379 research outputs found

    Dynamics in Abstract Argumentation Frameworks with Recursive Attack and Support Relations

    Get PDF
    Argumentation is an important topic in the field of AI. There is a substantial amount of work about different aspects of Dung's abstract Argumentation Framework (AF). Two relevant aspects considered separately so far are extending the framework to account for recursive attacks and supports, and considering dynamics, i.e., AFs evolving over time. In this paper, we jointly deal with these two aspects.We focus on Attack-Support Argumentation Frameworks (ASAFs) which allow for attack and support relations not only between arguments but also targeting attacks and supports at any level, and propose an approach for the incremental computation of extensions (sets of accepted arguments, attacks and supports) of updated ASAFs. Our approach assumes that an initial ASAF extension is given and uses it for first checking whether updates are irrelevant; for relevant updates, an extension of an updated ASAF is computed by translating the problem to the AF domain and leveraging on AF solvers. We experimentally show our incremental approach outperforms the direct computation of extensions for updated ASAFs.Fil: Alfano, Gianvincenzo. Universita Della Calabria.; ItaliaFil: Cohen, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Gottifredi, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Greco, Sergio. Universita Della Calabria.; ItaliaFil: Parisi, Francesco. Universita Della Calabria.; ItaliaFil: Simari, Guillermo R.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina24th European Conference on Artificial IntelligenceSantiago de CompostelaEspañaEuropean Association for Artificial IntelligenceUniversidad de Santiago de Compostel

    Change in abstract bipolar argumentation systems (SUM 2015)

    Get PDF
    International audienceAn argumentation system can undergo changes (addition or removal of arguments/interactions), particularly in multiagent systems. In this paper, we are interested in dynamics of abstract bipolar argumentation systems, i.e. argumentation systems using two kinds of interaction: attacks and supports. We propose change characterizations that use and extend previous results defined in the case of Dung abstract argumentation systems

    Abstract Argumentation and Answer Set Programming: Two Faces of Nelson’s Logic

    Get PDF
    In this work, we show that both logic programming and abstract argumentation frameworks can be interpreted in terms of Nelson’s constructive logic N4. We do so by formalising, in this logic, two principles that we call noncontradictory inference and strengthened closed world assumption: the first states that no belief can be held based on contradictory evidence while the latter forces both unknown and contradictory evidence to be regarded as false. Using these principles, both logic programming and abstract argumentation frameworks are translated into constructive logic in a modular way and using the object language. Logic programming implication and abstract argumentation supports become, in the translation, a new implication connective following the noncontradictory inference principle. Attacks are then represented by combining this new implication with strong negation. Under consideration in Theory and Practice of Logic Programming (TPLP)

    A Plausibility Semantics for Abstract Argumentation Frameworks

    Get PDF
    We propose and investigate a simple ranking-measure-based extension semantics for abstract argumentation frameworks based on their generic instantiation by default knowledge bases and the ranking construction semantics for default reasoning. In this context, we consider the path from structured to logical to shallow semantic instantiations. The resulting well-justified JZ-extension semantics diverges from more traditional approaches.Comment: Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014). This is an improved and extended version of the author's ECSQARU 2013 pape

    Joint attacks and accrual in argumentation frameworks

    Get PDF
    While modelling arguments, it is often useful to represent joint attacks, i.e., cases where multiple arguments jointly attack another (note that this is different from the case where multiple arguments attack another in isolation). Based on this remark, the notion of joint attacks has been proposed as a useful extension of classical Abstract Argumentation Frameworks, and has been shown to constitute a genuine extension in terms of expressive power. In this chapter, we review various works considering the notion of joint attacks from various perspectives, including abstract and structured frameworks. Moreover, we present results detailing the relation among frameworks with joint attacks and classical argumentation frameworks, computational aspects, and applications of joint attacks. Last but not least, we propose a roadmap for future research on the subject, identifying gaps in current research and important research directions.Fil: Bikakis, Antonis. University College London; Estados UnidosFil: Cohen, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Dvoák, Wolfgang. Technische Universitat Wien; AustriaFil: Flouris, Giorgos. Foundation for Research and Technology; GreciaFil: Parsons, Simon. University of Lincoln; Reino Unid

    A Multi Attack Argumentation Framework

    Get PDF
    This paper presents a novel abstract argumentation framework, called Multi-Attack Argumentation Framework (MAAF), which supports different types of attacks. The introduction of types gives rise to a new family of non-standard semantics which can support applications that classical approaches cannot, while also allowing classical semantics as a special case. The main novelty of the proposed semantics is the discrimination among two different roles that attacks play, namely an attack as a generator of conflicts, and an attack as a means to defend an argument. These two roles have traditionally been considered together in the argumentation literature. Allowing some attack types to serve one of those roles only, gives rise to the different semantics presented here

    A Labelling Framework for Probabilistic Argumentation

    Full text link
    The combination of argumentation and probability paves the way to new accounts of qualitative and quantitative uncertainty, thereby offering new theoretical and applicative opportunities. Due to a variety of interests, probabilistic argumentation is approached in the literature with different frameworks, pertaining to structured and abstract argumentation, and with respect to diverse types of uncertainty, in particular the uncertainty on the credibility of the premises, the uncertainty about which arguments to consider, and the uncertainty on the acceptance status of arguments or statements. Towards a general framework for probabilistic argumentation, we investigate a labelling-oriented framework encompassing a basic setting for rule-based argumentation and its (semi-) abstract account, along with diverse types of uncertainty. Our framework provides a systematic treatment of various kinds of uncertainty and of their relationships and allows us to back or question assertions from the literature

    Formalisation and logical properties of the maximal ideal recursive semantics for weighted defeasible logic programming

    Get PDF
    Possibilistic defeasible logic programming (P-DeLP) is a logic programming framework which combines features from argumentation theory and logic programming, in which defeasible rules are attached with weights expressing their relative belief or preference strength. In P-DeLP,a conclusion succeeds if there exists an argument that entails the conclusion and this argument is found to be undefeated by a warrant procedure that systematically explores the universe of arguments in order to present an exhaustive synthesis of the relevant chains of pros and cons for the given conclusion. Recently, we have proposed a new warrant recursive semantics for P-DeLP, called Recursive P-DeLP (RP-DeLP for short), based on the claim that the acceptance of an argument should imply also the acceptance of all its sub-arguments which reflect the different premises on which the argument is based. This paper explores the relationship between the exhaustive dialectical analysis-based semantics of P-DeLP and the recursive-based semantics of RP-DeLP, and analyses a non-monotonic inference operator for RP-DeLP which models the expansion of a given program by adding new weighted facts associated with warranted conclusions. Given the recursive-based semantics of RP-DeLP, we have also implemented an argumentation framework for RP-DeLP that is able to compute not only the output of warranted and blocked conclusions, but also explain the reasons behind the status of each conclusion. We have developed this framework as a stand-alone application with a simple text-based input/output interface to be able to use it as part of other artificial intelligence systemsThis research was partially supported by the Spanish projects EdeTRI (TIN2012-39348-C02-01) and AT (CONSOLIDER- INGENIO 2010, CSD2007-00022)
    corecore