c) = a ∨ bc is a threshold function, as f(a, b, c) = a ∨ bc ≡ 2a + b +

c ≥ 2 ≡ [wa, wb, wc;T ] = [2, 1, 1; 2]. On the other hand, a very similar function

f(a, b, c, d) = ab + cd is not a threshold function. Because the general primitives

(AND/OR) are threshold functions, a general boolean function can be represented

by cascaded threshold functions. The extensive discussion of threshold functions in

literature dated back to 1950s Muroga (1959, 1971). More applications on discrete

neural computing is discussed in Siu et al. (1995)

A non-decomposable primitive circuit that evaluates threshold function is called

threshold logic gate(TLG). As shown in Fig. 1.2, TLG contains n inputs and one

output. A TLG computes the weighted sum of all input physical quantities(charge,

current or voltage) and evaluates output based on Equation 1.3. Comparing with

general AND/OR gates, TLG has more compact computing capability. To realize

common arithmetic function with minimum depth, the size of TLG network is poly-

nomial bounded, comparing with AND/OR gate network which are exponential in

size Siu et al. (1995). With efficient TLG circuit design, same amount of power and

area saving can be expected when implementing large scale circuit by threshold logic

based network.

1.5 Research Contribution and Dissertation Outline

In this dissertation, different circuit architectures and design strategies for thresh-

old logic gates are described. The contributions are listed as follows:

1. Designed and evaluated a robust threshold logic gates known as PNAND-n in

65nm. Multiple techniques were involved in PNAND library design, including

delay modeling, design trade-offs between energy and delay, symmetric layout

floor plan and etc.
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Figure 1.2: Threshold logic gate

2. Designed single input threshold gate KVFF in 65nm. The evaluation of KVFF

against D-flipiflop shows its advantage on setup time and total delay.

3. Evaluate the PNAND library and threshold logic synthesis flow on silicon. Two

chips were fabricated and tested in 65nm. both test and post-layout results show

consistant improvement on area and power consumption in threshold logic based

hybrid circuits.

4. A theshold logic gate architecture called TLL was combined with emerging

non-volatile device RRAM in order to operate TLL on supply voltage as low

as 0.6V. RRAM is a resistive device. On low supply voltage, integrate RRAM

with input network increases the rise time margin during evaluation phase,

which significantly improves the reliability of sensing difference between left

and right input network value.

5. A thoroughly study on non-volatile logic provided a deep insight of how design

parameters impact backup energy and yield. When considering process vari-

ations, systematic sizing algorithm was proposed to minimize backup energy

waste as well as achieving desired yield constraint.
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6. Non-volatile flipflop and non-volatile threshold gates were designed according

to the proposed strategy. Scan mechanism in flipflop was extended to include

non-volatile scan test. The extended scan mechanism could provide optimal

backup time on per chip base after fabrication is done. Implementing post

fabrication backup tuning can save as high as 78% energy per bit comparing

with determine global backup time before fabrication.

The outline of the dissertation is as follows.

1. Chapter 2 describes the earlier work on the design and usage of threshold logic

gates in circuit design. It also covers earlier work on threshold logic based

synthesis algorithm

2. Chapter 3 describes threshold logic gate architectures and hybrid circuit imple-

mentations. Both single input and multi-input sequential threshold gates are

designed. The circuit evaluations include delay modeling, energy consumption,

robustness check and layout refining. Synthesis algorithm are briefly explained

in this chapter. Post P&R simulation and silicon verification results are shown

by applying the proposed gates, showing significant area, leakage, and energy

reduction comparing with conventional design.

3. Chapter 4 describes integrating RRAM with threshold logic gate for low voltage

application.

4. Chapter 5 describes non-volatile flipflops and non-volatile threshold gate design.

Non-volatile flipflop is the basic block of NVL system powered by harvested en-

ergy. The non-volatility are realized by integrating STT-MTJ unit into flipflop

and PNAND. Detailed analysis was done on backup driver circuit with and

without considering process variation and an optimized sizing methodology is

15



proposed to minimize energy without degrade yield requirement. Post fabri-

cation tuning can further reduce the energy by searching backup time by scan

chain. Circuit implementations are also included to demonstrate their perfor-

mance on normal operation.

5. Chapter 6 concludes the dissertation.
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Chapter 2

LITERATURE REVIEW

In this chapter, we are going to review some major works been done on threshold

logic and non-volatile computing.

2.1 Threshold logic gate design

Exploration of circuit design of threshold logic gates (TLG) have been ongoing

since the late 1960s. More than fifty different implementations of TLGs have been

reported in Beiu et al. (2003). They can be generally classified as being capacitance

based and current based or conductance based. Threshold function can also be imple-

mented by using complex CMOS logic Sobelman and Fant (1998) or pass transistor

logic Quintana et al. (2001). These cells usually compute specific functions such as

a majority function or m-of-n function. These gates have low power and large noise

margin, and relatively fast with small fan-ins. However, the delay and complexity of

the cell would dramatically increase with increase of fan-ins.

Capacitance based or capacitive TLG uses capacitor array to compute weighted

sum in Equation 1.3. There are two group of capacitive TLG designs, switched

capacitor TLG (CTL) and neuron MOS (νMOS) TLG. CTL used switched capacitor

circuit idea implemented in analog circuit to compute threshold function, which has a

very regular structure. Instead of a complex analog amplifier, CTL used a saturated

inverter to compute the output. Offset cancelling technique was applied in CTL such

that fan-ins as large as 255 can be applied Ozdemir et al. (1996). νMOS TLG is a

capacitive TLG integrated with neuron MOS transistor. This transistor has multiple

inputs which are coupled with a buried floating poly-silicon gate. The total voltage
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applied on the floating gate can be represented as VF = (Σn
i=1Ci ·Vi)/Ctot. The output

is set to 1 when VF is higher than threshold. νMOS TLG can be implemented as

static or clocked gate Lashevsky et al. (1998), or implemented with clocked differential

sense amplifier Luck et al. (2000). The threshold was determined by inherent inverter

switching voltage or could be programmed by applying different voltage references.

Both of two group of architectures show large power consumption as well as area and

delay, making them less attractive on digital applications.

Current/conductance based TLGs are usually faster than capacitive TLGs. Early

implementations include pseudo-nMOS and output-wired inverters. However, both

have DC current during operation. Multiple solutions were proposed to reduce DC

current. DC power in pseudo-nMOS can be reduced to 14% by dynamic feedback

current flow control Kartschoke and Rohrer (1996). A data-dependent self-timed

power down mechanism can be applied on output-wired inverter structured to reduce

dc current to 25% Beiu (2001). However, high power dissipation and low noise margin

are still the main problems in these design.

Differential mode DTGs have become the most popular and convincing architec-

tures recently. Their main advantage is low power consumption. Differential DTGs

have two set transistors connected in parallel to compute weighted sum and a CMOS

comparator to compare with threshold. The CMOS comparator is usually consist of a

pair of cross-coupled inverters. Clock signal is required to start comparing or reset the

comparator. A cross-coupled inverters with asymmetrical loads (CIAL) López et al.

(1995) and a generic latch-type TLG (LCTL) Avedillo et al. (1995) were proposed

on 1995. Several circuits were proposed later to improve delay, power dissipation and

reliability Strandberg and Yuan (2000); Padure et al. (2001); Tatapudi and Beiu

(2003). These circuits compute threshold functions in two ways: compare the sum of

weighted inputs with threshold or compare function f on one bank with its comple-
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ment f on the other bank. Circuits that implement the former way need to introduce

asymmetric weight in input banks to deal with case that sum of weighted inputs are

equal to threshold. This is usually done by adding a permanent ON transistor with

half weight on one bank Avedillo et al. (1995), which would reduce noise margin. The

latter way avoids equal case as f and f are always turned to opposite side. A design

combined split-level precharge differential logic with this method shows significant

power reduction (9̃0%) in Tatapudi and Beiu (2003).

Other technology approaches have also be explored to implement TLG. Single

Electron Tunneling (SET) and Resonant Tunneling Devices (RTD) were popular

candidates during 1990s and early 2000. SET is a nano device based on quantum

mechanical phenomena called Coulomb blockade. N-input linear threshold gate can

be implemented by SET, the structure is similar as νMOS. A full adder is reported

in Lageweg et al. (2002) with combination of SET and coupling capacitors. RTD is

another nanoelectronics device that has negative differential resistance. TLG design

with RTD were reported as early as 1994 Maezawa et al. (1994). Latter a full adder

was designed based on the same principle Pacha et al. (2000). Quantum cellular

automata (QCA) is another popular quantum mechanical device. Each QCA cell

consists of five quantum dots. Two electrons are hopping amount these states. Their

relative position forms two stable states, named +1 and −1. Cell state is influenced

by the state of their neighbors. A QCA majority gate was constructed based on this

phenomenon Tougaw and Lent (1994). In the gate, output cell state is determined

by the majority of the three input cell surrounding it. An AND and an OR gate were

constructed by assigning 0 or 1 on one of majority gate input. A 1-bit full adder was

also demonstrated in Tougaw and Lent (1994).

However, Major difficulties on fabrication and reliable operation on room temper-

ature make these device hard to commercialize. Recently, new emerging non-volatile
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devices have attracted intense interest from both industrial and academic. Some ap-

plications with these novel non-volatile devices have already been commercialized by

semiconductor company like Intel and Micron. Comparing with previous nanotech-

nologies, non-volatile device is mature enough to be implemented in circuit design.

Threshold logic gate implementations with new emerging device like RRAM, Domain

Wall, nanowire are reported in Friedman et al. (2016); Fan (2016); James et al. (2014).

2.2 Threshold logic based synthesis

Beiu pointed out in Beiu et al. (2003) one of the major reason threshold logic is

not as popular as CMOS logic on commercial application is lack of high-level synthesis

tools. In this section, we would review the efforts on threshold logic synthesis.

Threshold synthesis was popular during 1960s. Network scale was small and it

was affordable to do gate implementation manually. Since n-input majority gate is

a threshold logic gate and any threshold function can be implemented by majority

gate, majority gate synthesis is a particular threshold synthesis methodology. Akers

(1962) proposed a reduced unitized table synthesis methodology. Reduced unitized

table is constructed from truth table of the function. Two canonical realization and

a comprehensive synthesis procedure using majority gates only were descried using

the table. Miller and Winder (1962) proposed majority-logic synthesis based on

Karnaugh map. It demonstrated that all 3-input function can be implemented by

3-input majority function in two levels with maximum 4 gates. It then extended it to

n-input function and n-input majority gate by treating specification of the remaining

function as a new problem and repeat the procedure. Muroga (1971) also proposed a

shannon decomposition based majority gate synthesis. However, these methods are

only suitable on small networks. When the network becomes large, the computing

complexity grows exponentially, which makes these methods not applicable for today’s
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VLSI circuit design.

Threshold synthesis didn’t draw much attention during that time. The main

reason is that comparing with mature CMOS logic gate, high performance threshold

logic gate was lacking during that time. Besides that, there was no efficient algorithm

to synthesis multi-level network. After nanoelectronic threshold gates and more effi-

cient algorithm are available, more work on threshold/majority synthesis were pub-

lished. The first comprehensive multi-level threshold network synthesis methodology

and synthesis tool were proposed in Zhang et al. (2005). An algebraically-factored

combinational boolean network is given as input. For each node that satisfy fan-in

constraint, the algorithm would identify if the node is threshold. If the node is not

threshold, it would then split the node and map it by multiple threshold gates. Nodes

are processed recursively from output until all the nodes are processed. An ILP solver

is needed on threshold identification step.

A simplified 3-input majority synthesis was proposed later Zhang et al. (2007).

It first decomposed the network to only include 3 variables on each node. It then

try to find a majority network using the karnaugh map method Miller and Winder

(1962). If the trial failed to construct an optimal solution, the methodology would

direct map AND/OR gate to majority gate. By restrict to only majority gate, this

algorithm doesn’t require ILP and and unate identification.

Formulating ILP problem is the most straight forward way to identify if a unate

function is threshold. Its solution provides minimum weights and threshold in inte-

ger. However, the execution time of solving ILP is usually exponential with respect

of input variables. Gowda et al. (2007) and Neutzling et al. (2013) provides al-

ternative ways to identify threshold function without solving ILP. These non-ILP

method can’t guarantee neither 100% threshold function identification nor optimal

Wi/T assignment, but they run faster.
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To further improve synthesis result, Kuo et al. (2011); Lin et al. (2014) proposed

local rewiring techniques that can decompose high fanin or high threshold gate into

smaller gate in order to reduce sum of Wi and T . Instead of local optimization, An-

nampedu and Wagh (2013) demonstrated how to decompose a large fan-in threshold

function into polynomial sized threshold network with bounded fan-in. The network

has size of O(nc/M2) and depth of O(log2 n/ logM).

2.3 Non-volatile memory and non-volatile logic

As shown in previous chapter, emerging NVM technologies can replace on-chip

and off-chip memory to checkpointing system state. Besides, non-volatile technologies

can be implemented to backup and restore intermediate computing results, so called

non-volatile logic (NVL). The focus of non-volatile technology is beginning to change,

with increasing emphasis on the incorporation of non-volatile logic in both control

and datapath circuitry.

Without modifying CMOS logic gate, non-volatile technology can be implemented

in two ways. In order to preserve performance of traditional volatile architecture,

NVM arrays can be served as a slave memory array for volatile register file and D-

flipflops. Before power failure, the data in registers and D-flipflops are serially written

to NVM arrays. When the power resumed, the opposite process resume the states

from NVM arrays serially. Ref. Khanna et al. (2014) reports the design of a microcon-

troller unit enhanced with non-volatile memory. It has a NVM array (NVMA) that

is separated from the local registers (volatile) where the intermediate computation

results are stored. The data in the processor’s 2,537 flipflops are sequentially saved

to, and restored from the NVM arrays. Therefore, the design trade-offs are between

the NVMA size, the routing resources between the local registers and the NVMA,

and backup time. The number of clock cycles required is the number of bits in the
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registers. In contrast to design using NVFFs, the long backup times would preclude

its use in severely energy-constrained systems.

Another way is to design non-volatile flipflop (NVFF) by applying non-volatile

feature to each D-flipflop Ryu et al. (2012); Koga et al. (2010); Wang et al. (2012);

Mahalanabis et al. (2015). The NVFF operates as same as normal D-flipflop on

normal operation. In back up mode, the output state drives the write control circuitry

to backup the state in non-volatile devices locally. During the restore mode, control

circuitry restore the saved state to NVFF output. FeRAM based Koga et al. (2010);

Wang et al. (2012), CBRAM based Mahalanabis et al. (2015) and STT-RAM based

Ryu et al. (2012) have been reported. However, the huge area and performance

overhead of existing NVFF design is still obstacles for extensive applications.

The earlier efforts Koga et al. (2010); Wang et al. (2012) using FeRAMs reported

substantial penalties in area (10X larger than regular flipflop), performance (delays in

∼ µs) and energy. The emerging spin-based magnetic tunnel junction (MTJ) devices

such as STT (Spin Transfer Torque) or SOT (Spin Orbit Torque) with high density,

low switching energy, and fast switching times, are promising candidates for NVM

and NVL.

Refs. (Ryu et al. (2012); Bishnoi et al. (2017)) describe the design of a NVFF

with STT-MTJ. Ref. Ryu et al. (2012) focuses on the design of the write circuit to

provide higher driving current thereby reducing the backup time. Ref. Bishnoi et al.

(2017) explores a fault model for the MTJ (open or a short), and a cell design that

can tolerate a single MTJ fault. The design consists of two (for ’1’ and ’0’) 2×2MTJ

cell arrays associated with each bit. Backup involves two MTJ cells carrying data in

opposite directions, which improves the read margin at the cost of doubling backup

energy. The focus is on tolerating single failures, without considering the design of

the driver circuitry, which would have a significant impact on the energy, performance
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and yield.

Techniques that are aimed at the robust design of NVM in the presence of process

variations are generally not well-suited for NVL. For instance, the works in Bishnoi

et al. (2016a); Motaman et al. (2015) address the problem of unequal delays between

writing a ’1’ and ’0’ in an NVM, and the resulting solutions are not applicable to

NVFF design. Ref. Yu and Wang (2014) contains a comprehensive treatment of NVM

technology, and describes the design of several readout circuits that are tolerant to

variations, as well as methods to reduce the read latency. However, these readout

circuit architectures are primarily for NVM, and are too complex and require too much

energy to be applicable to NVFF. The problem of read disturb, which is a common

issue, is addressed in Bishnoi et al. (2014), using a current mirror and additional

control circuitry which renders it unsuitable on digital standard cell design. Ref. Wang

et al. (2016) explores the issues of STT-based MRAM design in the presence of process

variations. Among other things, it proposes a post-write sensing strategy that involves

a sequence of reads, writes and comparisons to minimize the write error rate. As with

other schemes targeting NVM, this is not suitable for NVFFs.

The discovery of Spin Orbit Torque (SOT) switching provides a more efficient way

to reverse magnetization Miron et al. (2011). SOT switching is induced by applying

a current through a heavy metal layer underneath MTJ. An SOT based MTJ cell is

a three terminal non-volatile device. Compared with an STT-MTJ, SOT switching

is faster Garello et al. (2014), and the three terminal structure allows for separate

optimization of the write and read paths. This promises to be much more reliable.

Refs. (Kwon et al. (2014); Bishnoi et al. (2016b)) describe SOT-MTJ based NVFF

designs, showing that they have the potential for higher speed, lower energy and higher

reliability than STT-MTJ devices. The design optimization and circuit architectures

presented herein for STT-MTJ can easily be adapted to SOT-MTJ devices.
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2.4 Other non-volatile logic gate

Other than memory and NVFF, emerging device can be used to construct non-

volatile logic network directly. STT-MTJ, RRAM and DMW devices are implemented

in these design because of their area advantage. Nukala et al. (2012) describes a

STT-MTJ based threshold logic gate array(STLA). It uses the inherent threshold

characteristic of STT-MTJ to compute subset of threshold function. The array is

operated as a gate-level nano-pipelined circuit, where the computing result of each

gate is evaluated and stored in STT-MTJ. Natsui et al. (2013) reports a full adder

based non-volatile image processor. Partial operands such as reference data are stored

in STT-MTJ. The computing result is evaluated by controlling read current flow

through STT-MTJ. Huang et al. (2014) reports four STT-MTJ based basic CMOS

logic gates, INV, AND, OR and XOR. Their delay and power consumption are orders

higher than normal CMOS logic gates.

A relative new field is array like non-volatile device network, referred as logic-

in-memory. Currivan-Incorvia et al. (2016) demonstrates a inverter chain fabricated

with three DWM operated as inverter. Currivan et al. (2012) reports the simulation

results of applying same DWM in full adder. Chen et al. (2015) reports mapping 4-bit

multiplier on RRAM crossbar array, and Sengupta et al. (2016) explores the possibility

of implementing artificial neural network on DWM based crossbar network.
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Chapter 3

THRESHOLD LOGIC GATE IMPLEMENTATION

In this chapter, we would discuss how threshold logic gate library is designed.

The library consists of single and multiple sequential threshold logic gate. The design

trade-off like speed, area, reliability and energy consumption would be discussed. Af-

ter a brief review of how signal assignment and synthesis are done, both the simulation

and fabrication results would be shown.

3.1 Multi-input TLG in Digital Circuit

The requirement of TLG in digital IC are restricted. In digital circuit, TLG is

treated as a special standard cell which computes threshold function. All standard

cell design restrictions should be applied to TLGs. Area and power are very stringent

in digital circuit,therefore DC current and large amplifier design should be avoid.

Reliable operation is also critical for VLSI implementation since multiple TLGs are

included in one design, single error would cause the whole design to fail.

Sec. 2.1 reviewed most popular CMOS TLG circuits over years. Among these

architecture, differential mode TLG is known for its robustness and low power. Dif-

ferential mode TLGs employs a combination of current mode and capacitive mode

TLGs. A block diagram of DTG is shown in Figure 3.1. Two banks of transistors

are used to represent the inputs, weights and threshold. The clocked comparator

compares the conductance difference between two input networks according to the

definition of the implemented threshold function. Differential TLGs are usually de-

signed as a sequential element, a latch structure is required to keep the output during

the rest of clock period. Comparing result would set the output of latch.
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Figure 3.1: Threshold gate circuit block

3.1.1 Circuit Architectures

Figure 3.2 shows a TLG implementation, referred as TLL. It was first published

in Ref. Samuel et al. (2010). TLL consists of 4 components: (1) a differential sense

amplifier, which consists of two cross coupled NAND gates, (2) a SR latch, (3) two

discharge devices, and (4) left (LIN) and right (RIN) input networks. TLL-n refers

to a TLL with n inputs in the LIN and the RIN. Clock input signal directly drive

source terminals of input network.

• Reset State: When clock signal CLK is ’0’, the sense amplifier is in ’reset’

state, node N5 and N6 are discharged to ’0’ through transistor M11 and M12.

Therefore nFET M7 and M8 are turned off and pFET M1 and M4 are turned

on, pulling node N1 and N2 to ’1’. The SR-latch followed by TLL will keep its

previous value.

• Evaluation State: When CLK rises from ’0’ to ’1’, TLL changes into evaluation

state. The rising CLK turns off M11/M12 and begins to charge LIN and RIN.

Assuming the input corresponds to be in the on-set of threshold function f ,

the conductance of LIN will be higher than conductance of RIN. When clock
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Figure 3.2: Schematic of a TLL circuit.

rise from ’0’ to ’1’, the charging speed of N5 will be faster than N6, which will

turn M7 on earlier than M8. Consequently, node N1 will be discharged before

node N2. The falling N1 will then turn off M6 and turn on M3, which will stop

N2 discharge process and pull it back to ’1’. N1 = 0 and N2 = 1 will set the

output SR-latch output to ’1’. The similar process happens when the inputs

are in off-set, while eventually N1 = 1 and N2 = 0. In summary, if the number

of on-transistors in the LIN exceeds the number in the RIN, then the threshold

inequality evaluates to true and output is a 1, otherwise the inequality is false

and the output is 0.

Functionally, TLL can be viewed as a complex, multi-input edge-triggered flipflop.

In general, a TLL has a lower setup time than a DFF while its clock-to-Q delay

is comparable. A TLL also presents a lower input capacitance but higher clock

capacitance than a D-FF.
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In TLL, CLK is directly connected to the source nodes of LIN and RIN. Its

capacitance is the sum of source capacitance Cs for all input transistors. When input

numbers are large, CLK pin capacitance of TLL can be significantly higher than DFF.

Larger clock tree is required to drive TLLs comparing with driving the same number

of DFFs. Large clock tree usually consumes higher area and energy as it toggles all

the time.

CLK capacitance is also determined by input configurations. Cgs varies according

to transistor operation region, which is high when transistor is ON. The capacitance

variation may introduce extra clock uncertainty to TLL circuit. This is because the

clock slew rate delivered to each TLL gate is determined by clock tree driver size

and CLK pin load. In normal design with DFFs, Both driver size and load are fixed

after place and route (P& R). Timing information such as setup time, hold time

requirement and C2Q delay is also determined. However, CLK load in design with

TLLs varies depends on input signals, which also changes slew rate of the delivered

clock signal. Therefore, the static timing analysis (STA) is not valid anymore. To

compensate this variation, threshold function mapping has to guarantee same number

of ON transistors for all possible input combinations. The mapping techniques known

as CSA would be discussed in the following section. CSA results in a constant load

on the clock input regardless of the input vector which is very important for construct

clock tree to deliver clock signal.

An improved multi-input differential threshold gate referred as PNAND is de-

signed and its schematic is shown in Fig. 3.3. Two (CLK) driven pFETs are stacked

on the top of RIN and LIN. An inverter is included in each PNAND cell to gener-

ate CLK signal, so the clock to output delay (C2Q) is usually higher in PNAND.

The advantage of PNAND over TLL is that CLK capacitance is signal independent

and its value is equal or less than CLK capacitance of DFF. Therefore, the timing
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uncertainty from load variation is eliminated in PNAND.
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Figure 3.3: Basic PNAND architecture

Transistors M9/M10 in Fig. 3.3 prevent potential floating of N5/N6 on certain

input combinations. After the sense amplifier evaluates the state, let’s assume that

the number of ON transistors on LIN changes from m to 0 while CLK is still high.

Without M9, N5 can float at logic 1. Leakage or noise can potentially discharge

the node N5 and flip the states of N1 and N2. Transistors M9/M10 are used to

strengthen the resolved state, which ensures that state is not disrupted even if inputs

change while CLK is high. Fig. 3.4 shows the described case and how M9/M10 prevent

output flipping in the same clock period.

SR latch is required for differential mode threshold gate like TLL and PNAND.

Latches in Fig. 3.2 and 3.3 hold the evaluation results when CLK is low, which

prevent glitches at output. The SR latch is also an important contributor to the

clock to output delay. Therefore it is necessary to optimize latch design for minimum

delay. There is a plethora of literature available on SR latch optimization. Nikolic
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Figure 3.4: Transistor M9 and M10 would prevent unexpected state flips in the same
clock period

et al. proposed a symmetric latch to balance rise and fall delay Nikolic et al. (2000).

Kim et al. described a NC2MOS latch Kim et al. (2000), which is faster than an

SR latch but can lead to glitches at the output. Strollo et al. introduced another

improved NAND latch design which is glitch freeStrollo et al. (2005). For both the

improved NAND latch and the NC2MOS latch design, the input and clock signals

were added to the latch, therefore the total input capacitance are higher. Typically,

high input pin capacitance, especially for the clock pin, would significantly increase

the clock tree size and power consumption. Considering all effects, the symmetric

latch proposed by Ref. Nikolic et al. (2000) is founded to be a good balance between

performance and power.
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3.1.2 Implementing Threshold Function

PNAND is equivalent to multi-input flipflop as it computes output at clock rising

edge. The multi-input flipflops from standard cell library usually computes a standard

two input NAND or NOR function while a single PNAND cell can be configured to

compute multiple threshold functions. The configuration simply involves connecting

the input xi and/or their complements to the gates of transistors in the LIN and RIN.

It is called signal assignment or SA.

PNAND in Fig. 3.3 will be denoted as PNAND-n where both LIN and RIN have

n inputs. The function PNAND-n evaluates can be represented as Eqn. 3.1. When

the numbers of ON transistors in both LIN and RIN are equal, sense amplifier will be

in metastable state during evaluation and the output is not predictable. This equal

case should be avoid for all input combinations.

f(x0, x1, · · · , xn, y0, y1, · · · , yn) =



1
n∑
i=0

xi >
n∑
i=0

yi

0
n∑
i=0

xi <
n∑
i=0

yi

Unknown
n∑
i=0

xi =
n∑
i=0

yi

(3.1)

Threshold functions are a proper subset of unate functions. Without loss of gen-

erality, we can assume that all the weights are positive integers. A threshold function

with negative weights can always be transformed to a positive unate form by replac-

ing the input variables with their complements. f = [w;T ] is an optimal represen-

tation when both weight sum W =
∑
wi and threshold T are minimum. In optimal

f = [w;T ], the minimum difference between weighted sum of inputs and threshold is

1 (min |w′X − T | = 1). With this observation, equality in 1.3 can be eliminated:

m∑
i=1

wixi ≥ T ≡
m∑
i=1

wixi > T − 0.5 ≡
m∑
i=1

2wixi > 2T − 1 (3.2)
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m is number of input variables in threshold function. The variables of a threshold

function can be connected to the inputs of a PNAND-n cell such that output of

PNAND is 1 if and only if threshold function evaluates to 1. The actual function

implemented by a PNAND-n depends on the input signal assignment (SA). The

SA procedure always ensures that LIN and RIN never have the same number of

ON transistors. For a PNAND-n, a j/k input refers to j and k active transistors

in the LIN and RIN, respectively, or vice versa. For example, a PNAND-5 with

LIN assigned signals ā, ā, b̄, c̄, c̄ and RIN assigned signals a, a, b, logic′1′, logic′1′ (SA

= (ā, ā, b̄, c̄, c̄ | a, a, b, 1, 1)) implements f = a ∨ bc, and a PNAND-5 with the SA =

(ā, b̄, c̄, d̄, ē | a, b, c, d, e) implements abc+abd+abe+cad+ace+ade+bcd+bce+bde+cde.

More than one SA can be implemented, here we discuss two SA techniques for same

function.

Optimal Signal Assignment (OSA): All elements before > in Eqn. 3.2 would be

assigned to LIN and all elements after would be assigned to RIN. In PNAND, LIN

and RIN are consist of PMOS transistors which conduct when gate voltage is ’0’.

Therefore, all positive variables xi in equation would be assigned as xi to gate inputs,

1−xi is assigned as xi and constant is assigned as ’0’ in PNAND. Assignment Eqn. 3.2

to PNAND-n such that n is minimum is called optimal signal assignment or OSA. A

threshold function is not trivial if W ≥ T . Therefore, we can move 2T−1 unit literals

from left to right in Eqn. 3.2. Then the total weight on left is 2W − 2T + 1 and total

weight on right is 2T −1. The threshold 2T −1 on right can be combined with moved

2T −1 literals as (2T −1)(1−xi)→ (2T −1)xi. The minimum n that can implement

this function on PNAND is n = max 2W − 2T + 1, 2T − 1 ≤ max 2W, 2T − 1. 2W is

even and 2T − 1 is odd, which makes n an odd number. There are several choices of

2T − 1 literals to be moved from left to right. The choice that leaves each literal to

both sides are preferred. It helps to minimize the least robust case in LIN and RIN.
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For example, consider threshold function f = [3, 1, 1, 1 : 3]. It can be converted as

3a+ b+ c+ d ≥ 3 ≡ 6a+ 2b+ 2c+ 2d > 5

. 5 unit literals would be moved from left to right side. 2a + b + c + d is moved to

right to ensure all variables on each side. The inequality is then become

4a+ b+ c+ d > 2(1− a) + (1− b) + (1− c) + (1− d)

, and the input signals that assigned to PNAND is

{LIN |RIN} = {a, a, a, a, b, c, d|a, a, b, c, d, 1, 1}

(SA(2)). Another way of literal movement is also applied for comparison. 5a is moved

to right and the SA becomes {a, b, b, c, c, d, d|a, a, a, a, a, 1, 1} (SA (1)). Table 3.1

shows the effect on LIN and RIN for both SAs. It is clear that the highest number

of ON transistors in SA (1) are 6 on LIN and 5 on RIN as well as 4 and 3 for SA (2).

An important and distinctive aspect of PNAND is that its performance, power

and robustness are affected not only by process variations, but also by the signal

assignment. Its delay is the sum of the input network delay (IND) and sense am-

plifier/latch delay (SLD). The IND is the RC delay of the network, and the greater

the conductivity of the LIN or RIN (i.e. more active transistors in LIN or RIN), the

smaller the IND. Thus for a PNAND-n (n odd), a 1/0 input results in maximum IND,

and a k/k−1 input, for k = (n+1)/2, results in a minimum IND. On the other hand,

because N5 and N6 both start at 0, and rise to 1, the smaller the difference between

N5 and N6, the greater the SLD. Thus, the maximum SLD occurs for a k/k−1 input,

and for maximum k. This is also the worst-case condition that dictates the robustness

of the cell.
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Table 3.1: Truth table of threshold function f = [3, 1, 1, 1 : 3]. LIN and RIN ON
transistor comparison for two signal assignments: (1){a, b, b, c, c, d, d|a, a, a, a, a, 1, 1}
and (2){a, a, a, a, b, c, d|a, a, b, c, d, 1, 1}

abcd
SA (1) SA (2)

L R L R

0000 0 5 0 5

0001 2 5 1 4

0010 2 5 1 4

0011 4 5 2 3

0100 2 5 1 4

0101 4 5 2 3

0110 4 5 2 2

0111 6 5 3 2

1000 1 0 4 3

1001 3 0 5 2

1010 3 0 5 2

1011 5 0 6 1

1100 3 0 5 2

1101 5 0 6 1

1110 5 0 6 1

1111 7 0 7 0
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Complementary Signal Assignment (CSA): All inputs in the RIN will be driven by

x1, · · · , xn, and all the gates in LIN will be driven by their complements x1, · · · , xn.

To ensure that the number of ON transistors in the LIN and RIN are never equal,

n must be odd. This is because if n were even, and if r were active in the LIN then

n− r will be active in the RIN. Hence if r = n/2, an equal number of transistors will

be active in the LIN and RIN. Since the LIN and RIN are complementary, for the

output to be 1, just over 1/2 (or more) of the transistors in the LIN must be active.

That is, the function is 1 if and only if (n+ 1)/2 or more of the inputs are 1. Hence

with n being odd, a PNAND-n with this signal assignment (all input gates driven by

distinct xi), implements the threshold function defined by

PNAND-n: ≡ x1 + x2 + · · ·+ xn ≥ (n+ 1)/2. (3.3)

Consider an arbitrary threshold function f(z1, z2, · · · , zm) defined by w1z1+w2z2+

· · ·+ wmzm ≥ T , that is to be realized by PNAND-n. Clearly if T > (n+ 1)/2, then

f cannot be implemented by PNAND-n. Let D = (n+ 1)/2− T , D ≥ 0.

z1,1 + · · ·+ z1,w1 + · · ·+ zm,1 + · · ·+ zm,wm +D ≥ n+ 1

2
. (3.4)

Therefore from (3.3) and (3.4), the second condition on PNAND-n to be able to

realize f(z1, z2, · · · , zm) is W + D ≤ n, or W − T ≤ (n − 1)/2. Given a PNAND-

n, if f(z1, z2, · · · , zm) can be realized, then from (3.4) the assignment of signals can

be done as follows: (1) assign D of the inputs of PNAND-n to ’0’; (2) for each i,

1 ≤ i ≤ m, assign wi inputs of PNAND-n to the signal zi; (3) connect any remaining

inputs of PNAND-n to ’1’.

Let L denote the number of active transistors in LIN and R denote the same for

RIN. It can be shown (and experimentally verified) that the worst case robustness

condition will be for an input vector (i.e. x′s) that results in a unit difference in
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conductance i.e. (L − R) = 1 with the largest number of active transistors (L + R)

is maximum. Incidentally, among all the cases for which (L − R) = 1, the one that

maximizes (L + R) results in the least delay. Note that it is impossible to avoid

(L−R) = 1 for any signal assignment.

Justification of CSA: The CSA has three important characteristics that justify

its use. First, it maximizes (L+R) resulting in the fastest possible PNAND. Secondly,

there is only case for which (L−R) = 1 and the circuit can be optimized only for this

case. Third, irrespective of an input vector (x′s), the total number of OFF transistors

in the LIN and RIN is always n.

An example is shown here to demonstrate how OSA and CSA is implemented.

Consider the threshold function f(a, b, c) = a + bc ≡ 2a + b + c ≥ 2. In OSA, it can

be easily converted into strict inequality function, as shown below:

2a+ b+ c ≥ 2 ≡ 4a+ 2b+ 2c > 3 ≡ 3a+ b+ c > (1− a) + (1− b) + (1− c) (3.5)

A PNAND-5 is required to implement this function using OSA. LIN is assigned as

{a, a, a, b, c}, and RIN is assigned as {a, b, c, 1, 1}.

For CSA implementation, it is easily verified that a PNAND-7 is required since

T = 2, W = 4, W − T = 2 ≤ (7 − 1)/2 and D = (7 + 1)/2 − 2 = 2. Internally, the

transistors in the LIN will be driven by {a, a, b, c, 0, 0, 1}, and RIN will be driven by

{a, a, b, c, 1, 1, 0}. The truth table is shown in Table 3.2.

PNAND-7 is usually larger and consumes more energy than PNAND-5 because of

extra input pins. Therefore, in most low power digital circuit, OSA is preferred. As

shown in Table 3.1 and 3.2, the race condition in OSA is less severe. However, delay

of PNAND with CSA is faster and has less variation compare to CSA for all possible

input combinations. CSA would be the only solution on low voltage operation where

delay variation is a major cause of timing violation.
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Table 3.2: Truth table of threshold function f = [2, 1, 1 : 2]. LIN and RIN
ON transistor comparison for OSA and CSA. OSA: {a, a, a, b, c|a, b, c, 1, 1}. CSA:
{a, a, b, c, 0, 0, 1|a, a, b, c, 1, 1, 0}

abc
OSA CSA

L R L R

000 0 3 2 5

001 1 2 3 4

010 1 2 3 4

011 2 1 4 3

100 3 2 4 3

101 4 1 5 2

110 4 1 5 2

111 5 0 6 1

Both OSA and CSA require odd input n. 4 PNAND-n cells are included in

standard cell library where n equals 3, 5, 7 and 9. The higher input is , more

threshold function PNAND can implement. However, when n is large, the number

of ON transistors in worst case would be high and the race condition on N5 and

N6 would be hard to distinguish by sense amplifier. The robust operation would be

discussed later.

3.1.3 Delay Modeling

As a multi-input flipflop, characterization of PNAND includes setup time, hold

time and CLK to Q delay for all possible input combinations. The evaluation of

PNAND includes three steps. When clock edge comes, the first step is node N5 and

N6 charging from 0 to Vt of M5 and M6. High conductance in input network would

speed up the charging delay. Assume N5 reach Vt first, M5 and M3 begins to discharge
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first. M5 then reaches its saturation regime and maximizes the draining current. N6

charges to Vt later than N5, which would also cause M6 to drain current from N2. N2

drop would in turn cause current flaw through M3 drop, which would slow down N1

discharge. If N6 charging much slower than N5, then N1 would complete its discharge

before M6 starts, preventing N2 discharge by turning off M4. In this case, the delay

from N5 rising to N1 falling depends on N5 rising speed and M5 draining speed. If

N5 and N6 rising are very close, both M5 and M6 starts to drain current. The voltage

drop on N1 and N2 would suppress the draining current of M3 and M4, which slows

down discharging on both sides. If this race condition occurs, it would take much

longer time for sense amplifier to finally resolve it. On the last step, when N1 reach Vt

of SR latch, the latch begin to set its output to 1. The delay between N1 and output

Q is determined by N1 falling rate as well as output load. Therefore, the clock to Q

(C2Q) delay can be split into three parts, as shown in Eqn. 3.6.

C2Q Delay =input network delay + SenseAmplifier resolving delay

+ Latch set delay

(3.6)

Input network delay (IND) is from clock rising to N5/N6 rise. Its value depends on

charging current and parasitic load on N5/N6. More ON transistors increase charging

current. Less input number and small M5 and M6 size reduce parasitic capacitance,

both reduce IND. Sense amplifier resolving delay (SAD) depends on input rising time,

race between LIN and RIN and output load. Fast and wide separated N5 and N6

rising causes small SAD, slow and congested N5/N6 rising causes large SAD delay.

Latch set delay (LSD) is caused by N1/N2 rising time and output load.

Fig. 3.5 shows a clear delay trend for same input case (2:1) on multiple PNAND-

ns. The figure shows partial delays such as IND, SAD, LSD and total C2Q delay.

More input transistors and large sense amplifier increase all partial delays in large
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PNAND. During evaluation, when number of ON transistors is fixed, higher N5/N6

parasitic in PNAND-7 and PNAND-9 increase charging delay and slew rate of N5/N6.

Large charging delay causes IND to increase and large slew rate causes SAD to grow.
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Figure 3.5: PNAND-n C2Q and partial delays for 2:1 input case

Fig. 3.6 and Fig. 3.7 show partial delays of PNAND-7 and PNAND-9 for several

typical input cases. All possible input cases when |LIN − RIN| = 1 is picked. 1:0

to 4:3 cases are picked for PNAND-7 and 1:0 to 5:4 cases are picked for PNAND-

9. Note that 5:4 or above in PNAND-7 can always been converted into 1:0 to 4:3

cases by flipping all input signals to its complementary value. Same mechanism can

also be applied to PNAND-9. In both figures, IND, SAD and total (C2Q) delay

are reduced when number of ON transistors in input network increases. Similar as

previous analysis, high charging currents are expected with more ON transistors,

cause fast N5/N6 charging speed and small N5/N6 rising slew rate. Therefore, both

IND and SAD reduces with more ON input transistors.

Table 3.3, 3.4, 3.5 and 3.6 summarize all delays for PNAND-3,5,7 and 9 for all
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Figure 3.6: Partial and total delay of PNAND-7 for multiple input cases

possible input cases. All delay are simulated by HSPICE under Typical/Typical

corner, 25◦C degree and 1.2V power supply. No external output load is included in

simulation. For all PNAND-n cells, input case 1:0 has the slowest C2Q delay and

n:0 has the fastest C2Q. Overall, C2Q is IND dominated where 1:0 and n:0 have

smallest and largest IND respectively. And Large n in input network has high IND.

C2Q delays in PNAND-7 and PNAND-9 are generally higher than in PNAND-3 and

PNAND-5. Same as Fig. 3.5, when number of ON transistors on LIN is the same,

Small |LIN−RIN| has higher congestion and generally causes higher SAD delay. The

worst case congestion for sense amplifier is when LIN and RIN difference is 1 and

LIN+RIN is maximum. All PNAND-n cells have same output drive strength, which

means the SR latch designs are identical and output load on node N1/N2 are the

same. In this case, worst case congestion would lead to slowest N1/N2 falling rate,

which would significantly increase LSD delay. As seen in figure, the highest LSD

delays for PNAND-5,7,9 happen on the same case as highest IND, which is the worst
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Figure 3.7: Partial and total delay of PNAND-9 for multiple input cases

congestion case n+1
2

: n−1
2

.

Table 3.3: PNAND-3 clock to Q delay (C2Q)for all possible input cases. C2Q
delay is split into three parts: a) input network delay (IND); b) sense amplifier delay
(SAD); c) latch set delay (LSD).

Input Case

(LIN:RIN)

C2Q (ps) IND (ps) SAD (ps) LSD (ps) Energy (fJ/cyc)

1:0 122.18 60.6 39.16 22.42 30.65

2:1 106.4 54.85 30.6 20.95 34.53

3:0 98.82 51.05 27.4 20.37 31.09

3.1.4 Energy Consumption

Energy consumption is input dependent in both DFF and PNAND cells. The

analysis is more complicated in PNAND cells as they include multiple inputs and all

input combinations should be considered.
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Table 3.4: PNAND-5 clock to Q delay split for all possible input cases.

Input Case

(LIN:RIN)

C2Q (ps) IND (ps) SAD (ps) LSD (ps) Energy

(fJ/cyc)

1:0 152 74.32 52.3 25.38 32.82

2:1 123.15 63.35 37.43 22.37 37.2

3:0 111.41 57.85 31.99 21.57 33.56

3:2 116.19 59.1 32.43 24.66 38.16

4:1 107.25 56.2 29.9 21.15 37.61

5:0 103.62 54.73 27.87 21.02 34.09

Energy consumption of PNAND cells are evaluated as total energy consumed

in one clock cycle. In Table 3.3, 3.4, 3.5 and 3.6, average energy consumption are

assumed to have 30% switching activity. 30% switching activity means that input

signals are configured such that output Q flips between 0 and 1 within 30% of total

simulation clock cycles. Energy consumption is proportional to parasitic values on

signal path. It is also true for cell design. When comparing with same input case,

PNAND-9 consumes highest energy while PNAND-3 consumes lowest.

Energy consumption of PNAND cells also depends on input cases. This can be

clearly seen in Fig. 3.8. Fig. 3.8 shows range of energy consumption for all PNAND

cells in library. Comparing with delays, 1:0 case always has highest delay but lowest

energy for all PNANDs. Worst reliability cases always lead to highest energy con-

sumption. Worst reliability case is when |LIN −RIN | = 1 and LIN +RIN = n. In

this case, the falling transition time of N1/N2 is usually higher because it takes more

effort for feedback loop in sense amplifier becoming stable. Long transition time costs

higher dynamic power in both sense amplifier and latch.
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Table 3.5: PNAND-7 clock to Q delay split for all possible input cases.

Input Case

(LIN:RIN)

C2Q (ps) IND (ps) SAD (ps) LSD (ps) Energy

(fJ/cyc)

1:0 166.34 83.14 57.23 25.97 35.8

2:1 132.16 69.12 40.32 22.72 40.94

3:0 118.56 62.81 33.97 21.78 36.76

3:2 123.7 64.77 34.39 24.54 42.41

4:1 113.36 60.96 30.99 21.41 41.97

4:3 124.13 64.54 31.77 27.82 43.43

5:0 108.48 58.31 29.16 21.01 37.32

5:2 110.5 60.13 29.34 21.03 42.07

6:1 107.72 58.68 28.07 20.97 42.67

7:0 104.61 56.41 27.46 20.74 38.01
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Figure 3.8: Range of energy consumption for PNAND-3, 5, 7 and 9.
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Table 3.6: PNAND-9 clock to Q delay split for all possible input cases.

Input Case

(LIN:RIN)

C2Q (ps) IND (ps) SAD (ps) LSD (ps) Energy

(fJ/cyc)

1:0 204.34 94.94 79.77 29.63 39.96

2:1 156.85 74.89 56.8 25.16 46.14

3:0 131.58 67.54 48.22 25.82 40.34

3:2 146.69 69.31 47.71 29.67 47.3

4:1 133.91 64.97 43.78 25.16 46.86

4:3 143.39 66.21 43.61 33.57 48.2

5:0 129.07 63 41.17 24.9 41.18

5:2 131.23 65.92 40.61 24.7 47.15

5:4 145.54 66.41 41.61 37.52 48.59

6:1 125.99 61.76 39.36 24.87 47.8

6:3 127.77 63 38.51 26.26 47.71

7:0 123.87 60.77 38.29 24.81 41.84

7:2 123.94 61.63 38.12 24.19 47.49

8:1 123.45 61.68 37.17 24.6 48.19

9:0 120.76 59.02 37.23 24.51 42.12
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3.1.5 Robust Operation

Robust operation under process variation is essential for standard cells. Pro-

cess variations are coming from sources like variations in critical dimensions, random

dopant fluctuation and variation of gate oxide thickness. Physical parameter vari-

ations lead to variations in electrical parameter such as threshold voltage or gate

capacitance. In CMOS logic standard cells and circuits, process variations would

cause variations in delay, power and leakage.

As demonstrated in Fig. 3.3, PNAND cell is a sense amplifier based standard

cell design. It is known that transistor mismatch would lead to evaluation error

in sense amplifier. For example, process variations of transistors M5 and M6 cause

Vt5 larger than Vt6. Assume inputs are configured as LIN is more conductive than

RIN (LIN ¿ RIN). Under normal case, M5 start conducting first and output of sense

amplifier would finally evaluated to N1 = 0 and N2 = 1. However, higher Vt5

delays the discharging current through M3 and M5. The left branch may lose its

discharging priority, leads the sense amplifier to meta-stable state or even flip to the

wrong direction.

PNAND cells also have smaller noise margin than standard CMOS cell. Sense

amplifier evaluates result by resolving race condition in N5 and N6. For worst input

case n+1
2

: n−1
2

, noise injected from inputs or coupling capacitor may disturb the race

condition, causing wrong evaluation result. In digital circuit, noise mainly comes from

signal coupling and substrate coupling. Substrate coupling affects delay variation

while signal coupling affects functional failure. These failures can be improved by

careful layout techniques.

Monte Carlo simulation is applied to evaluate circuit sensitivity to process varia-

tion. Parameters such as mobility and channel dimension vary in each Monte Carlo
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simulation case. Both global and local variations are included in foundry set statistic

parameters. Clock to Q delays in both rise and fall conditions are used in perfor-

mance evaluation. 100,000 Monte Carlo cases are included in statistic analysis. In

65nm, a functional failure is defined as delay larger than 6ns. The delays and yields

of PNAND-n (n=3,5,7,9) are shown in Table 3.7. No functional failures are detected

in worst input cases, showing robustness of the designed PNAND cell library.

Table 3.7: PNAND cells yield with process variation. The yield is evaluated by
100,000 Monte Carlo simulation. Statistical corner provided by foundry is used in
Monte Carlo simulation. Supply voltage is 1.2V and operation temperature is 25◦C.
Output load is set to 20fF .

Input Case

(n LIN:RIN)
Yield

Rise Delay Fall Delay

Mean (ps) STDEV (%) Mean (ps) STDEV (%)

9 5:4 100 229 4.37 224 4.46

9 4:3 100 215 3.72 213 3.29

7 4:3 100 186 3.76 187 3.74

5 3:2 100 176 2.84 189 3.17

3 2:1 100 162 2.47 174 2.87

3.1.6 Layout Technique

PNAND-n cell layouts are critical to cell performance. Applying some analog

techniques, sense amplifier mismatch can be significantly reduced by layout matching.

To use PNAND-n as standard cells in digital circuits, their layout have to follow the

basic standard cell layout guide in order to be used in digital flow. In the mean time,

PNAND-n layout should be also as compact as possible to reduce both parasitic and

area.

Layout of PNAND-9 is shown in Fig. 3.9. Double height standard cell with GND-

VDD-GND supply pattern is applied for PNAND-9. In order to minimize parasitic
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mismatch, PNAND cell in Fig.3.3 is split into two sides. LIN, left side of sense

amplifier and half of symmetric latch are placed on the top, the other side transistors

are placed on the bottom side, make the layout almost horizontal symmetrical. Cross

coupled wires are routed vertically through VDD using M2 layer. M2 wires are spaced

to reduce coupling capacitance.

Figure 3.9: Layout of PNAND-9 in double height standard cell format.

Both M1 and M2 layers are used in PNAND cells, and no global routing using M2
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is allowed on the top of PNAND-cells. The placement of 18 input pins guarantees that

there there are enough space to drop pins from M3 or above metal layers. As shown

in Fig. 3.9, nodes N5, N6, N1 and N2 are routed using M2 to reduce internal routing

congestion. As discussed before, N5/N6 and N1/N2 are sensitive to noise coupling

during sense amplifier evaluation. If there are active signals routed above or close

these four nodes, the coupling noise would degrade the cell performance. In worst

case, the coupled noise may trigger an erroneous switching, cause circuit malfunction.

Fig. 3.10 shows an improved PNAND-9 layout. Instead of using M2 layer for N5 and

N6, these two nodes are made to M1 only. To protect N5/N6 from random signal

coupling, two M2 plates connected to GND are place on the top of N5 and N6. Any

coupling noise would be shielded from N5/N6 and coupled to GND only.

3.1.7 Extension: Preset, Clear and Scan

Similar as D-FF, PNAND cell can be extended to include scan mechanism, asyn-

chronous preset and clear function, as shown in Fig. 3.11. PREZ is active-low preset

signal, CLR is active-high clear signal. TE is scan clock and TI is scan data in-

put. It is illegal to active PREZ and CLR on the same time. When PREZ = 0

and CLR = 0, the NOR gate would turn off M11 and turn on M13, pulling node

N1 to ground. The feedback loop in sense amplifier would then flip N2 to VDD

accordingly. (N1, N2) = (0, 1) instantaneously sets SR latch to 0, without CLK in-

volved. The asynchronous clear function operates similar as preset with PREZ = 1

and CLK = 1. In this case, M14 is turned on and M12 is turned off. The feedback

loop sets (N1, N2) = (1, 0) and SR latch sets output Q to 0. The output value would

be kept in latch until next clock cycle starting a new input evaluation.

Then scan mechanism is slightly altered for PNAND cell. In Fig. 3.11, TE is scan

clock and TI is scan input. TE is kept low during normal mode TE = 0. In scan
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Figure 3.10: PNAND-9 layout with M2 shield on the top of N5 and N6.

mode, input clock CLK is turned off (CLK = 0). Instead of toggle CLK, TE acts

as clock in scan mode. When TE = 0, sense amplifier is on reset mode where node

N1 and node N2 are reset to ’1’. Since CLK is kept low, node N5 and N6 are kept

to ground during the entire scan procedure. When TE switches 0→ 1, M20 and M21

turns on. Assume TI = 1, M22 is ON and M23 is OFF. When TE = 0→ 1, node N1

discharges to ground through M3, M20 and M22 while N2 is kept to VDD as M6 and

M23 are all OFF. Therefore, (N1, N2) = (0, 1), and output Q is set to 1 by SR latch.
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If TI = 0, M23 is ON. When TE rises, Node N2 would be discharged through M4,

M21 and M23, therefore (N1, N2) = (1, 0). Output is set to 1. Generally, when scan

clock TE rises, the output would follow the TI value, implement a scan mechanism.
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Figure 3.11: PNAND cell with scan, asynchronous preset and clear function.

3.2 Single Input Threshold Gate – Differential D-flipflop

The simplest threshold function is single input identity function f(x) = x. It can

also be denoted as [wx = 1;T = 1]. Therefore a differential D-flipflop is a special case

of a differential mode threshold logic gate. A differential D-flipflop works well with

low-swing (not rail to rail voltages) inputs, such as in a register file. The circuit has

low clock capacitance and doesn’t need an inverted clock signal. However, because

it is differential, it needs both the input (D) and its complement (D) and returns an
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Figure 3.12: Edge triggered flipflop design: master-slave D-flipflop (DFF)

output (Q) and its complement (Q).

Setup time (tsu) is defined as the minimum time required for the input to settle

before the rising edge of the clock signal. Clock to output delay or clock to Q prop-

agation delay (tc2q) is defined as the time it takes for the output to settle after the

rising edge of the clock.

In this section, two single input threshold gate designs are compared with two

D-flipflop designs for delay, energy cross two technology nodes:65nm and 28nm.

3.2.1 Circuit Designs

Master-Slave D-flipflop (DFF) Weste and Harris (2010) is shown in Fig. 3.12

for comparison. When the clock signal (CLK) is low, the input signal (D) propagates

through the master latch and reaches the node N. The previous Q value is stored by

the slave latch. When CLK rises from low to high, the N value is stored by master

latch and output propagates from N to Q and settles as the output Q. Setup time

tsu is the propagation delay of the master latch, and Clock to output delay tc2q is the

propagation delay of the slave latch.
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Figure 3.13: Differential Sense-Amplifier flipflop(SAFF) with SR latch

Sense amplifier based flipflop (SAFF) shown in Fig. 3.13 is a differential

mode D-flipflop. When the clock signal (CLK) rises from low to high, either node

N1 or N2 falls to zero depending on the input D. The weak ON NMOS transistor

(Equalizer) between node X and Y is necessary for floating node issues discussed later

in this paper. A basic NAND type SR latch is attached to the output nodes N1 and

N2, to avoid glitches. For the SAFF, tsu is almost zero or even negative, and tc2q is the

propagation delay of sense amplifier and latch. Note that both N1 and N2 eventually

fall to zero, however the sense-amplifier settles in a state dictated by which node falls

faster.

Single-input TLG (TLG-1) shown in Fig. 3.14 has a similar operation mecha-

nism as SAFF. When CLK is low, nodes N1 and N2 will be pulled high. When CLK

rises, either the node N1 or N2 will discharge according to input D value. The power
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Figure 3.14: Single-input TLG (TLG-1) with SR latch

consumption is be less than the SAFF because there is less parasitic capacitance that

is discharged during the evaluation phase. Note that only one of N1 or N2 falls to

zero and there is no contention (race) in the evaluation of the outputs.

Reliability enhanced single-input TLG (KVFF) shown in Fig. 3.15 is an

improved version of TLG-1, referred as KVFF. The circuit is the same as TLG-1,

with two keeper circuits Mfb1 and Mfb2, consisting of minimum sized transistors,

are added on both nodes N1 and N2. This avoids N1 and N2 nodes floating at any

point when CLK is high. The operation is identical as TLG-1 except for the keeper

circuits which are activated after one of nodes N1 or N2 falls to zero. After sense

amplifier evaluation is done, the winning side output is discharged to ’0’, which turns

on the feedback transistors on its side. The feedback transistor Mfb1/Mfb2 provides

an alternate path from output to ground. The KVFF diminishes the floating node

problem of TLG-1. Once the evaluation is complete and N1 or N2 settles at zero,
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Figure 3.15: The schematic of improved single-input threshold gate (KVFF) without
latch

changing input in the same clock cycle won’t cause floating nodes because of the

keeper circuits. This feedback mechanism also enhances the circuit reliability against

noise injection after evaluation.

3.2.2 Experiment Results

We compare four basic designs, master-slave D-flipflop (DFF) from a commercial

standard cell library, sense amplifier based flipflop (SAFF), single-input TLG (TLG-1)

and enhanced single-input TLG (KVFF).

Performance Comparison

Both the setup time (tsu) and the clock to output delay (tc2q) are considered by

all synthesis tools when performing timing optimization. For a logic path starting
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from a D-flipflop to a D-flipflop, both clock to output as well as setup time must

be considered. As such, their sum is important to minimize clock period or enhance

timing slack. To do a fair comparison between different sequential elements, the total

delay (ttotal) instead of clock to output delay is used as criteria in our experimental

results. ttotal = tsu + tc2q

The designs in both 65nm and 28nm process were appropriately sized. We chose

the worst case corner for all of the simulations. The worst case corners were both

PMOS and NMOS slow (SS), 1.1V supply voltage, and 105◦C for the design in 65nm

process, and SS, 0.9V supply voltage, and 125◦C for the design in 28nm process.

To make it more realistic in VLSI design, we choose the synthesize corner for our

comparison which is the slowest corner in characterized standard CMOS cell library.

This corner is used in synthesize procedure to find the maximum operating frequency.

The load capacitance and signal transition time are also picked from the characterized

library data to make sure the most realistic results.

Table 3.8 and Table 3.9 show the delay, energy and energy delay product (EDP)

comparison for the design in 65nm process. As the clock to output delay is similar

among all the designs, the total delays are mainly affected by the setup time. In

schematic based results, the effective delay of the TLG-1 and KVFF is 28% and

24% faster than the DFF, respectively. Schematic based simulation result shows that

EDP of TLG-1 and KVFF is 38% and 21.3% smaller than DFF. In layout based

results, these numbers are 33% and 25%. The energy is calculated by integrating the

average power consumption over the whole clock period. The input switching activity

was 30%.Layout based result shows that EDP TLG-1 and KVFF is 47% and 19%

smaller than DFF. The total number of transistors and layout areas are also shown

in the respective tables, showing that the KVFF is 20% larger than the Master-Slave

D-flipflop and has 7% higher energy consumption.
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tsu (ps) tc2q (ps) teff (ps) Energy

(fJ)

EDP

(fJ×ps)

MOSFET #

DFF 70 228 298 12 3511 26

SAFF -7 235 228 11 2489 20

TLG-1 -12 225 213 10 2172 19

KVFF -16 242 226 12 2763 25

Table 3.8: 65nm technology design comparison (schematic). The simulation is done
on slow/slow corner, 1.1V VDD and 105◦C. The load cap is 20fF . Signal transition
time is 70ps.

tsu (ps) tc2q (ps) ttot (ps) Energy

(fJ)

EDP

(fJ×ps)

Area

(µm2)

DFF 90 264 354 15 5245 7.8

SAFF -4 258 254 13 3271 8.32

TLG-1 -6 242 236 12 2805 7.28

KVFF -11 277 266 16 4233 9.36

Table 3.9: 65nm technology design comparison (layout). The simulation corner is
slow/slow, 1.1V VDD and 105◦C. The load cap is 20fF . Signal transition time is
70ps.

Table 3.10Table 3.11 show the delay, energy and energy delay product (EDP)

comparison for designs in 28nmRVT process. The setup time of three differential

mode circuits are again much smaller than the Master-Slave D-flipflop. The difference

between rise and fall setup times of input D is significant for designs in 28nm than

the same compared to 65nm designs. The reason for this is that the PMOS transistor

in the inverter that produces signal D is slower than the same in 65nm designs. We

can observe that the relative difference between schematic and layout numbers for

the four circuits was significantly higher in 28nm designs due to larger contribution

of parasitics. The total delay of the proposed TLGs are 25%, 22% faster in layout.
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Comparing to SAFF in 65nm, the ETLG-1 is 6ps faster. The energy consumption of

TLG-1 and ETLG-1 is 28% and 14% smaller than the Master-Slave D-flipflop, leading

to a 46% and 25% improvement in EDP.

tsu(ps) tc2q(ps) teff (ps) Energy

(fJ)

EDP

(fJ×ps)

MOSFET #

DFF 28 78 106 4.14 443 26

SAFF 7 82 89 3.67 327 20

TLG-1 4 78 82 3.48 287 19

KVFF 3 82 85 3.93 334 25

Table 3.10: 28nmRVT technology design comparison (schematic). The simulation
corner is slow/slow, 0.9V VDD and 125◦C. The load cap is 7.5fF . Transition time
of all signals is 65ps.

tsu (ps) tc2q (ps) ttot (ps) Energy

(fJ)

EDP

(fJ×ps)

Area

(µm2)

DFF 30 100 130 5.93 768 2.6112

SAFF 10 97 107 4.60 490 2.9725

TLG-1 10 87 97 4.27 415 2.7982

KVFF 8 93 101 5.08 513 3.6194

Table 3.11: 28nmRVT technology design comparison (layout). The simulation cor-
ner slow/slow, 0.9V VDD and 125◦C. The load cap is 7.5fF . Transition time of all
signals is 65ps.

Table 3.12, 3.13 and 3.14 show the delay, energy and EDP comparison for DFF

as well as two KVFF cells in 40nmGP technology with three input transition times.

Both KVFF cells(KVFF1 and KVFF2) have same transistor size. The layout of

KVFF2 follows CMOS standard cell design rule in 40nm while KVFF1 is designed

for symmetric parasitic matching. CLK transition time and load cap are the same.

In Table 3.12, the input transition is 4.64ps. The setup time of all three designs
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are negative in this case. 40nmGP technology has fast nFET and pFET. The total

delay of KVFF1 and KVFF2 are 28% and 14.2% faster than DFF. Standard cell

layout constrain such as limited well height and power rail increase local routing

inside KVFF. The parasitic in KVFF2 is more than KVFF1, which increase energy

consumption during switching. As a result, EDP of KVFF1 is 19% lower than DFF

while KVFF2 is 2% higher than DFF.

Input transition time has significant impact on setup time of both DFF and

KVFF. Long input transition time would lead to long setup time. Comparing with

Table 3.12 which has fast input transition (4.64ps), input rising/falling time in Ta-

ble 3.13 and 3.14 are much higher (216.6ps and 806.7ps). The setup time of DFF

changes from −12ps to 198ps and setup time of KVFF increases from −14ps to more

than 200ps. In Table 3.13 where input slew is moderate, the total delay of KVFF1

is 13.2% lower than DFF and EDP is almost the same as DFF. While the EDP of

KVFF2 is 12.7% worse than DFF. In Table 3.14 where input is slow, EDP of both

KVFF1 and KVFF2 are both higher than DFF.

tsu (ps) tc2q (ps) ttot (ps) Energy

(fJ)

EDP

(fJ×ps)

DFF -12.3 145.8 133.5 6.37 850

KVFF1 (symmetric layout) -11.7 107.8 96.1 7.16 688

KVFF2 (standard layout) -14.6 129.3 114.6 7.57 867

Table 3.12: 40nmGP technology design comparison (layout). The simulation corner
typical/typical, 0.9V VDD and 25◦C. The load cap is 7.3fF . CLK transition time
is 110ps and input transition time is 4.64ps.
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tsu (ps) tc2q (ps) ttot (ps) Energy

(fJ)

EDP

(fJ×ps)

DFF 40.7 146.2 186.7 6.40 1195

KVFF1 (symmetric layout) 53.8 108.2 162.0 7.17 1161

KVFF2 (standard layout) 48.6 129.3 177.9 7.57 1347

Table 3.13: 40nmGP technology design comparison (layout). The simulation corner
typical/typical, 0.9V VDD and 25◦C. The load cap is 7.3fF . CLK transition time
is 110ps and input transition time is 216.6ps.

tsu (ps) tc2q (ps) ttot (ps) Energy

(fJ)

EDP

(fJ×ps)

DFF 197.9 144.9 342.8 6.70 2297

KVFF1 (symmetric layout) 234.4 108.1 342.5 7.39 2531

KVFF2 (standard layout) 224.1 129.2 353.3 7.85 2773

Table 3.14: 40nm technology design comparison (layout). The simulation corner
typical/typical, 0.9V VDD and 25◦C. The load cap is 7.3fF . CLK transition time
is 110ps and input transition time is 806.7ps.

Setup and hold time distribution

MonteCarlo simulation is applied to evaluate setup time and hold time distributions.

Fig. 3.16 shows statistic features of setup and hold time for different designs. Master-

slave D-flipflop has a large positive setup time and negative hold time. All threshold

gate and differential flipflop have positive hold time and small setup time. All multi-

input threshold gates have negative setup time. The standard deviation cross 100

MonteCarlo samples are also shown in figure. PNAND-3 has minimum MonteCarlo

variation for both setup time and hold time. In large circuit synthesis, it is the to-

tal delay (tsu + tc2q) that mostly impact circuit’s clock frequency and area. With

small setup time and relative similar C2Q delay, the differential mode flipflops and

threshold gates would improve area and power comparing to masterslave D-flipflop.
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Figure 3.16: Setup time and hold time distribution comparison on 65nm designs.
100 MonteCarlo simulations are applied on foundry set statistic corner, 1.2V VDD
and −40◦C. The data point center is the mean value (hold time, setup time) and the
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Reliability Comparison

We compare the four circuits with respect to two reliability criteria. The first criteria

is sensitivity to process variation. The sense amplifier in (SAFF) Fig. 3.13 works well

without process variation. However, if there is transistor mismatch due to process

variation, the evaluation may prefer one side compared to the other. Therefore the

size of transistors may affect the reliability of the SAFF under process variation.

The second criteria is sensitivity to noise. Noise sensitive circuits may suffer an

evaluation error or a so called soft error. A soft error is caused by a sudden injection of

charge from alpha particles, cosmic radiations or even coupling signal noise. A floating

node at any point is vulnerable to charge injection. The equalizer in Fig. 3.13 is used
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to avoid floating nodes N1 or N2 when CLK is high (evaluation phase) and the input

D switches. There is a trade off concerning the size of the equalizer transistor. If the

equalizer transistor is too large, the evaluation by sense-amplifier may be affected.

If the equalizer transistor is too small, it may not be able to counteract the charge

injection on nodes N1 and N2.

In order to assess sensitivity to process variations, 100,000 MonteCarlo simulations

were run on all four circuits. All the parameter settings were set by statistical corner

which uses the foundry’s fabrication data. DFF, TLG-1 and ETLG-1 had zero out

of 100,000 functional failures for MonteCarlo simulations indicating highly reliable

operation. While SAFF had five out of 100,000 functional failures in 28nm processes,

indicating the influence on reliability by equalizer transistor. Please note that the

length of the equalizer transistor in SAFF was increased beyond minimum length in

order to obtain zero functional failures in MonteCarlo simulations.

A breaking capacitor experiment was carried out to demonstrate the sensitivity

to noise. In this experiment, a pre-charged capacitor is connected to a sensitive node

through an ideal switch (Fig. 3.17 (a)). After CLK is settled to high, input D is

switched to an opposite value and current pulse is injected on the sensitive node

under test. The sensitivity of the circuit depends on how large a current pulse it can

tolerate without switching the state. The total charge injected on the node can be

increased by increasing the capacitance value. The sensitivity is directly proportional

to the minimum charge (Qcrit) that can switch the state of the circuit.

To test differential mode circuits, the capacitor was connected to N1 (or N2 since

the circuit is symmetric) through ideal switches. The input signals are shown in

Fig. 3.17 (b). The minimum Qcrit between two nodes is the critical charge of the

circuit. A similar experiment was applied to all nodes in the Master-Slave D-flipflop

to find the weakest node, which was node M in Fig. 3.12. The Qcrit for all four designs
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in both 65nm and 28nm process is shown in Table 3.15. The Qcrit of KVFF is three

times bigger than TLG-1, which is on the same order as Master-Slave D-flipflop.

CLK

D

Vc

Ic

(b)

Precharged 
Capacitor Vc

Ic

(a)

Node 
Under 
Test

Figure 3.17: The breaking capacitor experiment to determine the node reliability
against radiation and coupling noise: (a) The test circuit; (b) Signals applied in the
test.

Qcrit (fC)
65nm Technology 28nm Technology

Schematic Layout Schematic Layout

DFF 9.8 11.4 4.2 5.0

SAFF 8.2 11.8 3.9 5.5

TLG-1 2.7 3.7 1.2 1.5

KVFF 8.7 12.1 4.2 5.6

Table 3.15: Breaking capacitor experiment(schematic and layout). The simulation
corner is the same as other tables. All four circuits have zero out of 100,000 Monte-
Carlo functional failures on foundry provided statistical corner.

3.3 Circuit Implementation and Silicon Verification

Our OSA algorithm combined with transistor sizing takes into account all non-

ideal cases of circuit operation. The result in a robust library of PNAND-n cells for

n = 3, 5, 7, 9 and KVFF cell, collectively realizing a total of 72 threshold functions and
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all of their NPN equivalent functions 1 . Using process variation statistics provided

by the foundry, no failures were found in 100K Monte Carlo simulations accounting

for global variations and local mismatch, ensuring the robustness of PNAND cells.

3.3.1 Automated Design Flow with Threshold Gates

As stated in the introduction, a PNAND cell can be viewed as an edge-triggered,

multi-input flip-flop that computes a threshold function. With this view, the syn-

thesis methodology consists of first searching through cones of logic and performing

functional decomposition to extract a threshold function that can be implemented

by a PNAND Kulkarni et al. (2012). The resulting network, referred to as a hybrid

circuit, consists of conventional and PNAND cells. The method is referred to as hy-

bridization, and an example is shown in Fig. 3.18. Table 3.16 shows the results of

the replacing the logic in Fig. 3.18 by a threshold gate. The delay is measured by

simulation at slow/slow, 105 ◦C, 1.1V power supply corner, including clock to Q delay

and setup time of sequential elements. The leakage is measured at the typical/typical,

25 ◦C, 1.2V corner. The standard synthesis and physical design tools then further op-

timize the resulting netlist without modifying the PNAND cells. The hybridization

step improves power, area and leakage by absorbing the logic into the PNAND, as

well as reducing the output load on the feeder circuit C, which gets reduced in size

during the synthesis step. The design flow is shown on Fig. 3.19.

3.3.2 Post P&R Simulation Results

A standard cell library of PNAND-n cells, for n = 1, 3, 5, 7, 9 was designed in a

65nm LP technology. An accurate method for setup, hold time and power charac-

terization of the PNAND cells was also developed. Table 3.17 shows performance

1input Negation, input Permutation, output Negation
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Figure 3.18: Hybridization example: A threshold function replaced by PNAND

Table 3.16: Results of transformation in Fig. 3.18(C = Φ)

Parameter Conv. Hybrid Improvement

Delay(ps) 515 276 49%

Area(µm2) 54 33 38%

Energy(fJ) 63 45.6 27%

Leakage(nW ) 5.8 1.8 70%

Total input cap (fF ) 77.9 56.1 28%

comparison (post layout simulation) for a 28-bit 4-tap digital FIR filter, an AES

crypto-chip, a 32-bit MIPS CPU, and a 64-bit floating-point multiplier using the same

PNAND libraries and automated design flow. By introducing our proposed threshold

logic based synthesis method, we can further reduce power, power-variation, area,

leakage and wire-length of general digital circuits without sacrificing speed.
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Figure 3.19: Synthesis and hybridization steps

3.3.3 Silicon Verification

The original and improved PNAND cell library and design flow are validated and

evaluated on silicon by two separate tapeouts. The first chip included a two stage

Wallace Tree multiplier and cell array. Based on the measurement and post layout

simulation, both PNAND cell and chip architecture are improved. The improved

architecture were applied on second silicon verification where a Booth multiplier and

improved cell array were included. The second measurement was on the design’s full

speed. The results show that the hybrid circuit would be able to run on higher clock

frequency than its CMOS counterpart.
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Table 3.17: 65nm LP technique mapping improvements of hybrid over conventional
for various circuits

Circuit Power P Stdev Leakage Area Wirelength

FIR Filter 36% 44% 51% 27% 30%

32-bit MIPS 29% 35% 31% 11% 9%

FP Multiplier 23% 30% 27% 13% 19%

AES crypto-chip 16% 33% 18% 15% 33%

Chip Architecture

Fig. 3.20 shows the chip structure of the first design. The designs under test (DUT)

include two functional identical multiplier, one follows the standard CMOS design flow

(CMOS multiplier), the other is hybrid generated by threshold hybridization (Hybrid

multiplier). The two multipliers are place-and-routed within their own supply domain.

Therefore, the power consumption is calculated by measuring current flow through

the two separate power supply source.

The PNAND cells in this chip are same as Fig. 3.9. PNAND cells array include

two array banks. Each bank includes 32 copies of DFF, TLG-1, PNAND-3,5,9,11, 13,

shown in Fig. 3.21. All inputs are directly connected to register files. The outputs

are connected to 32 8-bit multiplexer. 3-bit row control signals are applied to select

the column under test, and send outputs back to register file.

Register files consist of input register file (IRF) and output register file (ORF).

IRF is 16 64-bit register which contains preloaded input test data. ORF has same size

and IRF and stores output observed data. value in both IRF and ORF are reached

by scan chain before and after test run. During run time, address generator generates

Read Addr for IRF and Write Addr for ORF, ensuring data are read and stored in
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proper sequence.

The clock signal are generated by two sources, on-chip clock generator and external

source. On-chip clock generator includes 8 ring oscillators with various levels and

two clock dividers. 24 frequencies can be generated by clock generator, which is

sufficient to cover various process corners and test frequencies. The on-chip clock

generator is calibrated for each die to provide accurate results. The external clock

source is for function verification and obtain data from/to register file. The external

clock frequency is lower than 200 MHz because of digital IO limitation. The register

file is reached through scan mechanism. since the external clock is synchronized

with data sending and receiving, the chip is clocked by external clock during scan

process. Fig. 3.22 shows a picture of the fabricated chip. The chip consists of 37 IOs,

input/output register files, two multiplier, and a PNAND cell array, the total area is

1mm× 1mm.

Fig. 3.23 shows the test signal sequence. Since IRF length is 16, 16 vectors can be

tested each round. The single test sequence consists of 2118 external clock cycles. A

global reset signal resets all sequential elements at the beginning of each test. Then

the scan mechanism is enabled for 1024 cycles, allowing input vectors to be scanned

into IRF. Then the address generator is reset again and clock source is switched from

external clock source to on-chip clock. After Addr reset is released, test vectors are

sent to DUT in sequence and ORF receives outputs. The read and store address are

controlled by address generator. The address generator stops on the last address to

prevent address overflow. After the test is done, clock is switched to external clock

source. Then the data in ORF is scanned out by Scan mode signal.

The first design doesn’t consider clock glitches during clock source transition.

Since the external and internal clock sources are not synchronized, a simple switch

from one to the other may generate glitches on CLK signal. Fig. 3.24 shows the
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Figure 3.20: Test chip architecture with Wallace tree multiplier and original
PNAND cell array

improved architecture in second chip. Booth multiplier and improved PNAND cell

library 3.10 are included. Comparing with the first chip, signal synchronizers and an

enable signal (EnClk) are added between clock sources and the multiplexer. During

the operation, EnClk is set to 1. The internal clock is disabled when CLK Enable is

0. The synchronizer consists of two serial connected flipflops. The input D of first

flipflop is driven by EnClk and clock pins are driven by clock signal that need to be

synchronized with.

Fig. 3.25 shows the new test sequence. EnClk is turned into 0 when clock source

switching is required. As being synchronized with current clock, it would turn off

the chip clock without any signal glitch. After clock transition is complete, EnClk is

turned back to 1, passing new clock to the entire chip.
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Two-stage Wallace Tree Multiplier

A two-stage 32-bit signed Wallace Tree multiplier was designed by our automated

design flow. The conceptual idea of applying hybridization to the two-stage multiplier

is shown on Fig. 3.26. The hybrid, as well as a conventional multiplier design, were

fabricated in the same technology for design flow verification.

Fig. 3.27a, Fig. 3.27b and Fig. 3.27c show measured and simulated values of

dynamic power as a function of frequency for 3 different switching activities. The

average improvement of hybrid over conventional multiplier is 34.7%. Fig. 3.27d,

Fig. 3.27e and Fig. 3.27f show power as a function of switching activity for 3 different

switching frequencies. The average power improvement is 34.4%.

Fig. 3.28 shows the average (over 19 dies) energy-delay product (EDP) versus

frequency, and the improvement of hybrid multiplier over conventional multiplier at

30% input switching activity. The vertical bar in the top part of Fig. 3.28 show the

3σ range of the EDP around the mean µ over the 19 dies. Note the µ − 3σ EDP
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Figure 3.22: Die photo of prototype chip:(1) Conventional multiplier; (2) Hybrid
multiplier; (3) Clock generator
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Figure 3.23: Input sequences for single test round

point of the conventional multiplier is significantly higher than the µ + 3σ of the

hybrid multiplier, at all frequencies. The lower part of Fig. 3.28 shows the percentage

improvement in the EDP of the hybrid multiplier, and the standard deviation over

the 19 dies, at each frequency. The energy-delay product for the hybrid is about

34% lower than the conventional design. Table 3.18 summarizes the two multiplier

measurement results.
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Figure 3.25: EnClk signal is included in test sequence to remove glitches during
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Figure 3.26: Hybridization of multiplier

Table 3.18: Test results of conventional and hybrid multipliers

Specification Conv. Hybrid Imp.(%)

Supply VDD 1.2V 1.2V –

Area(µm2) 41814 31680 24%

Leakage(µW ) 8.1 4.1 49%

Wire-length(µm) 160160 87243 45%

# Std. Cells 5546 4003 (212 PNANDs) 28%

Clock frequency 642MHz, 30% switching activity

Power (mW ) 31.1 20.7 33.6%

Average EDP (pJ × ns) 75.6 50.2 34%
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Two-stage Booth Multiplier

A 32-bit two stage booth multiplier with similar structure as Fig. 3.26 was designed

and fabricated on another batch. This chip includes 36 IOs. The total chip area is

1.024mm2.

Fig. 3.29a, Fig. 3.29b and Fig. 3.29c show measured and simulated values of aver-

age dynamic power as a function of frequency for 3 different input switching activities.

The average improvement of hybrid over conventional multiplier is 30.1%. Fig. 3.29d,

Fig. 3.29e and Fig. 3.29f show average power as a function of input switching activity

for 3 different operating frequencies. The average power improvement is 29.2%. The

vertical bars in Fig. 3.29 show the 3σ range of the power around the mean µ over the

24 dies. Fig. 3.30 shows the average EDP versus frequency with 30% input switching

activity. The average EDP of hybrid multiplier is 30.5% lower than CMOS multiplier.

Table 3.19 summarizes the two multiplier measurement results. The maximum op-

eration frequency the the maximum clock frequency each multiplier can run without

erroneous output bit.

Cell yield

PNAND cell arrays are fabricated to test the functionality. An exhaustive test vectors

are applied according to input number n. Meaning that the test vectors include all

possible combinations can occur on PNAND-n. The cell functional fail is determined

by if any of its exhaustive vectors generates wrong bit.

In the first chip, there are total 608 copies of each PNAND over 19 dies. The cell

function test are done on 20MHz clock frequency. The yield of PNAND-7 is 98% and

the yield of PNAND-9 is 96%.

The second chip was tested on its full speed. The yield of PNAND-7 is 93.1% and
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Table 3.19: Test results of booth multipliers

Specification Conv. Hybrid Imp.(%)

Supply VDD 1.2V 1.2V –

Area(µm2) 45982 30240 34.2%

Leakage(µW ) 11.4 5.7 50%

Wire-length(µm) 194133 130314 32.9%

# Std. Cells 5522 4385 (167 PNANDs) 20.6%

Clock frequency 591MHz, 30% input switching activity

Power (mW ) 36.2 25.3 30.2%

Average EDP (pJ ×

ns)

103.7 72.4 30.2%

Average Maximum

Frequency (MHz)

646 789 22.1%

the yield of PNAND-9 is 96.13%. Yield of the rest cells is 100%.
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Chapter 4

TECHNOLOGY SCALING OF THRESHOLD LOGIC GATE

In previous chapter, PNAND cells are designed on 65nmLP technology. The cell

and circuit implementation shows significant power and area improvement on normal

operation voltage. Exploring threshold logic performance on low geometry and low

supply voltage is also very important. In this chapter, we demonstrate how PNAND

perform on two process, 40nmGP and 28nmFDSOI technology. We also demonstrate

how threshold gate can be modified to increase robustness on low voltage operation.

4.1 PNAND Performance on 40nm GP Technology

PNAND-3, 5, 7, 9 are designed on 40nm GP technology. The normal power supply

is 0.9V. Comparing with 65nm designs, the sequential cells in 40nm are characterized

in a much wider input transition range. In 40nm, the transition time for input signal

is defined as the time difference between signal reach 30% and 70% of supply voltage.

In 40nm standard cell library, the cell is characterized with input transition time

range from 1.86ps to 384.3ps. In DFF, input signal is passed into master-latch by

CLK enabled inverter. When input transition is slow, the inverter recovers the slow

input into a sharp signal. Therefore, the setup time degradation is controlled by

the signal recovery of inverter chain in master latch. In PNAND cell, the inputs are

directly connecting input network without any recovery mechanism. When inputs

switch slowly and when the transition is close to CLK rise edge, the slow input

transition would slow down the charging of node N5 and N6. Voltages on N5 and

N6 control transistors M5 and M6 (Fig. 3.3) and discharging speed of node N1 and

N2. Therefore, slow input transition causes sense amplifier evaluation time to be
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extended. As the result, the setup time of PNAND degrades when input transition

is longer. CLK impact on setup time is not as significant as input signals. This is

because the sense amplifier in Fig. 3.3 is driven by inverted CLK signal CLK. The

CLK inverter regenerates a much sharper edge from CLK transition to drive the input

network. On the other hand, slow clock transition slow down rise time of both N5

and N6 on the same amount, which help sense amplifier to separate them

Table 4.1 shows setup time changes with both input and CLK transition time.

It clearly shows that setup increase dramatically with input transition. When Input

transition is as sharp as 1.86ps, setup time of all PNAND cells are negative. When

Input transition is median like 86.7ps, the setup times become positive, from single

digit in PNAND-3 to double digits. When input transition is as slow as 384.3ps, the

setup times increase to as high as 500ps, which is even higher than C2Q delay shown

in Table 4.1. The setup time of PNAND cell with small input numbers are generally

smaller than PNAND-9. With same input transition, relative slow CLK transition

would reduce setup time.

Table 4.1 shows C2Q delay with respect to CLK transition and output load. It is

easy to understand that the C2Q delay increases with large output load as it takes

more time to charge large load. When CLK transition is slow, the transition time

of CLK inverter is also slow. Even though CLK inverter can recover CLK edge

on some extent, the transition time of CLK which drives input network and sense

amplifier is still proportional to CLK transition. A slow CLK slows down sense

amplifier evaluation. Therefore, C2Q delay is larger when CLK input is slower. The

delay difference among different input configurations are not significant. In 40nm GP

technology, it is the slew rate that determines PNAND performance.

Fig. 4.1 shows the overall delay of DFF and PNANDs for input transition less than

100ps. The total delays of PNANDs are smaller than DFF when input transition is
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Table 4.1: Setup time vs clock transition time of PNAND-3, 5, 7 and 9 in 40nmGP
technology. Output load is set to 7.3fF . The simulation corner typical/typical, 0.9V
VDD and 25◦C.

Setup time (ps)

Input transition (ps)

1.86 86.65 384.3

CLK

transition

(ps)

PNAND-3

1.86 -22.4 79.7 461.9

44.05 -47.5 48.3 422.9

192.15 -66.9 9.1 377.4

PNAND-5

1.86 -15.9 94.7 517.1

44.05 -41.4 63.7 483.9

192.15 -59.5 26.5 433.1

PNAND-7

1.86 -17.2 94.7 518.6

44.05 -42.1 64.0 486.1

192.15 -60.5 26.9 429.1

PNAND-9

1.86 -4.9 97.8 527.6

44.05 -33.2 66.8 495.4

192.15 -52.6 33.6 440.6

less than 40ps. However, it is not a fair comparison because DFF only computes iden-

tity function and PNANDs usually compute a more complex multi-input threshold

function. When including delay of equivalent CMOS logic in DFF, the total delay is

much higher for CMOS logic equivalent circuit. In this figure, PNAND-3 computes

the smallest function, 3-input majority function. The total delay of PNAND-3 is less

than single DFF when input transition is less than 65ps.
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Table 4.2: C2Q delay vs clock transition time and output load of PNAND-3, 5, 7
and 9 in 40nmGP technology. The simulation corner typical/typical, 0.9V VDD and
25◦C.

C2Q delay (ps)
CLK transition (ps)

1.86 44.05 192.15

Output load (fF )

PNAND-3

0.1 91.0 109.7 133

7.3 113.2 132.6 154.4

35.8 209.5 228.7 251.2

PNAND-5

0.1 90.8 110.4 132.0

7.3 112.9 132.9 156.3

35.8 209.1 229.1 251.8

PNAND-7

0.1 99.3 119.4 141.6

7.3 120.2 140.4 165.4

35.8 216.4 236.4 257.9

PNAND-9

0.1 99.8 119.9 145.5

7.3 122.9 142.9 168.5

35.8 218.7 239.4 265.1

4.2 PNAND Performance on 28nm FD-SOI Technology

4.2.1 28nm FD-SOI Technology

In recent years, one major challenge of developing next generation of technology is

controlling leakage current. Develop bulk transistor with high performance and low

leakage for next generation become much more complex. Two possible candidates

to replace bulk techniques are 3D architecture and FD-SOI. Fully Depleted Silicon

On Insulator, or FD-SOI, is a planar process technology that delivers the benefits of

reduced silicon geometries while keep the manufacturing process simple STMicroelec-
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tronics (2018).

Fig. 4.2 shows sectional views of both bulk and an advanced FDSOI process called

Ultra-Thin Body and Buried oxide Fully Depleted SOI or UTBB-FD-SOI. Comparing

with conventional bulk process, the UTBB-FD-SOI has better electrostatic character-

istics. The buried oxide layer reduces source and drain parasitic and refines current

flow, which improves transistor behavior especially at low supply. The fully depleted

channel is very thin and undoped. The variations caused by doping fluctuation is

then eliminated. In other SOI technology such as Thick SOI or Extremely Thin SOI,

the thickness of oxide box is around 150nm. In UTBB-FD-SOI, the box is as thin as

25nm, which enables usage of body bias techniques to dynamically control transistor

threshold voltage.

In UTBB-FD-SOI (referred as FDSOI in the remaining of the chapter for short.),

threshold voltage control can be delivered by multiple strategies. Vt modulation

in FDSOI can be delivered by modifying gate oxide, well type, poly biasing and

body biasing. Gate oxide can be chosen from core oxide for core circuit, IO oxide
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Figure 4.2: Bulk vs FD-SOI technology STMicroelectronics (2018).

for IO transistors and LP core oxide for high density SRAM. IO transistors have

high nominal voltage and SRAM has low leakage and high density. The second

modification method is poly biasing. Without change the active area, transistor

gate length can be increased by adding certain polybiasing layer to layout. This is a

convenient way of modifying standard cells without geometry modification. The range

of effective length is from 24nm to 40nm. Poly biasing helps on reduce leakage with

a cost of slowing down transistors, which provides extra trade-off decision between

speed and leakage.

Different than bulk transistors that pFET has to be within n-type ground plane

and nFET within p-type ground plane, the implant type of ground plane in FDSOI

can be exchanged to realize different Vt flavors. Fig. 4.3 shows how to use ground

plane implant for Vt adjustment. For RVT flavor, the ground plane implant is same

as bulk process where p-type ground plane is under nFET and n-type ground plane

is under pFET. This configuration is also called standard well. The ground planes

are exchanged in LVT flavors where n-type ground plane is placed under nFET and

p-type ground plane is placed under pFET. It is also called flip well. For a nFET

with width of 0.21µm and length of 30nm, the Vt is around 480mV for RVT and

400mV for LVT.

The threshold voltage can also be shifted by body bias. Biasing voltage can be
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Figure 4.3: Use ground plane implant adjustment for RVT and LVT transistors in
FDSOI technology.

applied on VDDS and GNDS terminals in Fig. 4.3. A positive (negative) body-to-

source voltage can be applied on nFET (pFET) for forward body bias(FBB). FBB

lowers Vt, makes transistors faster and leakier. A negative (positive) body-to-source

voltage on nFET (pFET) sets reverse body bias (RBB). RBB increases Vt, make

transistors slower and less leaky.

4.2.2 Performance and Design Challenges

Before discuss design trade-offs in 28nm PNAND cell design. The conventional

DFF from standard cell library is evaluated for comparison. Fig. 4.4 shows setup time

and C2Q delay of DFF in three design scenarios: design with RVT transistors, LVT

transistor under zero body bias, and LVT transistors under 1.1V forward body bias.

In these three scenarios, relation of threshold voltages are Vt RV T > Vt LV T−0BB >

Vt LV T−FBB. Similar as in 40nm, the thresholds of computing input/CLK transition

are 30% and 70% of supply voltage and the threshold of computing C2Q delay is

50% of supply voltage. In Fig. 4.4, DFF with RVT transistors has highest C2Q

delay and setup time cross all data points when comparing with LVT flavor with

and without body bias. The setup time of two LVT DFFs is very close. The C2Q

delay of LVT with FBB is slightly faster than the one without body bias with lightest
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output load. However, the difference diminishes when output load becomes larger.

With output load as large as 98.4fF , the C2Q delay of LVT DFF with FBB is 44.5ps

higher than the one without body bias. The simulation results give the conclusion

that performance boost on DFF by FBB is very limited. In contrast with the Vt

comparison of single transistor, the overall delay under slow input transition and

large load for LVT favor without body bias is even better than with FBB.
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Figure 4.4: DFF performance comparison in three scenarios : design on RVT tran-
sistors, design on LVT transistor with zero body bias and design on LVT transistors
with 1.1V forward body bias. CLK transition is set to 33ps. The simulation corner
typical/typical, 0.9V VDD and 25◦C.

Fig. 4.5, 4.6, 4.7 and 4.8 show PNAND-3,5,7,9 setup time and delay. All four

circuits have similar trend on both setup time and C2Q delay. The setup time is

negative when input transition is as fast as 2ps and increases with higher input

transition time. As discussed previously, the setup time of PNAND cells is strongly

related to input transition. Unlike DFF, the setup time of RVT flavor is the lowest

and the one of LVT with forward body bias is the highest.

Vt value has a large impact on sense amplifier based design. Under same power

supply, the benefit of small Vt is directly reflected on larger operation headroom

Vgs − Vt. This effect can be observed on C2Q delay of all PNAND cell designs. The

C2Q delay of PNANDs with RVT transistors is the slowest and the LVT PNANDs
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with FBB is the fastest. This effect is more dominate with large output load. For

PNAND-9, the difference between LVT with FBB and RVT is 60% when output

load is 89.4fF . The difference is 45% for PNAND-7, 44% for PNAND-5 and 37%

for PNAND-3. All C2Q delay is simulated with input combination of (n+1
2

: n−1
2

).

Comparing with DFF, C2Q delay of PNAND cells are generally faster, especially for

LVT. With 7.5fF load, LVT PNAND-9 without body bias is 30% faster than LVT

DFF. With 1.1V FBB, PNAND-9 is 54% faster.
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Figure 4.5: PNAND-3 performance comparison in three scenarios : design on RVT
transistors, design on LVT transistor with zero body bias and design on LVT tran-
sistors with 1.1V forward body bias. CLK transition is set to 33ps. The simulation
corner typical/typical, 0.9V VDD and 25◦C.

Fig. 4.9a shows the overall delay comparison between DFF and PNAND-3 with

three Vt flavor. For RVT, the overall delay of PNAND-3 is lower than DFF when

input transition is lower than 80ps. DFF on LVT is much faster than RVT. The

overall delay of DFF would be faster if input transition time is higher than 30 to

35ps. Fig. 4.9b shows energy delay product (EDP) of hybrid and CMOS equivalent

circuit for threshold function y=[22111;4]. The EDP of two circuits are close when

input switching activity is low (10%). When input switching activity is as high as

30%, the EDP of hybrid is 25.6% less than its CMOS counterpart. This is due to

the fact that the energy consumption of PNAND doesn’t change much with respect
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Figure 4.6: PNAND-5 performance comparison in three scenarios : design on RVT
transistors, design on LVT transistor with zero body bias and design on LVT tran-
sistors with 1.1V forward body bias. CLK transition is set to 33ps. The simulation
corner typical/typical, 0.9V VDD and 25◦C.
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Figure 4.7: PNAND-7 performance comparison in three scenarios : design on RVT
transistors, design on LVT transistor with zero body bias and design on LVT tran-
sistors with 1.1V forward body bias. CLK transition is set to 33ps. The simulation
corner typical/typical, 0.9V VDD and 25◦C.

to input switching activity while energy consumption of DFF increases significantly

when input switches more often.

Leakage power of PNAND cells and DFF on three scenarios are shown in Fig. 4.10.

Reducing Vt speeds up transistors with the cost of increasing leakage. Leakage of LVT

cells with 1.1V FBB is one order higher than LVT cell without body bias and more

than two orders higher than RVT cells. All PNAND cells leaks more than DFF. This is
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Figure 4.8: PNAND-9 performance comparison in three scenarios : design on RVT
transistors, design on LVT transistor with zero body bias and design on LVT tran-
sistors with 1.1V forward body bias. CLK transition is set to 33ps. The simulation
corner typical/typical, 0.9V VDD and 25◦C.

understandable that PNAND cell computes larger function than DFF. The transistor

sizes in sense amplifier are also larger. PNAND cells with more inputs leaks more

because of the same reason. Sense amplifier in large PNANDs are usually larger than

small PNANDs. Combining setup time and C2Q delay, PNAND cells usually have

better overall delay when input transition is fast. In hybridization, input transition

is set to lower than 40ps in order to show delay benefit.

4.3 65nm Low Voltage Operation

The major drawbacks shared by nearly all threshold logic circuit architectures

is their sensitivity to process variations and unsuitability for low voltage operation.

The transistor overhead voltage drops when lowing supply voltage. For differential

threshold gates like PNAND, their operation robustness would significantly degrade

at low voltages due to process variation. In this section, we present a solution to

these problems, and show that the potential advantages of TLGs, namely, smaller,

faster, lower power and robust circuits are possible at low voltage.
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4.3.1 Threshold Logic Gate Architecture

Fig. 4.11 shows the schematic of a TLG. The circuit structure without the resistors

is referred to as TLL. Details of this circuit and comparison with other implementa-

tions based on the same principle can be found in Samuel et al. (2010). Similar as

PNAND, TLL also consists of 5 components: (1) a differential sense amplifier, which

consists of two cross coupled NAND gates, (2) a SR latch, (3) two discharge devices,

(4) left (LIN) and right (RIN) input networks, and (5) a network of resistors. TLL-n

refers to a TLL with n inputs in the LIN and the RIN. Clock input signal directly

drive source terminals of input network.

Functionally, TLL can also be viewed as a complex, multi-input edge-triggered

DFF, identical to PNAND. In general, a TLL has a lower setup time than a DFF while

its clock-to-Q delay is comparable. A TLL also presents a lower input capacitance

but higher clock capacitance than a DFF. In TLL, clock pin capacitance changes
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when number of ON transistors in input network is different. Therefore, CSA is

required for threshold function mapping. CSA results in a constant load on the

clock input regardless of the input vector which is very important for construct clock

tree to deliver clock signal. TLL can also be implemented in hybridization, which

contribute to reducing the area and power when TLL are judiciously incorporated in

logic networks.

4.3.2 Low Voltage Operation

Standard cell layouts of TLL circuits based on Fig. 4.11 (without the resistor

network) were carried out for n = 3, 5, 7, 9, using a commercial 65nm LP process,

with nominal Vdd = 1.2V . Optimal sizing of the input network, the sense-amp and

the output latch were performed to minimize delay and minimize the circuit func-

tional failures in the presence of process variations based on 100,000 Monte Carlo

simulations. Unfortunately, failures begin to manifest as soon as the supply volt-

age is reduced below 1.08V . This characteristic is shared by all TLG architectures

including PNAND.

92



Latch

M2

M5

M3

M6

x1 yn y2 y1

M9 M10

M1 M4

N2

M7 M8

N5 N6

M11 M12C
LK C
LK

xnx2 CLK

N2
OUTS

R
N1

Sense Amp
Discharge 

Device

Resistors

LIN RIN

... ...

Figure 4.11: Schematic of a TLL circuit with resistor network.

Table 4.3: TLL failures in 100K MC simulations without resistor network

VDD
Cases

2:1 3:2 4:3 5:4

0.7 33 713 3232 8478

0.65 253 2185 6697 13056

0.6 1500 5842 12153 19590

In this section, we describe the necessity of the resistor network and how it helps

low voltage operation of the TLL. Table 4.3 shows the results of 100,000 Monte Carlo

simulations of TLL-7 (schematic only) at low voltages at nominal corner, 25 ◦C, with

minimum size input transistors and the output buffer sized to match the minimum

drive strength of standard DFF in CMOS library. Table 4.3 shows significant func-

tional failures at low voltages. The case K:K−1 represents the situation where there

93



are K active transistors in the LIN and K − 1 active transistors in the RIN, and

vice-versa. Note K = 5 requires a TLL-9. The higher the value of K, the greater the

number of input transistors and the complexity of the functions that can be imple-

mented with a TLL. The number of functions with K ≤ 3 is too small and provide

no substantial advantage over conventional logic implementations. It is only with

K ≥ 4, do we see a significant compaction of logic and reduction in power with the

use of TLLs.

55

Figure 4.12: Simplified input network of TLL

We now examine how the resistor network shown in Fig. 4.11 might help in im-

proving the robustness of the TLL at low voltages. Fig. 4.12 shows a simplified

version of one of the input networks, with and without the resistor network. Con-

sider Fig. 4.12(a), which depicts the evaluation of the TLL. Let t5 (t6) denote the time

when N5 (N6) reach the threshold voltage of M7 (M8), and tsen denote the minimum

time difference between t5 and t6 for the sense amplifier to correctly determine the
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output. Thus the TLL correctly computes the function if

∆t =

 t6 − t5 ≥ tsen output = 1,

t5 − t6 ≥ tsen output = 0.
(4.1)

Let C5 denote the total capacitance of node N5, which includes the gate capacitances

of M1, M7, the drain capacitances of M11 and those of the transistors in the LIN. N5

and N6 are initially discharged to 0. When the clock rises from 0 → 1, N5 and N6

rise to Vdd. The active pFETs in the LIN and RIN immediately enter the saturation

region, where current is Is = µpCox(W/L)(Vdd− | Vtp |)2. Assuming that there are K

and K − 1 active pFETS in the LIN and RIN, C5 = C6 = C, and Vt7 = Vt8 = Vtn,

then t5, t6 and the corresponding ∆t are approximately given by

t5 ≈
C5Vt7
KIs

, t6 ≈
C6Vt8

(K − 1)Is

∆t = t6 − t5 ≈
CVtn

K(K − 1)Is

(4.2)
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Note that the above approximate relations explain the trend in Table 4.3 for a fixed

Vdd, and as K varies. Similarly for a fixed K and as Vdd decreases, failures increase

because tsen increases as a result of reduced discharge currents through the sense

amplifier.

Fig. 4.12(b) shows a resistance RH in series with each pFET. If RH is relatively

very large, when the clock transitions from 0 → 1, most of the voltage drop will

be across the resistor, and the small Vds across the pFET will force it to operate in

the linear region. In this case, pFET is very close to a linear resistor, with current

I ∝ (Vdd− | Vtp |)Vds. If RH is sufficiently large, then the resistance of the pFET,

which is Rlin ≈ 1/(µpCox(W/L)(Vdd− | Vtp |), is negligible relative to RH . In this case

t5, t6 and ∆t are approximated by

t5 = −RHC5

K
ln

(
1− Vt7

Vdd

)
, t6 = −RHC6

K − 1
ln

(
1− Vt8

Vdd

)
,

∆t′ = t6 − t5 ≈ −
RHC

K(K − 1)
ln

(
1− Vtn

Vdd

) (4.3)

In a 65nm LP process, Is ≈ 4.11µA, for a minimum size pFET, when Vdd = 0.6V .

And typically, Vtn = 0.4233V , Vtp = −0.43V . For RH = 500KΩ, ∆t′ ≈ 6.12∆t,

showing a substantial improvement in the robustness of a TLL at low voltages. To

verify this, 100,000 Monte Carlo simulations were performed on TLL-7, considering

the global variations and local mismatch in the CMOS devices, for various values of

RH . For each value of RH , the maximum value of K in K:K-1 case that satisfied the

robustness criterion of 99.99% successes was computed. The results of the simulations

are shown in Fig. 4.13.

The plot shows a significant improvement in the robustness of a TLL with the

addition of resistors in series with the input network. At Vdd = 0.6V , with minimum

400KΩ resistor, all threshold functions with a 4:3 combination of active devices in
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the LIN and RIN can be implemented. Restricted to TLL-7, this constitutes a total

of 29 functions. The set of functions implementable is actually larger because the

subset of TLL-9, TLL-11 and TLL-13 functions with worst-case 4 : 3 combinations

can also be implemented. To implement all TLL-9 functions (additional 42 functions)

the Vdd has to be increased to 0.65, and RH to 500KΩ. The important take-away

from this discussion is that RH can be reduced and compensated by increasing the

supply voltage.

In general, lowering the supply voltage will significantly increase the delay. This

is true for both conventional CMOS logic and TLLs. However, reducing the supply

voltage of a TLL requires larger resistances in the input networks. To realize RH in

the range of a few 100KΩ, as required by TLLs, in a CMOS process is impractical.

Fortunately, emerging memory technologies offer a solution. In the following section,

we propose the use of oxide based resistive random access memory (RRAM) devices

as resistors for the TLL. As demonstrated in Fang et al. (2011), excellent and stable

resistance values were achieved for RH = 500KΩ. At this value, the minimum Vdd

that met the robustness criteria for TLLs was 0.6V. This is the reason for using

Vdd = 0.6V as the minimum supply voltage for the TLLs.

4.3.3 Resistor Network

The oxide-based resistive random access memory (RRAM) technology Wong et al.

(2012) is an emerging candidate for next-generation non-volatile memory (NVM).

Here we use RRAM as a CMOS compatible nano-scale resistor. For our application,

its resistance need only be set once. Hence, technically speaking we are using an

RRAM as a RROM. However to avoid confusion we will continue to refer to it as

an RRAM. Used in this way, an RRAM has excellent scalability (<10 nm) and good

retention (>10 years). Other NVM candidates such as spin-torque-transfer magnetic
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random access memory (STT-MRAM) Zhu (2008) and phase change memory (PCM)

Wong et al. (2010) can also be used. However, they have some undesirable features:

the resistance of STT-MRAM is relatively low ( a few kilo Ohm), and PCM has a

well-known time-dependent resistance drift (even without voltage stress) problem.

One of the concerns about RRAM is the resistance variation from device to device.

This is largely related to the manufacturing process control. Materials engineering

such as multi-layer oxide design can restrict the resistance variation to <10% standard

deviation around the medium off-state resistance of 500KΩ Fang et al. (2011). It

can be expected that as the RRAM technology matures, the manufacturing yield and

process variation will be further improved. The second concern is the time-dependent

resistance drift under voltage stress. There is a well-known exponential voltage-time

relationship in the switching dynamics of RRAM Yu et al. (2011): the switching

time exponentially depends on the applied voltage. To ensure a lifetime of at least

10 years at low voltage stress, we employed an RRAM compact device model Guan

et al. (2012) to study the dynamics of the resistance drift. Extrapolating from the

experimental data shown in Fang et al. (2011), and using 1/E model, we can see

from Fig. 4.14 that the lifetime of RRAM device is 10 years under continuous voltage

stress of 0.51V. The voltage drop across RRAM in a TLL is much less than 0.51V,

ensuring significantly longer lifetime.

Fig. 4.15 shows the yield of a RRAM based TLL-7 circuit in the presence of process

variations. The yield calculation is based on 100,000 Monte Carlo simulations, which

includes variations in both transistors and the RRAMs. The mean RRAM RH value

is 500kΩ and the simulations were carried out for σ/µ = 1%, 5% and 10%. The

simulations indicate that for high circuit yields with K = 4 the required σ/µ should

be no more than 5% which is expected in near future.

The RRAM devices need to be initially programmed to their high resistance state
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Figure 4.14: RRAM lifetime vs stress voltage

(HRS) only once after fabrication, and the programming circuitry for doing this has

to be part of the TLL. Note that RRAM devices are in the top metal layer and do not

contribute to the silicon area. The schematic and its 3D structure are shown in Fig.

4.16. Two selection elements Deng et al. (2013) are connected on both bottom and

top electrodes. In Fig. 4.16 (a), the top electrode is connected to one selector and

node N5 of the TLL, and the bottom electrode is connected to another selector and

pFETs in the input network. The CLK is first set to 1 and a large positive forming

voltage pulse is applied, to set the RRAM device to a low resistance state (LRS).

Following this, the CLK is set to 0 and a large negative reset pulse is applied which

resets the RRAM device to the high resistance state (HRS).

Fig. 4.16 (b) shows the 3-D arrangement of the different elements. Of the 3

pairs of pillars, the first and the last pair serve as selectors while the middle pair

are the RRAM resistors. Although they all have the same structure, the resistance

of selectors have high non-linear relation with voltage drop, which ensures that the

programming does not affect the normal operation.
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4.3.4 Cell Comparison of Energy, Delay and Area

Circuits implemented using conventional CMOS logic gates only will be denoted

as CCL where those employing TLLs will be referred to as hybrid circuits (they may

include inverters). Table 4.4 compares CCL and hybrid implementations of each

threshold function.

For CCL circuits, each of the functions was synthesized using a commercial 65nm

standard cell library. Since TLL is equivalent to an edge-triggered flipflop, each of

CCL implementations contain a DFF at the output of the function. The synthesized

implementations were simulated using HSPICE for 100 random vectors having 30%

switching activity for each primary input. The simulation corner was nominal, 25 ◦C,

and Vdd = 0.6V . The average energy-delay product (EDP) of each circuit is shown

in the table. The delay of each circuit was determined by applying the critical input

vector and reducing the clock period until the function ceases to simulate correctly

in SPICE. The TLL configuration contains RRAM with 500KΩ resistances.

The column labeled Ratio denotes the ratio of the energy-delay product (EDP) of

CCL to hybrid. Two important things to note are : (1) the energy-delay product of

hybrid cells is almost independent of the function, switching activity and input vec-

tors. Therefore the standard deviation of EDP is much less for hybrid circuits than

for CCL; (2) except for four functions (shown in bold) where CMOS circuits have

a slightly better energy-delay product, hybrid circuits show a consistent and signifi-

cant improvement in EDP. These four functions are mostly small AND/OR functions.

However even for these four functions, as the switching activity increases, the hybrid

implementations of these functions start to show improvement over corresponding

CCL counterparts. Significant reduction in silicon area was also achieved. Note that

the hybrid implementations of all the functions are the worst case implementations
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as they employ TLL-7 for all functions. While many of which can actually be im-

plemented with smaller TLL (TLL-5 and TLL-3) which would further reduce area

and EDP. The total area each of hybrid function using TLL-7 and 7 inverters was

29.12µm2. However it should be noted that every function doesn’t need all 7 invert-

ers especially if inverter inputs are driven by constants. Similarly multiple inverters

driven by the same signal can be merged. Comparing to the average area of CMOS

circuit which was 39.77µm2, it is a 26.7% reduction. When TLLs replace threshold

logic cones driving DFFs, the area savings will actually be greater because the input

capacitance that TLL cell exhibits compared to the CCL counterpart is significantly

reduced (approximately 30% for larger circuits). Synthesis tools can take advantage of

this to reduce the size of logic that feeds TLLs in a ASIC design, providing additional

reductions in area and power, without any performance degradation.
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Figure 4.17: A 16 inputs 1-bit sorter

4.3.5 Circuit Implementations and Comparison

In this section, we will show how circuit block implementations can benefit by

using RRAM based TLL cell library. The library includes TLL-3, TLL-5 and TLL-7

cells. Two different implementations of each circuit were created using 65nm com-

mercial library : one using CCL and the other using TLLs. The maximum operating

frequency of each circuit was determined using SPICE simulation. To estimate the

energy consumption of the clock tree, optimally sized clock buffers are included for

both CCL and hybrid circuits. CCL implementations were created using Cadence

RTL Compiler while the network of TLL cells were interconnected manually.

16-input Single bit sorter

Fig. 4.17 shows the structure of a 16-input single bit sorter. The sorter has 16 1-bit

inputs and 16 1-bit outputs. The sorter is especially useful in parity and instruction

control circuits and all symmetric functions.

Both circuits are two stage pipelines. For the hybrid circuit, the first stage is
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implemented by four 4-input sorters, each of which is implemented by four TLL-

7 gates. The second stage is implemented by 12 TLLs, 4 DFFs and CMOS logic

cells, by suitably replacing the remaining CMOS logic and flipflops with TLLs. The

peak frequency of CCL sorter at 0.6V is 125 MHz while the hybrid is 167 MHz.

Fig. 4.18 shows the energy-delay product of both circuits over different input switching

activities. As the switching activity increases, CCL power increases because more nets

toggle and there is greater glitches. On the other hand, TLLs have constant energy

irrespective of the input switching activity. Hence the hybrid circuit shows a larger

improvement in EDP especially for high switching activity applications. Typical

switching activities are between 20 and 30%. For these, the hybrid design shows

approximately 40% improvement in the EDP. Finally, the hybrid sorter (943µm2)

was 18% smaller than the CCL (1159µm2).

Fig. 4.18 shows the energy-delay product of CCL is even worse at lower voltages.

Therefore even though voltage of TLLs cannot be scaled down as much as CCL

circuits, the EDP of TLL is still much lower.
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Table 4.5: Area Comparison(µm2)

Hybrid Pure CMOS
Imp(%)

TLL CMOS Total Total

Sorter 503 440 943 1159 19

Comparator 3501 2114 5615 6822 18

128-bit Comparator

The second circuit implemented was a 128-bit comparator designed as a 4-stage

pipeline. The hybrid comparator consists of a hierarchy of several 8-bit compara-

tors. The peak frequency of CCL comparator is 222 MHz while that of the hybrid

is 250 MHz. Fig. 4.19 shows the energy-delay product of these two circuits as a

function of switching activity. The hybrid comparator required 19% less area than

the CCL (5615µm2 vs 6822µm2), and a 31-37% improvement in EDP over CCL for

switching activities of 20% to 30%. Table 4.3.5 shows the area comparison for both

sorter and comparator. Hybrid sorter is 19% smaller than CCL implementation and

hybrid comparator is 18% also smaller than CCL.
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Chapter 5

ENERGY-EFFICIENT NON-VOLATILE LOGIC

Systems powered by harvested energy must consume very low power and withstand

frequent interruptions in power. Non-volatile logic (NVL) addresses the latter by

saving the system state in flipflops enhanced with STT-MTJs as the non-volatile

storage devices. Manufacturing variations in the STT-MTJs and in CMOS transistors

significantly reduce yield, leading to overdesign and high energy consumption. In

this chapter, A detailed analysis of the design tradeoffs in the driver circuitry for

performing backup and restore, and a novel method to design the energy optimal

driver for a given yield is presented.

5.1 NVL System Powered by Harvested Energy

Microelectronic circuits that obtain their energy from ambient energy sources

(AES) such as solar, piezoelectric, vibration, airflow, and thermoelectric Priya and

Inman (2008) are expected to become essential for the burgeoning field of the Internet

of Things (IoT). Although there are substantial differences among them in power

density (ranging from tens of µW to tens of mW), as well as variations in the delivered

energy over time, it is the intermittent nature of the delivered energy by AES that

poses the most difficult challenge for microelectronic systems as they are generally

architected for continuous operation. Hence quickly predicting an impending power

disruption, and saving the state in some form of non-volatile storage is critical for all

but the simplest devices. The emergence of CMOS-compatible non-volatile memory

(NVM) technologies (e.g. MRAM, RRAM, PCRAM, CBRAM, FeRAM, STT-RAM,

etc.) over the past decade has opened the way for new circuit architectures for near
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instantaneous and energy-efficient backup and recovery.

NVM for backup and restoration during a power disruption can be implemented

in one of two ways. One option is to have a NVM array (NVMA) that is separate

from the local (volatile) registers where the intermediate computation results are

stored Khanna et al. (2014). Before the power failure, the data in all the registers

would be saved serially in the NVMA and later serially restored. The other option

(e.g. Koga et al. (2010); Wang et al. (2012); Ryu et al. (2012); Kwon et al. (2014);

Cai et al. (2015); Mahalanabis et al. (2015); Kang et al. (2016); Bishnoi et al. (2016b,

2017)) is to have each register be a non-volatile flipflop (NVFF), which operates like

a regular flipflop in normal mode, but has the added capability of storing its state in

a local non-volatile device before power failure.

The non-volatile devices that are most often employed in the various NVFF de-

signs have a common characteristic, namely, that they require a critical current to

be delivered for some minimum duration in order to switch their state. Process vari-

ations, including both within die and die-to-die variations pose a major challenge in

circuits with NV devices. These, along with variations in the CMOS circuits that drive

the NV device, result in statistical variations in the actual current being delivered.

Designing with such variations in mind requires quantifying the ensuing trade-offs be-

tween reliability (probability of successful backup), area of the driver circuits, backup

and restoration time, and power consumption. Optimal driver design of a NVFF

considering process variations, and examination of the trade-offs has not been well

explored in the existing literature. Ignoring variations in the transistors and MTJ de-

vices will result in poor functional yield. However, the traditional worst-case-corners

approach results in significant wastage of energy during backup.
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5.2 NVL Design Trade-offs

A common required component for storing and restoring data into and from the

NV devices is the backup driver (Cai et al. (2015); Ryu et al. (2012)). Fig. (5.1a) shows

the key components of such a circuit, without any of the control logic. It consists of

two inverters in series with an STT-MTJ device. A brief, high-level description of

the behavior of an STT-MTJ, sufficient to explain the design and optimization of the

backup driver circuit, follows.

Id,01
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M4

D
if
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n

ti
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MgO
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Free 

Layer

Ref. 

Layer

(a) (b)

VR

Figure 5.1: (a) Simplified driver circuit providing bidirectional current to switch
STT-MTJ cell; (b)The structure of STT-MTJ

5.2.1 The STT-MTJ Cell

An STT-MTJ cell consists of two ferromagnetic layers separated by an oxide in-

sulation layer (usually MgO) (see Fig. (5.1b)). The magnetization of the reference

layer is fixed, whereas that of the free layer can be switched. When the spin ori-

entations in the two layers are parallel (anti-parallel), the STT-MTJ cell has a low
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(high) resistance, denoted by RL (RH), which represent the logic 0 and 1, respec-

tively. TMR = (RH − RL)/RL represents the relative separation between the two

resistance values, with typical values between 50% to 200%, and can be as high as

600% Zhang et al. (2012). It is assumed that RH and RL are constants, independent

of the voltage across the device, and that the change in resistance between RL and RH

is abrupt. The switching time τ is the time at which the abrupt change takes place.

Due to thermal fluctuations, the STT-MTJ switching is a stochastic (Munira et al.

(2012); Bishnoi et al. (2016a); Wang et al. (2014)). However, deterministic switching

is assumed when the device current Id exceeds a critical value Ic.

Applying X = 1 in the backup driver will cause a current Id,01 to flow through

M1, the STT-MTJ and M4. This must exceed a critical current Ic,01 for a duration

of τ01 in order for the STT-MTJ to switch from RL to RH . Similarly, X = 0 will

cause a current Id,10 to flow in the reverse direction through M3, the STT-MTJ and

M2. This current must exceed a critical current Ic,10 for a minimum duration of τ10,

in order for the device to switch from RH to RL. Thus the four critical parameters

associated with an MTJ are RL, RH , Ic and τ .

There has been extensive work on the development of compact models of STT-

MTJ devices (Sun et al. (2011); Xu et al. (2015); Wang et al. (2014); Zhang et al.

(2015)). For feature sizes below 40nm, the model described in Wang et al. (2014)

(also in Zhang et al. (2015)) is used here, as it integrates a number of physical models,

enabling the analysis of static, dynamic and stochastic behavior, and reports results

that show good agreement with experiments. The expressions (Eqn. 5.1, 5.2 and 5.3)

for RL, RH and switching time τ are taken from Zhang et al. (2015). Where ϕ is the

potential barrier height of crystalline MgO, tox is the thickness of the oxide barrier,

A is the MTJ area. F is a factor calculated from the resistance-area product (R · A)

value of MTJ. For R · A = 10Ω · µm2, F = 332.2. C ≈ 0.577 is the Euler’s constant,
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ξ = E/kBT the thermal stability factor, V is volume of free layer, Ms is saturation

magnetization, Pref , Pfree the tunneling spin polarizations of the reference and free

layers. The parameters α, β and κ include multiple physical parameters. For the

purposes herein, they are technology constants.

RL =
tox

F × ϕ× A
× e1.025×tox×ϕ−1/2

=⇒ αtoxe
βtox , (5.1)

RH = (1 + TMR) ·RL, (5.2)

1

τ
= [

2

C + ln(π
2ξ
4

)
]

µBPref
eMsV (1 + PrefPfree)

(Id − Ic) =⇒ τ = κ
1

|Id − Ic|
(5.3)

RL and RH are comparable to the on-channel resistances of the CMOS transistors

in the driver. Therefore, the voltage drop across the MTJ during switching, combined

with the fixed power supply Vdd, limits the maximum current that a driver can deliver.

That driver current depends on the transistor dimensions together with RL and RH ,

which are in turn related to tox of the MTJ (Equations 5.1 and 5.2). Local and global

process variations in transistors and MTJs make the driver current a statistically

varying quantity among different devices on the same die and among the same devices

on different dice. However, before considering process variations, it will be instructive

to examine the factors that affect the transistor sizes in the driver, and how those

sizes might be determined.

5.2.2 Driver Sizes Ignoring Process Variations

Id,01, and Id,10 are functions of RL, RH , and the transistor widths W4, and W2,

where RL and RH are determined by tox (see Equation (5.1)). Writing a 1 (0) in the

MTJ will require Id,01(tox,W4) > Ic,01 (Id,10(tox,W2) > Ic,10), and the corresponding

switching time τ01 (τ10) will be inversely proportional to the excess current (Equa-

tion (5.3)).
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are also included. tox = 0.8nm

Let γ = W1/W4 = W3/W2 denote the ratio of the width of pFET M1 (M3) to

the width of nFET M4 (M2), and assume that γ is fixed. Fig. (5.2) shows HSPICE

generated plots of Id,01 and Id,10 as a function of the width of the corresponding nFETs

W4, and W2, respectively, for a specific value of tox.

From Fig. (5.2), it is seen that any pair of values for W4, and W2 are feasible

as long as the corresponding Id,01(W4) > Ic,01 and I10(W2) > Ic,10. The objective is

to choose values that minimize the total energy Etotal required to store a 0 and 1.

Etotal = Vdd(τ01Id,01(W4) + τ10Id,10(W2)). Let τ = max{τ01, τ10} be single time to

backup a 0 or a 1. Then
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Etotal(τ, τ01, τ01, Id,01, Id,10) =Vdd[τ01Id,01(W4) + (τ − τ01)I∗d,01(W4)

+ τ10Id,10(W2) + (τ − τ10)I∗d,10(W2)].

(5.4)

I∗d,01(W4) and I∗d,10(W2) are the currents after the state transitions have completed.

They are different from Id,01(W4) and Id,10(W2) because of the change in the device

resistances. Etotal is at least Vdd(τ01Id,01(W4) + τ10Id,10(W2)). Hence the minimum of

the average or total energy with a single backup time would require that τ = τ01 = τ10.

Then, using Equation (5.3), Id,01(W4) − Ic,01 = Id,10(W2) − Ic,10, or equivalently,

Id,01(W4) − Id,10(W2) = Ic,01 − Ic,10 = I∗c , where I∗c is independent of W . Therefore

the basic constraint that needs to be satisfied when determining the driver size is

Id,01(W4) = Id,10(W2) + I∗c . (5.5)

If Equation (5.5) is satisfied, then the total energy is Etotal = Vddτ(2Id,10(W2) + I∗c ).

Now τ = τ10 = κ/(Id,10(W2)− Ic,10), and Etotal can be written as

Etotal = Vddκ

(
2Id,10(W2) + I∗c
Id,10(W2)− Ic,10

)
. (5.6)

Equation (5.6) shows that with equal switching times for storing a 0 and 1, minimizing

the total energy is equivalent to maximizing Id,10(W2). This fact can be used to

determine W2 and Id,10(W2). W4 is determined by solving Equation (5.5).

Fig. (5.2) shows plots of Id,10(W2) (lower curve) and Id,01(W4) as a function of

driver transistor width 1 which are enumerated in discrete increments. Wmin is the

minimum possible width. W2,ub and W4,ub denote widths at which the currents Id,10

and Id,01 have saturated, i.e., for some small ε > 0, W2,ub = min{W | dI10/dW ≤ ε},

and W4,ub = min{W | dI01/dW ≤ ε}. Choosing a value larger than W2,ub or W4,ub

1Transistor width is normalized to the minimum width allowed in the technology. Therefore,
Wmin = 1
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will not increase the current appreciably, but increases area. As Etotal decreases with

Id, and Id is monotonic with respect to W , the width W2 that maximizes Id can be

determined by examining the boundary conditions.

Wmin W2,ub

Id

W

Id01

Id10

Id10(W2=W2,ub)

Id01(W4=Wmin)

Ic
*

Figure 5.3: Driver current versus transistor width Case I.

Case I: Id,01(W4 = Wmin) > Id,10(W2 = W2,ub) + I∗c .

This is shown in Fig. (5.3), and corresponds to the situation where RL << RH

(the low and high resistances are widely separated). Even choosing W2 = W2,ub, there

is no corresponding value of W4 for which Id,10(W2,ub) + I∗c = Id,01(W4), i.e., equal

backup times is not possible, and Equation (5.5) cannot be satisfied. Therefore, the

only choice is W4 = Wmin. Choosing a larger value for W4 makes writing a logic 1

even faster and wastes energy and area, because the actual backup time is determined

by the time required to write a logic 0. Choosing a smaller value for W2 makes writing

a logic 0 even slower.

Note that with RL << RH , the process of reading is more robust, at the expense
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of increased energy for writing. This is opposite to the general conclusion on NVM

design that wide RL and RH separation is always desired. In an AES powered NVL

design, devices with widely separated resistance states like an RRAM cell require

more energy for writing data than MTJs, while providing greater robustness when

reading data.

Wmin

Id

W

Id01

Id10

Id10(W2=Wmin)

Id01(W4=Wmin)

Ic
*

W2,ub

(a) Case II

Wmin W4,ub

Id

W

Id01

Id10
Id10(W2=Wmin)

Id01(W4=W2,ub)
Ic
*

(b) Case III

Figure 5.4: Driver current versus transistor width Case II and Case III.

Case II: Id,01(W4 = Wmin) > Id,10(W2 = Wmin) + I∗c .

This is depicted Fig. (5.4a). Since Id is monotonically increasing, Id,10(W2 =

W2,ub) > Id,10(W2 = Wmin). Therefore, Case I implies this Case. Hence if Case I fails,

and this Case is true, then

Id,10(W2 = W2,ub) > Id,01(W4 = Wmin)− I∗c

> Id,10(W2 = Wmin).

Equation (5.5) has a solution withW2 = W2,ub, andW4 = I−1d,01(Id,10(W2 = W2,ub)+I
∗
c ).

Note that choosing W4 = W4,ub will not satisfy Equation (5.5).

Case III: Id,01(W4 = W4,ub) < Id,10(W2 = Wmin) + I∗c .

This is shown in Fig. (5.4b), and corresponds to the situation when RL and RH
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are very close and their magnitudes are high, resulting in lower and flatter Id curves.

Higher resistances might be desired so as to reduce the possibility of a read disturb

and improve thermal stability. In this situation, Equation (5.5) has no solution, and

the only option is W4 = W4,ub, and W2 = Wmin. This speeds up the writing of a

logic 1, and slows the writing of a logic 0, when compared to both transistors being

of minimum size.

Wmin

Id

W

Id01

Id10

Id10(W2=W2,ub)

Id01(W4=W4,ub)

Ic
*

W2,ubW4,ub

(a) Case IV

Wmin

Id

W

Id01

Id10Id10(W2=W2,ub)

Id01(W4=W4,ub)

Ic
*

W2,ub W4,ub

(b) Case V

Figure 5.5: Driver current versus transistor width Case IV and Case V.

Case IV: Id,01(W4 = W4,ub) < Id,10(W2 = W2,ub) + I∗c .

This is shown in Fig. (5.5a). Since Id,10(W2 = Wmin) < Id,10(W2 = W2,ub), Case III

implies this Case. Hence if Case III fails, and this Case holds, then

Id,10(W2 = W2,ub) > Id,01(W4 = W4,ub)− I∗c

> Id,10(W2 = Wmin).

Equation (5.5) has a solution, which is W4 = W4,ub and W2 = I−1d,10(Id,01(W4 =

W4,ub)− I∗c ).

Case V: Id,01(W4 = W4,ub) > Id,10(W2 = W2,ub) + I∗c .

From Fig. (5.5b) it is apparent that there is solution to Equation (5.5), given by
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W2 = W2,ub and W4 = I−1d,01(Id,10(W2 = W2,ub) + I∗c ). Once again, note that choosing

W4 = W4,ub first, does not lead to a solution.

These five cases are summarized in Procedure EoptDriverSize shown in Algo-

rithm 1.

5.2.3 Driver Sizes Considering Process Variations

The algorithm for driver sizing described in the previous section is now adapted for

the case where the parameters of the transistors in the driver and the MTJ device are

subject to manufacturing variations. For an MTJ device, the primary design param-

eter is its dimension and for the driver circuit, they are the dimensions of the transis-

tors M1–M4. There are several secondary non-design parameters associated with the

MTJ, such as localized fluctuation of magnetic anisotropy, thermally activated initial

procession angle, thermal component of internal energy and etc. Raychowdhury et al.

(2009), whose variations are not modeled in present work.

For an MTJ device, it has been shown that variations in tox have the most signif-

icant impact on energy consumption Munira et al. (2012). This is due to fact that

RH and RL have an exponential dependence on tox (see Equations (5.1) and (5.2)).

During fabrication, the oxide is grown over the entire die, and consequently, it is

assumed that the variation in its thickness is the same for all devices. Hence, fol-

lowing (Munira et al. (2012); Wirnshofer (2013)), tox variation is assumed to global.

Consequently, the length LMTJ and width WMTJ of the MTJ can be assumed to

be fixed at the minimum feature size of the technology, and that the deviations in

tox among different MTJs on a given die will be the same. On the other hand, the

dimensions of the CMOS transistors in the driver are assumed to be subject to both

local and global variations. Thus, the widths W2 and W4 are modeled as independent

random variables centered around their respective nominal values W 2 and W 4, which
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1 EoptDriverSize(Wmin,W2,ub,W4,ub);

output: Energy optimal values of W2,W4

2 if Id,01(W4 = Wmin) > Id,10(W2 = W2,ub) + I∗c then

3 W2 = W2,ub;

4 W4 = Wmin ; /* case I */

5 endif

6 else if Id,10(W2 = W2,ub) > Id,01(W4 = Wmin)− I∗c > Id,10(W2 = Wmin) then

7 W2 = W2,ub;

8 W4 = I−1d,01(Id,10(W2 = W2,ub) + I∗c ) ; /* case II */

9 endif

10 else if Id,01(W4 = W4,ub) < Id,10(W2 = Wmin) + I∗c then

11 W2 = Wmin;

12 W4 = W4,ub ; /* case III */

13 endif

14 else if Id,10(W2 = Wmin) < Id,01(W4 = W4,ub)− I∗c < Id,10(W2 = W2,ub) then

15 W4 = W4,ub;

16 W2 = W2 = I−1d,10(Id,01(W4 = W4,ub)− I∗c ) ; /* case IV */

17 endif

18 else

19 W2 = W2,ub;

20 W4 = I−1d,01(Id,10(W2 = W2,ub) + I∗c ) ; /* case V */

21 endif

Algorithm 1: Computes optimal transistors sizes W2,W4
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Figure 5.6: Frequency histograms of RL and RH using 10K MonteCarlo samples.
Data for CMOS is from a 40nm commercial library with foundry supplied parameters
and HSPICE models. Data for MTJ variations was generated assuming tox = 0.8nm
and σtox = 0.1tox, and using models in (Wang et al. (2014); Zhang et al. (2015)).

are to be specified as part of the design.

Variations in tox result in variations in RL and RH (see Fig. (5.6)), and variations

in tox, W2, and W4 will result in corresponding variations in the driver currents.

Fig. (5.7) shows frequency histograms of Id in a driver, assuming different sources

of variations. The inset plot shows the histogram of Id considering local and global

variations only in the driver transistors, and the outer plot includes variations in the

transistor dimensions and tox of the MTJ. The plots indicate that variations in tox

overwhelm the effect of variations in the transistors’ dimensions. However, in the

interest of generality and applicability to scaled geometries, the currents Id,01 and

Id,10 are modeled as a function of a collection of random variables over the parameter
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space (W2,W4, tox).
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Figure 5.7: Frequency histogram of Id using 10K MonteCarlo samples. MonteCarlo
configuration is the same as 5.6.

Fig. (5.8) shows plots of Id as a function of the (normalized) widths of the driver’s

transistors. The red (Id,10) and blue (Id,01) solid curves correspond to the case where

no variations are considered in the transistor dimensions nor in the tox of the MTJ.

These plots are similar to those shown in Fig. (5.2). The plots also show individual

populations (10K) of the Id,10 and Id,01 values generated by Monte Carlo simulations,

by varying (W2,W4, tox) around their nominal values [W 2,i, W 4,j, tox], for (i, j) ∈

[1, n]. Let S(W 2,W 4, tox) denote the population of samples centered at (W 2,W 4, tox).

The problem to determine the energy-optimal driver size in the presence of process

variations is to identify the population (i.e. the nominal values W 2,W 4) that have

at least y% (y being the yield) of the samples resulting in a successful backup and
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Figure 5.8: Id current vs driver width. Blue line (dots) is Id,10, Red line (dots) is
Id,01. Lines are with no process variation, dots are currents with tox and CMOS (local
and global) variation. Note: To avoid clutter, only a subset of widths are plotted.

restore, and have minimum average energy. Yield and energy are related. To see how

to compute energy as a function of yield, consider samples of Id shown in Fig. (5.8).

Each pair of data points (red and blue dots) within a population has an associated

backup time τ01 and τ10, that can computed using Equation (5.3). The corresponding

total energy would be calculated by Equation (5.4) where τ = τy. This energy is

computed for all the samples in a given population whose backup times fall within

the y percentile, for a given yield y.

Fig. 5.9 shows plots of the average energy versus the driver width, for several

values of the yield y. It is clear that unlike the deterministic case (see Fig. (5.2)), the

minimum of the average energy does not necessarily correspond to the largest value of

the transistor width (i.e. maximum current) but instead to some intermediate value.
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Figure 5.9: Average total energy versus driver width, for different yields, accounting
for process variations. Minimum energy is achieved with W2,Emin = W2,ub when no
variation is included. In the presence of process variations, yield constrained minimum
energy can be achieved with smaller W2,Emin, whose value depends on the target yield.

The smaller W2 implies lower current and longer backup time.

The procedure to determine the nominal widths of the driver transistors in the

presence of process variations is shown in Algorithm (2). The objective is to identify

the nominal values (W 2,W 4) that define a population S(W 2,W 4, tox) whose ensemble

average energy computed over all those outcomes whose backup times fall below

τy (the y percentile value of the backup time) is minimum. The procedure is a

non-parametric or data-driven approach, using the empirical distribution of currents

generated by Monte Carlo simulations to compute averages. As the set of transistor

widths form a discrete set, the procedure starts with setting the nominal values to

their respective upper bounds (lines 2), and iterates over the discrete set (line 3).

Procedure EoptDriverSize is used to determine the next nominal value around

which to generate the sample population (line 5,6), and then the backup times and

currents are computed for each sample point (lines 7-11). The average of the samples
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whose backup times are within the y percentile value is computed (lines 12-18). The

minimum average energy value is retained, and the procedure terminates as soon the

average starts to increase (lines 19, 20).

5.3 Non-Volatile Flipflops with Scan

5.3.1 Yield versus Energy Consumption

Fig. 5.9 shows that higher yield requires higher energy expenditure. One way

to reduce backup energy is to boost the voltage Motaman et al. (2015). However

this is not practical for the type of low voltage, low power ASICs employing energy

harvesting that are the target of this work. Techniques for improving the energy

efficiency by balancing the backup times used in NVM as described in (Motaman et al.

(2015); Bishnoi et al. (2016a); Zhang et al. (2011)) are not applicable for NVFFs. For

this reason the method described in Section 5.2, minimizes the average energy under

a yield constraint by sizing the drivers separately. Other techniques that improve the

write margin by increasing the driver size (to increase Id) and the backup time, result

in high energy consumption (Bishnoi et al. (2016a); Zhang et al. (2011)). Device

engineering as in Halawani et al. (2016) can also be done to trade retention time with

write energy. However that is outside the scope of this chapter.

The backup time τy determined by procedure EoptDriverSizeWPR ensures

that, with a high probability, y% of the dice will succeed in backup of a ’1’ and

’0’. However, the conservative choice of τy results in wasted energy for most of the

dice. This motivates the adaptive approach of determining the backup time on a

per-chip basis. This section presents the architecture of a NVFF equipped with a

scan mechanism which allows for dynamically testing and adjusting the backup time

to minimize the backup energy. This scan mechanism is compatible with the normal
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1 EoptDriverSizeWPR([Wmin,Wub], tox, y) ;

output: Energy optimal values of W 2, W 4 and τy

2 i = 1, W 2,0 = W 2,ub, W 4,0 = W 4,ub, Eavg,0 =∞;

3 while Wmin ≤ W i ≤ W ub do

4 [W 2,i,W 4,i] =

5 EoptDriverSize(Wmin, W 2,i−1, W 4,i−1);

6 Sj = (W2,i,j, W4,i,j, tox,j) =MC(W 2,i, W 4,i, tox) ; /* Gen MC samples */

7 for j=1:N do

8 ( Id,01,j, Id,10,j ) = HSPICE(Sj) ; /* Find Id by HSPICE */

9 (τ01,j, τ10,j ) = Eqn 5.3 ( Id,01,j, Id,10,j ) ;

10 τj = max(τ01,j, τ10,j) ;

11 end

12 τy : Prob(τ ≤ τy) = y ; /* y% of switching times ≤ τy */

13 for j=1:N do

14 if τj ≤ τy then

15 Ej= Eqn 5.4 (τy,τ01,j, τ10,j,Id,01,j, Id,10,j) ;

16 endif

17 end

18 Eavg,i = (E1 + E2 + · · ·+ EN)/(yN) ; /* N is number of samples */

19 if Eavg,i > Eavg,i−1 then

20 return W 2,i−1 + ∆W , W 4,i−1 + ∆W , τy;

21 endif

22 W 2,i = W 2,i −∆W , W 4,i = W 4,i −∆W ,i = i+ 1 ;

23 end

Algorithm 2: Procedure to compute optimal sizes of driver transistors

W1,W4,W3,W2 considering process variations.
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scan available on traditional flipflops, and hence has minimum hardware cost.

5.3.2 NVSFF Basic Structure

The general structure of a non-volatile scan flipflop (NVSFF) is shown in Fig. 5.10.

A non-volatile storage unit (NVSU) is attached to a volatile flipflop. This NVSFF

has five modes of operation. In the normal mode (regular operation) and normal

scan mode, it acts like an edge-triggered scan flipflop. In these modes RES = 0 and

SAV = 0, which together disconnect the path between the NVSU and the volatile

flipflop. During the backup mode, the flipflop state is stored into the NVSU. After the

backup mode is completed, the system can be safely powered off without losing the

intermediate results. During the restore mode, the previous stored state is read out

and presented on the flipflop output Q. The non-volatile test mode is a combination

of the normal scan mode, the backup mode and the restore mode. This operation

mode is mainly for performing the non-volatile device test and determining the backup

time. Details of the circuit operation and design considerations are presented next.

Non-volatile storage unit 

(NVSU)

Volatile scan flipflop

Backup Restore

RES=0 SAV=1 RES=1 SAV=0

Q
D

Regular Operation

RES=0 SAV=0

N1*

N2*

IN1

IN2

SAV RES

SE
CK_ex

CK_ex

Figure 5.10: The basic structure of non-volatile scan flipflop (NVSFF).

5.3.3 Non-Volatile Storage Unit (NVSU)

The architecture of the NVSU is shown in Fig. 5.11. It takes two differential

signals IN1 and IN2, and produces two differential outputs N1∗ and N2∗. RES and
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SAV control the operation mode. Two STT-MTJ devices are included in the NVSU.

The one labeled STT data stores the state during backup mode. The one labeled

STT ref serves as a reference, used during the restore mode.

SAV

M11 M12M10
M13

M14

M16

M15

M17

M20RES

M18 M19

RES

N2* N1*

IN1

IN2

STT_ref

Write Tri-buffer

State Sense 

Amp

Rd

STT_data

A

B

TB1

TB2

Rd
SAV

IN1/IN2

A/B

Write Tri-buffer

Figure 5.11: The schematic of NVSU. The NVSU includes a write buffer, two STT-
MTJ devices and a state sense amplifier.

Normal Mode and Normal Scan Mode: The NVSU is inactive during the

normal mode, and is turned off to save power. The input and output transistors are

sized small to reduce the parasitics on the normal signal path.

Backup Mode: RES = 0 and SAV = 1 sets the NVSU to the backup mode.

The unit labeled as state sense amplifier is inactive in this mode. Current will flow

through write tri-state buffers TB1 and TB2 and set the state of STT data. The

current direction is determined by IN1 and IN2. Compared to the driver shown in

Fig. (5.1), TB1 and TB2 consist of one pFET and two nFETs in a stack. The extra

SAV driven pFET eliminates a false path to MTJ during restore mode.

The SAV signal is independent of the clock, and as long as SAV = 1 and inputs

are differential, TB1 and TB2 will provide the necessary current to store the data.
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Note that consistent with other works on NVM and NVL (Khanna et al. (2014); Ma

et al. (2015); Balsamo et al. (2015)), it is assumed that there exists a mechanism that

will predict an impending power system failure and will initiate the backup by setting

SAV = 1 during the period with CK = 1. A method to predict such a failure can be

found in Balsamo et al. (2015).

Restore Mode: When the power is re-established, the state of the flipflop can

be restored by setting SAV = 0 and RES = 1. The two tri-state buffers TB1 and

TB2 are disabled. When Rd = 0, N1∗ = 1 and N2∗ = 1. When Rd : 0 → 1, M14

and M15 in Fig. 5.11 become active, creating discharge paths to ground for both N1∗

and N2∗. Assuming STT data = RL � Rref , the positive feedback in the state sense

amplifier will sense the conductance difference between two discharging paths and set

N2∗ = 0 and N1∗ = 1, which drive a regular flipflop and set its output to Q = 0.

A read disturb occurs when the stored state in an STT-MTJ is flipped on a read

operation. The probability of a read disturb in the NVSU can be reduced by using

smaller transistors or lowering the power supply voltage for the state sense amplifier,

at the cost of a longer restoration time. Unlike NVM implementations in which the

stored data would be read more than once, in the NVFF with backup and restore,

the stored data would only be restored to the datapath once. When the next power

interrupt occurs, new data would be backed up. Therefore, the read disturb is not

the primary concern in NVFF design.

Non-volatile Test Mode: This mode is applied to test the functionality of other

two modes as well as determine an optimal backup time. Unlike the other operation

modes, this involves a sequence of operations. It starts in the normal scan mode

(SE = 1, SAV = 0 and RES = 0) that scans in the test data, resulting in the

data appearing at each output Q. After the data has been scanned in, the NVSFF is

switched to the backup mode and restore mode. After a backup and restore step, the
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previous test data will be present at the output, if both steps completed successfully.

Then the output data is scanned out for verification by switching to the normal scan

mode. The backup time is the duration when SAV = 1. The control signal sequence

is shown in Fig. 5.12.

CK_ex

SAV

RES

SE

n·TCK 

TCK 

Normal 

Scan
Backup Restore Normal 

Scan

Figure 5.12: The control signal sequence during non-volatile test mode.

Timing of Control Signals: RES is synchronized with the falling edge of the

clock, and therefore can be easily generated by a negative edge triggered flipflop. Rd

is derived from both RES and CK, which feeds into state sense amplifier. SAV

controls TB1 and TB2. When input signals IN1 and IN2 are stable, the duration of

SAV determines backup time τ . Although SAV can be synchronous or asynchronous,

a synchronous signal is preferred as it can easily be generated by a counter followed by

a flipflop, and the total backup time would simply be dτ/T e×T or roundup(τ/T )×T ,

where T is the clock period. An asynchronous SAV can be generated by a separate

pulse generation circuit, where τ is controlled by the pulse width. In an energy-area-

constrained digital system, a synchronous SAV would be preferred because control

circuitry would be smaller and consume less power than an on-chip pulse generator.

The one disadvantage of using a synchronous SAV is that granularity with which

τ can be adjusted is one clock period. Therefore, if the clock period is large, an
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asynchronous SAV may actually result in lower energy expenditure.

Timing of Input/Output Signals: During backup mode, IN1 and IN2 should

be differential and stable. No current would flow through STT data if IN1 = IN2.

If both signals flip, the current direction would change. During the restore mode, the

outputs N1∗ and N2∗ will become differential after the state sense amplifier evaluates,

when CK = 1 and Rd = 1. When CK = 0 and Rd = 0, both N1∗ and N2∗ are reset

to 1. A latch is required to maintain the evaluation results on the NVSFF outputs

when CK is low.

5.3.4 Non-Volatile Scan Differential Flipflop (NVSFF-DM)

The NVSU takes a pair of differential inputs during the backup mode, and pro-

duces a pair of differential outputs during the restore mode. Therefore, the simplest

type of flipflop to interface with the NVSU would be a differential or sense-amp based

flipflop. Fig. 5.13 shows such a modified version of KVFF Yang et al. (2015b) inter-

faced with the NVSU. The combined unit is referred as NVSFF-DM. The circuit

includes a differential sense amplifier with its output N1 and N2 connected to both

the SR-latch and the NVSU. The inputs to the SR-latch can be switched from either

the sense amplifier or the NVSU outputs. The tri-state buffers between SR-latch and

the two sources are not shown. In the normal mode, when CK = 0, it is easy to verify

that (N1, N2) = (1, 1). When CK : 0 → 1, (N1, N2) = (0, 1) or (N1, N2) = (1, 0),

depending on the input D. (N1, N2) set the output of SR-latch accordingly. The

two feedback loops in Fig. (5.13) are there to eliminate potential floating nodes as

explained in Section 3.2.1. (N1, N2) become differential and stable after evaluation

is completed.

The internal CK is gated by SAV and Rd is gated by RES. SAV ensures

that CK remains at 1 during the backup mode, and RES ensures that Rd follows
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Figure 5.13: Schematic of the NVSFF-DM. The tri-state buffers between NVSU
and SR latch are not shown.

the external clock CK ex only during restore mode. CK-gating makes sure that

(N1, N2) change from (1, 1) to (0, 1) or (1, 0) only once. Rd gating ensures that the

state sense amplifier will operate and consume power only during the restore mode.

The SR-latch latches the output either from the sense amplifier or the NVSU. The

requirements imposed by the NVSU on its inputs and outputs are satisfied with these

settings of the NVSFF-DM.
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5.3.5 Non-Volatile Scan Master-Slave Flipflop (NVSFF-MS)

With some modification, the NVSU can also be combined with a conventional

master-slave flipflop to form a non-volatile scan master-slave flipflop (NVSFF-MS).

This is shown in Fig. (5.14). The scan mechanism is the same as in a conventional

D-flipflop. However, the NVSU needs to be properly interfaced with the master and

slave latches. The NVSU receives inputs (X and Y ) from the slave latch during

backup mode and sends its output back to the same node (X) during restore mode.

To prevent the NVSU from interfering with the slave latch during normal mode and

backup mode, a tri-state buffer is used to buffer the output of NVSU. This buffer

should be turned on only when NVSU is in the restore mode and its outputs are

ready. Since the outputs of NVSU would become differential only when they are

ready, a completion detection signal CD is derived from N1∗ and N2∗ to drive the

tri-state buffer. Unlike the NVSFF-DM, the slave latch and transmission gate between

master and slave latch in NVSFF-MS are driven by different derived clocks derived

from the master clock CK ex. During the restore mode, the transmission gate should

be turned off to block the signal from master latch. After the state is restored into

the slave latch, the slave latch should be able to latch the data when external clock

goes to 0.

The schematic of NVSFF-MS is shown in Fig. (5.14). In normal mode and normal

scan mode, both SAV and RES are 0, NVSFF-MS operates the same as normal scan

flipflop. The internal clock signals CK, CK ′, CK and CK ′ follow the external CK ex

under different conditions. CK follows CK ex when both SAV = 0 and RES = 0,

and CK ′ follows CK ex when SAV = 0.

Nodes X and Y are fed into NVSU as differential inputs IN1 and IN2. In the

backup mode, SAV = 1, RES = 0. Then CK = CK ′ = 1 and CK = CK ′ = 0. This
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Figure 5.14: Schematic of NVSFF-MS.

disconnects the master from its inputs and the slave, so that the value of the master

can be saved in the NVSU. RES = 0, CD = 0 blocks N1∗ to node X. It ensures

that X and Y are kept differential and stable during entire backup mode.

During restore mode, RES = 1, CK = 0 and CK = 1. The transmission gate

between master and slave latches is blocked. In the meantime, Rd, CK ′ and CK ′

follow CK ex. When CK ex = 0, N1∗ = N2∗ = 1, and CD = 0. The slave latches

its previous state. When CK ex : 0 → 1, the state sense amplifier in NVSU sets

N1∗ and N2∗ into opposite values. These two differential signals set CD = 1, which

enables the tri-state buffer between the NVSU and the slave. The value of N1
∗

is

therefore sent to the slave latch to set its output Q.
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5.3.6 Extension of Scan for Non-volatile Test

The conventional scan mechanism can be extended to include the test of non-

volatile devices in each NVFF. The test procedure shown in Fig. (5.15) allows deter-

mining the actual or chip-specific backup time, after fabrication. Procedure Eopt-

DriverSizeWPR described in Section 5.2 returns the nominal driver size that min-

imizes the average energy, and τy, which is the backup time for y percentile of the

corresponding population. By definition, setting the backup time for all chips to τy

would, with high probability, result in y% of the chips being successfully backed up.

However, each specific chip might be successfully backed up with a smaller backup

time. This smaller backup time, denoted by τ ∗, is computed by using the scan mecha-

nism on each chip. Once it is computed, it can be saved and used for backup whenever

required. The energy savings using τ ∗ versus using τy can be substantial.

Fig. (5.15) shows an outline of the scan procedure to determine τ ∗. If τ is the

backup time computed by Procedure EoptDriverSizeWPR, then the least num-

ber of clock cycles whose total duration exceeds τ is m(τ) = roundup(τ/TCK). In

Fig. (5.15) this is initialized to m = m0 = m(τy). Then data is scanned into all the

NVSFFs, and the backup mode is made active (i.e. SAV = 1) for m cycles. Next, a

restore is performed, and the data is scanned out. If there are no differences between

the data scanned in and scanned out, then m cycles was sufficient. Otherwise m is

decremented, the procedure is repeated. If on some iteration, the scanned out values

differ from the scanned in values, then the number of cycles was not sufficient. If

this happens on the first iteration, where m = m0, then this chip is considered to

have not met the yield criterion and deemed to have failed. On the other hand if the

error appears on some value of m other than the first, then the previous iteration

succeeded, and the minimum backup time is τ ∗ = (m+ 1)TCK .
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Figure 5.15: Non-volatile scan test procedure. N is number of flipflops in design.

Fig. (5.16) shows the energy expenditure using the two different backup times –

one using τy which is termed as GBT for global backup time, and the other using τ ∗

which is termed as PFT for post-fabrication tuning. The savings in energy using PFT

for a yield of 98% is nearly 80% compared to using GBT. Note that τ ∗ was computed

using Procedure EoptDriverSizeWPR with τy in line 15 being replaced by τj, and

updating Ej only if τj ≤ τy.
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Figure 5.16: GBT: Single, global backup time, PFT: post-fabrication tuning. Core
energy is the same for GBT and PFT. For achieving high yield, the energy wastage
with PFT is much less than GBT.

5.3.7 Robustness of the Restore Operation

The focus of this chapter has been on the energy efficiency and robustness of the

write or backup operation, because it results in greater power consumption than the

read or restore operation. To read the state of a NVFF the data has to be sensed

and compared with a reference. Hence process variations can result in a failure of

this operation as well. In a NVFF the read circuitry is independent of the driver

circuit used for the write operation. Consequently, techniques used to improve the

robustness of the NVFF read operation by device parameter optimization Zhang et al.

(2011) or by introducing redundancy Bishnoi et al. (2017) can be directly applied to

the proposed NVFF design. Note that the proposed post-fabrication tuning method

shown in Fig. 5.15 verifies that both the backup and restore operations are successful

as it searches from the smallest backup time.

All the components excluding backup and restore circuits are standard CMOS

logic blocks, and hence are subject to process variations. Their yields are generally

orders of magnitude higher than the STT-MTJ and other emerging devices. Con-
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sequently, reduction of yield in the CMOS blocks due to process variations was not

considered.

5.4 Experimental Results

This section contains simulation based evaluations of the proposed NVFF circuits

as well as the results on a larger design incorporating the NVSFFs. The circuits

were designed using a commercial PDK for 40nm GP process. Other standard cells

in 40nm were used in circuit automated synthesis. The power and delay values were

obtained using HSPICE.

5.4.1 STT-MTJ Cell

The device simulations are based on the models in (Zhang et al. (2015); Munira

et al. (2012)). The STT-MTJ has a square shape top view with both width and

length equal to 40 nm. Other parameters are shown in Table 5.1. As tox is the most

significant factor on energy consumption, to simplify the analysis, perturbations in

tox are assumed to be Gaussian. To study the impact of the variations in tox on

the resistances of the MTJ, 10,000 Monte Carlo simulations were performed with the

mean µtox and sigma σtox of tox set to .8nm and 10% of mean according to the study

in Ref. Raychowdhury et al. (2009). Other physical parameters remained constant.

Fig. 5.6 shows the distribution of RL(0) and RH(0). The mean and sigma of the

resistances are summarized in Table 5.2. Ic,01 is 78.71µA and Ic,10 is 27.77µA. If a

single power supply is used in NVSFF design, the maximum voltage drop cross MTJ

could not exceed than its Vdd, which is 0.9V in used 40nm technology. Therefore, the

maximum resistance can be calculated as

RH,max = Vdd/Ic,10 = 32.4kΩ,

RL,max = Vdd/Ic,01 = 11.43kΩ.
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Table 5.2 shows the mean and standard deviation of resistances for two different

mean values of tox. A smaller tox is preferred to ensure that the 3σ of RL and RH are

below the maximum resistances dictated by the power supply. Based on Table 5.2,

µtox = 0.8nm and σtox/µtox = 0.1 is assumed.

Table 5.1: STT-MTJ parameters.

Parameter Value

MgO thickness(µ) 0.8 nm, 0.85 nm

Free layer thickness 1.3 nm

Area 40 nm× 40 nm

Resistance area product) 5 Ω · µm2

TMR at zero bias 150 %

STD of variation(σ) 3%, 5%, 10 %

MonteCarlo cases 10000

Table 5.2: Mean and standard deviations of STT-MTJ resistances versus tox. The
mean of random variable tox is set to two values, .85nm and .8nm, with sigma equal
to 3%, 5% and 10% of tox.

µtox (nm) σtox (%) µRH (kΩ) σRH (kΩ) µRL (kΩ) σRL (kΩ)

0.85

10 9.59 6.91 3.84 2.76

5 8.23 2.74 3.29 1.09

3 7.96 1.57 3.18 0.62

0.8

10 6.39 4.33 2.56 1.73

5 5.57 1.75 2.23 0.70

3 5.41 1.01 2.16 0.40
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5.4.2 Performance Evaluation of Proposed NVSFFs

Table 5.3 shows the delay and the energy delay product of the two NVSFF as well

as a volatile master-slave scan flipflop (SFF-MS) designs. The setup time (Tsetup) of

the NVSFF-DM is negative, in contrast to the positive setup time of the NVSFF-MS.

Hence the total delay of NVSFF-DM is less than that of a NVSFF-MS. Compared to

the NVSFF-MS, the average energy consumption (measured with 30% input switching

activity) is higher in NVSFF-DM, but the EDP is similar due to the lower total delay

of the NVSFF-DM. The total delay of SFF-MS is between the two NVSFFs, but its

energy and EDP are much less than both NVSFFs. The area overhead of the NVSU

in the NVSFF-DM and NVSFF-MS, makes their size about twice that of the SFF-

MS. However, this does not translate to a similar increase in area of a whole circuit

with either of the NVSFF cells (see Table 5.7).

Table 5.3: Performance of NVSFF-MS, NVSFF-DM and SFF-MS. The average
energy is based on 30% input switching activity. Simulation conditions are: 25◦C,
0.9V, TT corner, and output load of 3fF .

TC2Q (ps) Tsetup (ps) Ttotal (ps) Energy (fJ/cyc) EDP (fJ·ps)

NVSFF-MS 60.28 6.90 67.18 4.10 275.56

NVSFF-DM 46.99 -2.99 44.00 5.99 263.51

SFF-MS 38.08 16.74 54.82 2.218 121.59

A reference MTJ (STT ref) is required in the state sense amplifier (see Fig. (5.11)).

The resistance of STT ref is between RH and RL. Since the state recovery is imple-

mented by the sensing current flow, Rref is set to be harmonic mean of RH and RL.

1/Rref = 2(1/RH + 1/RL). The resistance of STT ref is achieved by changing the

dimension of the MTJ to 55nm × 50nm, and Rref is 3.09kΩ. The recovery time of

two designs are shown in Table 5.4. In this work, global perturbations in tox are

the most significant source of variations in the device resistances. Therefore, relative
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differences between Rref and RH/RL would remain constant on a die.

Table 5.4: Delay and energy consumption of restore from NVSU to output Q.

Recover ’0’ Recover ’1’

Delay (ps) Energy (fJ/bit) Delay (ps) Energy (fJ/bit)

NVSFF-MS 107.7 15.92 142.3 13.5

NVSFF-DM 83.87 17.75 82.84 19.41

Table 5.5 shows a comparison of NVSFF-MS and NVSFF-DM with published

data on two other designs. The setup time and delay of the sense amplifier based

NVFF (SA-MFF) in Ref. Cai et al. (2015) are similar to the NVSFF-DM. Although

the forward body bias feature of FDSOI can improve the energy delay product, the

SA-MFF uses a fixed write pulse for backup, which has a significantly high failure

rate (24.6%) due to MTJ variations. The NVFF in Ryu et al. (2012) has a large

positive setup time, and exhibits a DC current during a read operation.

Table 5.5: Comparison of non-volatile flipflop with prior reported data. a) Ref. Cai
et al. (2015), b) Ref. Ryu et al. (2012).

NVSFF-MS NVSFF-DM (a) (b)

Technology 40nm 40 nm 28 nm FDSOI 45 nm

Tsetup 6.9 ps -3.0 ps -4.9ps 75.2 ps

TC2Q 60.3 ps 47.0 ps 50.1 203.3 ps

Backup time Tunable Fixed Fixed

Backup

energy
504fJ/bit N/A N/A

Restore time 142.3ps 83.9ps N/A 2.01 ns

Restore

energy
15.92 fJ/bit 19.41 fJ/bit N/A 170.9 fJ/bit
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Table 5.6 shows the energy consumption of NVSU during the backup mode. Three

driver sizes were examined to evaluate their effects on the energy consumption. The

driver sizes were determined based on method described in Section 5.2. Ignoring varia-

tions, the minimum energy is achieved with the largest driver size (107.5). When both

CMOS and MTJ variations are included, the single global backup time τ97 = 14.6ns,

whereas the chip-specific backup times ranged from 1.96ns to 12.84ns (over 10K sam-

ples). However the energy expenditure of the former was more than 3.5X than the

latter. Moreover the sizing and PFT approach results in an energy expenditure that

is close to the ideal case with no variations.

Table 5.6: Comparison of backup schemes. (a) and (b) use single backup time for
all dice, and (c) refers to chip-specific backup time. (b) and (c) include variations in
both CMOS and MTJ.

Yield Driver Size τ (ns) Energy (pJ/bit)

(A) No Variation 100% 107.5 2.17 0.367

(B) Global Backup Time 97% 20.9 14.6 1.811

(C) Post Fab. Tuning 97% 32.8 1.96-12.84 0.504

5.4.3 Performance Evaluation of Circuits

Both NVSFFs are characterized using a standard characterization tool. To demon-

strate the performance impact of NVSFFs on larger circuits, two circuits, an 8-bit

multiply-and-accumulate (MAC) unit, and a 32-bit adder were synthesized using the

two different NVSFFs and a SFF-MS.

MAC unit: The circuit structure is shown in Fig. 5.17. The MAC unit was synthe-

sized using Genus from Cadence, with two different combinations of standard cells:

(1) standard logic with NVSFF-MSs, (2) standard logic with NVSFF-DMs. Note

that the total number of flipflops (16 input and output) in both designs is the same,
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and both were synthesized for the same target clock period of 1.835ns.
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Figure 5.17: 8-bit MAC unit. It includes input and output flipflops, a synchronous
reset and FMA (fused multiply-add) unit.

Table 5.7 shows of the results of the synthesis. The column Cell Count indicates

the total number of standard cells. The designs with NVSFF-DMs have 11.6% fewer

cell counts and 16% less area compared with the one with NVSFF-MSs. Even though

NVSFF-DM consumes greater power, its smaller (negative) setup time allows the

synthesis tool to reduce the logic cone driving the flipflop to a greater degree than in

the case of the NVSFF-MS.

Power estimation was done by PTPX from Synopsys, using the library character-

ized data. Input sequences with 10%, 20% and 30% switching activities were supplied

to the circuit. The average energy was measured by averaging the energy consump-

tion across more than 100 cycles. Fig. (5.18) shows the total energy consumption of

the two circuits versus input switching activity. The NV-MAC unit with NVSFF-

DM consumed about 18.7%, 18.9% and 19% less energy than the NV-MAC unit with

NVSFF-MS. As with delay (see Table 5.3), both area and energy consumption of the

MAC with SFF-MS are between those with NVSFF-DM and NVSFF-MS.

32-bit adder: Two 32-bit adders are designed and synthesized in the same way as

the MAC unit. There are 97 flipflops in the design. The synthesized results are shown

in Table 5.7. The design with NVSFF-DMs has only 3.5% fewer cells and 7% smaller

area than the one with NVSFF-MSs. The energy consumption with three switching
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Figure 5.18: MAC total energy vs input switching activity under normal operation.
The simulation is done by PTPX under 25◦C typical corner.

activities are also very close, about 0.9%, 5.8% and 7.2% fewer on NVSFF-DMs,

shown in Fig. 5.19. Compared with the MAC unit, the 32-bit adder has fewer logic

cells and more flipflops. The NVSFF-DM has lower total delay (setup plus clock-to-

Q) but slightly higher power consumption than the NVSFF-MS. The reduced delay

allows synthesis tools to absorb the extra slack by reducing the size of the logic cone

driving the flipflop. Note that for the 32-bit adder, the reduction in the size of its

logic cones when using NVSFF-DM was not sufficient to compensate for it larger

power consumption due to its greater number of flipflops. Since SFF-MS is smaller

than NVSFFs, the total area of the adder with SFF-MS is 10.4% and 16.6% smaller

than the one with NVSFF-DMs and NVSFF-MSs, respectively.

5.5 Non-Volatile Majority Flipflop (NV-MJFF)

Single input NVFF-DM can be extended to multi-input flip-flops that embed a

more complex function than the simple identity function. One such class of functions
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Table 5.7: Comparison of logic cell count and area using different flipflops in MAC
and adder.

MAC unit 32-bit Adder

Flipflop Type Cell Count Area (µm2) Cell Count Area (µm2)

NVSFF-MS 603 3040 482 2517

NVSFF-DM 533 2555 465 2342

SFF-MS 580 2795 477 2098
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Figure 5.19: 32-bit adder total energy vs input switching activity under normal
operation. The simulation is done by PTPX under 25◦C typical corner.

is the majority function. Majority/minority functions are ubiquitous in arithmetic

circuits as well as general combinational logic blocks Vemuru et al. (2014), and there

is a substantial body of work on synthesis of majority/minority networks Vemuru

et al. (2014); Amar et al. (2014).
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5.5.1 NV-MJFF Structure

The circuit shown in Fig. 5.20, referred to as an NV-MJFF, is a non-volatile

edge-triggered flipflop which computes a three input majority function f(a, b, c) =

ab+ ac+ bc.

NV-MJFF is a non-volatile extension of PNAND-3. Its non-volatile operation

(backup and restore) are similar as NVSFF-DM in previous section. Assume that

two or more of the inputs a, b, c, are high. Then the LIN (left input network) will

have at least two active devices and the RIN (right input network) will have at most

one active device. As a result, the conductance of the LIN is higher than that of the

RIN. On the rising edge of the clock, the sense amplifier sets N2 to 1 and N1 to 0.

This corresponds to f(a, b, c) = 1. As the circuit and its operation are symmetric,

if only one input is high, then the evaluation will result in (N1, N2) = (1, 0), which

corresponds to f(a, b, c) = 0. Thus the circuit computes a 2-out-3 majority function.

5.5.2 Performance Evaluation

NV-MJFF, NVFF-DM(no scan) and NVFF-MS(no scan) were designed using a

commercial PDK for 65nm LP process. Other standard cells in 65nm were used

in circuit automated synthesis. The power and delay values were obtained using

HSPICE.

Table 5.8 shows the delay and the energy delay product of the three NVFF designs.

The CLK-to-Q delay (TC2Q) of NV-MJFF is larger than that of the NVFF-MS and

NVFF-DM due to the fact that it also computes a majority function. The setup times

(Tsetup) of the NVFF-DM and NV-MJFF were negative, in contrast to the positive

setup time of the NVFF-MS.Similar as designs in 40nm, the total delay of NVFF-DM

is smaller. Compared to the NVFF-MS, the average energy consumption (measured
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Figure 5.20: Structure of NV-MJFF

with 30% input switching activity) was similar in NVFF-DM, but the EDP was lower

due to the much lower total delay of the NVFF-DM. NV-MJFF (including 3 inverters

of the inputs) is functionally equivalent to a 3-input majority circuit driving a NVFF-

MS. The EDP of the NV-MJFF, including the three inverters is 8231.8 fJ·ps, whereas

the EDP of the equivalent majority circuit driving a NVFF-MS is 1.015 pJ·ps - which

is a 18.9% reduction.

Similar as previous experiments in 40nm, the MAC unit shown in Fig. 5.17 was
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Table 5.8: The performance comparison between NVFF-MS and NVFF-DMs. The
average energy is based on 30% input switching activity. The simulations is done
under 105◦C, 1.1V, SS corner. Output load is set to 20fF .

TC2Q

(ps)

Tsetup

(ps)

Ttotal

(ps)

Energy

(fJ/cyc)

EDP

(fJ·ps)

NV-MSFF 282.4 58.11 340.51 18.17 6187.1

NV-DMFF 285.2 -20.57 264.69 16.49 4364.2

NV-MJFF 315.4 -53.56 261.84 30.88 8084.8

synthesized using three different combinations of standard cells: (1) standard logic

with NVFF-MSs, (2) standard logic with NVFF-DMs, (3) standard logic with NVFF-

DMs and NV-MJFFs. Note that the total number of flipflops in all three designs is

the same.

The third design requires simplified hybridization. Specifically, if there was a

flipflop driven by a three input majority function, then both the flipflop and the

majority function logic can be replaced by a NV-MJFF. This logic absorption was

performed automatically, but the details of the absorption algorithm are beyond the

scope of this paper. Those DFFs that were not replaced with a NV-MJFF, were

replaced by NVFF-DMs.

The three circuits were synthesized with the same target clock period 1.76ns.

Table 5.9 shows the statistics. The row Comb. Cell Count indicates the total number

of standard cells excluding the flipflops since all designs have the 32 flipflops. The

design with NVFF-DMs have 12.3% fewer cell counts and 14% less area compared

with the one with NVFF-MSs. Keep in mind that NVFF-MSs also consume higher

energy during backup. What is more interesting is the design that had both NVFF-

DM and NV-MJFF. The logic absorption resulted in a significant reduction in cell

count and total area. There were 8 NV-MJFF cells introduced in the circuit. The
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remaining 24 flipflops were NVFF-DMs. Because of logic absorption, the 8 NV-MJFF

cells created positive timing slacks on the critical paths. A re-synthesis step exploited

this and further reduced the size of logic cells on these paths. The non-volatile MAC

unit synthesized with NVFF-DMs and NV-MJFFs resulted in a 22.2% reduction in

cell count and a 22.3% reduction in area compared with the one synthesized with

NVFF-MSs.

Table 5.9: MAC combinational cell count and area comparison. 32 flipflops are not
included in cell count. 8 NV-MJFF are included in the third circuit.

Flipflop Type NVFF-MS NVFF-DM NVFF-DM/MJFF

Comb. Cell Count 528 463 411

Total Area (µm2) 3494.4 3005.1 2716.0

HSPICE simulation was used to evaluate the energy consumption. Input se-

quences with 10%, 20% and 30% switching activities were supplied to the circuit.

The average energy was measured by averaging the energy consumption across more

than 100 cycles. Fig. 5.21 shows the energy breakdown between combinational

logic and flipflops. The energy consumption of the logic feeders reduced substantially

because of the negative setup time and logic absorption. Fig. 5.22 shows the total

energy consumption of three circuits versus input switching activity. The NV-MAC

unit with NVFF-DM consumed about 15.1%, 14.8% and 14.7% less energy than the

NV-MAC unit with NVFF-MS. With the logic absorption, the NV-MAC with both

NVFF-DM and NV-MJFF consumed 21.8%, 22.5% and 23.1% less energy than the

same design synthesized with NVFF-MS.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

Threshold logic based synthesis is proved in theory Muroga (1971) to be more effi-

cient on gate counts and logic depth comparing with CMOS logic synthesis. Thresh-

old logic gates are assumed to have unlimited fan-ins and similar delay and power

comparing with simple CMOS logic gate. However, the performance of threshold

logic gate in real life are constrained by multiple factors, including limit fan-ins and

weights, high power consumption, high area, poor robustness with process variation

and poor in technology scaling. It also lack a mature digital design flow considering

these gate limitations. This work is trying to address some of the critical issues in

threshold logic gate design. The PNANDs proposed in this work is believed to have

a very good balance among area, power, delay and robustness. To verify the gate

performance and PNAND based threshold logic synthesis flow, two multipliers and

cell arrays are fabricated in two chips. The silicon results show consistent area (24%,

34% ) and power (33%, 30% ) improvement on hybrid multiplier comparing with the

functional identical multiplier designed by conventional digital flow. To the best of

our knowledge, the two chips are the first silicon implementations for threshold logic

based design.

Conventional differential mode circuits are not robust at low voltage. Direct ap-

plying low supply voltage to PNAND would lead to high failures. Chapter 4 have

shown how we can circumvent this problem by integrating threshold gates known

as TLLs with emerging RRAM memory technology and improved the robustness of

the TLLs at low voltages. The performance of TLLs are not affected by this robust

enhance technique. Hybrid circuit using the proposed TLLs can result in significant
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improvement in area and energy-delay product.

NVL with almost instant backup and restore operations has gained great atten-

tion due to its applicability for systems that are powered by harvested energy. The

key components in NVL are the flipflops that represent the state of the system at

any given time. For near instantaneous backup and restoration of the state, it is best

to enhance the flipflops with NV storage. The optimal design of the driver circuit

to save the state in a NV device is critically important for energy efficiency, and ro-

bustness due to process variations. Chapter 5 presented a systematic approach to the

energy optimal design of the backup driver and the determination of the correspond-

ing backup subject to satisfying a yield constraint. To further reduce energy wastage,

a novel method is presented that adjusts the backup time on a per-chip basis, after

fabrication. This substantially reduces the energy wasted when compared to using a

single backup time for all chips. Also included is the design of NVFFs that enables

the post- fabrication tuning of the backup time through the use of a scan mechanism.

Significant energy reduction with post fabrication tuning is demonstrated both in the-

ory and in two circuit implementations, a 32-bit adder and a 8-bit MAC unit. The

proposed methodology allows conversion of any ASIC design to one that is completely

non-volatile using commercial synthesis flows. NVFF can also be extended to non-

volatile threshold logic gate. A majority gate NV-MJFF was designed to demonstrate

the advantages from threshold logic. The simulation results of non-volatile MAC unit

using both NV-MJFF and NVFF-DM show that it can achieve same performance as

conventional volatile design but with smaller area and lower energy consumption.

Several future works are listed to further explore the potential of combining non-

volatile memory and threshold logic. Since extensive amount of works have been done

on NVM, it will be valuable to explore non-volatile threshold gates using different

NV-devices. For example, the resistance of DWM device can be tuned continuously
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Sengupta et al. (2016). This device can be used to apply process compensation on

low voltage operation. Multi-bit NVM devices can also be used to store more than

one state. Therefore multiple check points can be made for system recovery.

Non-volatile TLGs can be extended to a FPGA structure. The primary work was

published in Kulkarni et al. (2014). A customized layout can be used to maximize the

performance. Implementing non-volatile threshold gate in FPGA can reduce leakage

on the tiles that are not been used.

NVL can also be implemented in neural networks ASIC implementations like

CNN or RNN. These applications have high volume data transfer and storage. In

an interrupting power supply scenario, store data fast, secure and with low energy

consumption is important for these application. Threshold logic can also be imple-

mented as it would reduce area and power consumption without alternate the circuit

functionality.
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