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Abstract. This paper presents a novel abstract argumentation frame-
work, called Multi-Attack Argumentation Framework (MAAF), which
supports different types of attacks. The introduction of types gives rise to
a new family of non-standard semantics which can support applications
that classical approaches cannot, while also allowing classical semantics
as a special case. The main novelty of the proposed semantics is the
discrimination among two different roles that attacks play, namely an
attack as a generator of conflicts, and an attack as a means to defend an
argument. These two roles have traditionally been considered together
in the argumentation literature. Allowing some attack types to serve one
of those roles only, gives rise to the different semantics presented here.

1 Introduction

Many models for reasoning with arguments are grounded on Dung’s abstract
argumentation framework (AAF) [8], where the only ingredients are a set of
arguments and a binary attack relation on that set. The simplicity and intu-
itiveness of this model led to its wide acceptance, and, at the same time, helped
reveal additional features that needed to be devised, in order to accommodate the
requirements of diverse domains. For instance, AAFs are based on the strong
assumption that all arguments and all attacks have the same strength; many
variations have been proposed in order to overcome this limitation, which con-
sider preferences on arguments [2] or attacks [11], add weights to arguments [1]
or attacks [9], associate arguments with values [5], or impose hierarchies on ar-
guments [12].

In this paper, we focus on accommodating a different need, namely to support
a reasoning argumentation model where the attack relation among arguments
can be of different types. This gives rise to a new class of semantics, which is
based on a treatment of different attack types. Note that an attack, in the stan-
dard argumentation literature, is used both as a conflict-generator (i.e., creating
conflicts which disallow conflicting arguments to be put in the same extension
and which create the need for defense) and as a defender (i.e., defending other
arguments against attacks). Separating these two roles, and allowing certain at-
tacks to be treated in the non-classical way (e.g., allowing them to play only one
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of these two roles), gives rise to various non-classical semantics which may find
applications in different settings.

Consider, for example, the process of a trial. The presumption of innocence
is so important that only specific types of attacks on the defendant’s claims
should be taken into consideration by the jury, e.g., claims by eye witnesses,
experts etc. Other attacks, e.g., on the defendant’s credibility, prior life choices
etc., that generate doubts, should not be accounted for as evidence for conviction
and need to be ignored. Interestingly, these latter types of attacks should still
be considered relevant when placed against the claims of eye witnesses, experts
etc, in order to ensure that the benefit of the doubt is given to the claimant.
Figure 1 provides such an example. Intuitively, A1, A3 and A4 should all be
acceptable; the latter two, because they do not receive any attacks so there is
no reason not to accept them, and A1 because questioning the credibility of
the defendant (attack from A3) should not be enough to lead to conviction. The
same type of attack (i.e., credibility), however, should still be sufficient to defend
the defendant’s claims from other attacks; in this case, for example, questioning
the credibility of the witness (attack from A4 to A2) should be enough to defend
the defendant from the witness’ testimony (attack from A2 to A1).

Fig. 1. Credibility attacks should be treated differently when they may lead to
conviction than when they protect from it.

Notice that modeling different attack types is not always the same as model-
ing different argument types; while many of the existing AFs that characterize
arguments and certain argument relations can indeed transfer this information
to the attack relation, in the form of a strength value or a preference relation
(see for example [7]), the inverse is not always possible. Attack types, such as
rebuttals, undermines or undercuts, do not characterize the argument per se, but
rather the relation between two arguments. Similarly, characterizing an attack
as being of type irrelevant, i.e., arguing that a given argument is irrelevant in a
given context, is not information inherent in the formulation of the argument,
but, in a sense, on the placement of the argument in the argumentation tree.
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Eliminating (filtering) attacks made by irrelevant arguments, before generating
the sets of acceptable extensions of a dialogue, can therefore be considered a
beneficial pre-processing step.

The objective of this paper is to provide a framework that supports the
above scenarios, by introducing two important novelties. The first is the in-
troduction of attack types, that allows treating different attacks in a different
manner. The second is the separation among the two roles of attacks, namely as
conflict-generators and as defenders. In particular, by seeing these two functions
of attacks as separate, and allowing some of the attacks to be used for only one,
or both, of these roles, we get three different semantics:

– Loose semantics, where certain attack types are used only as defenders, as
e.g., in the case of credibility attacks in Figure 1.

– Restricted semantics, where certain attack types are ignored altogether (i.e.,
they have none of the two roles).

– Firm semantics, where certain attack types are used only as conflict-generators.

Following a related work analysis (Section 2), we formalise (Section 3) the
three semantics explained above; the formalisation results to various types of
extensions, in a manner similar to standard frameworks [8]. Then, we explore
the properties of such semantics (Section 4), such as the existence of the different
extensions, relationships among themselves and with the Dung semantics and
others, and conclude in Section 5.

2 Related Work

The need to further refine the notion of attack in argumentation frameworks has
led to several different extensions of Abstract Argumentation Frameworks. For
example, Abstract Argumentation Frameworks with Recursive Attacks (AFRA) [3]
and Extended Argumentation Frameworks (EAF) [12] extend the definition of
attack, allowing attacks to be directed not only to arguments but also to other
attacks. The difference between the two is that, while in EAFs only attacks whose
target is an argument can be attacked, in AFRA any attack can be attacked.
This idea is orthogonal to our approach that considers different types of attack,
which are, however, all directed to arguments, and studying the combination
of these two approaches, e.g. by allowing different types of attack that can be
directed to arguments or attacks is an interesting research direction.

Commonsense Argumentation Frameworks [16], on the other hand, include
two types of attacks, which differ in the type of arguments they are directed
to, i.e. deductive arguments and commonsense arguments. They can therefore
be considered as specializations of Multi-Attack Argumentation Frameworks,
which we propose in this paper.

Some other studies have introduced weights or preferences on attacks follow-
ing quantitative or qualitative approaches. For example, Weighted Argumenta-
tion Systems [9] assign weights to attacks as a way to describe their strength
and use the idea of an inconsistency budget as a way to disregard attacks up
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to a certain weight. The idea of weighted attacks is also used in [10], where the
acceptability of arguments is not defined in terms of the standard Dung-style
extensions, but in terms of numerical values derived from a set of equations
describing the arguments and their attack relations. While social networks is
indeed a domain where numerical weights can be derived from the reactions of
the users, in many other domains (for example, the legal domain) such types of
data may not be available.

A qualitative approach to represent preferences among attacks was proposed
in [11]. Similarly to our approach, they define a framework with (an arbitrary
number of) types of attack. These are partially ordered, and each attack is
assigned one of these types. This allows for a finer grained definition of defence
(compared to AAFs), which can roughly be described as follows: an argument
is defended against an attack from a counter-argument, if the latter receives
a stronger attack from another argument. It also allows for a finer definition
of acceptability semantics, which take into account the relative difference of
strength between defensive and offensive attacks.

All such preference-based approaches, which use either numerical values or
priorities to represent the (relative) strength of attacks, have a common charac-
teristic: any non-preferred attack is either ignored or invalidated. Our approach
offers alternative ways to treat attacks, which take into account their roles in an
argumentation system, i.e. whether they are used as offensive or defensive at-
tacks. For example, according to the firm semantics, a defense is effective only if
it is from an argument of a specific type, while according to the loose semantics,
an offensive attack is effective if the attacker is of a specific type. Choosing the
right semantics depends on the specific requirements and characteristics of the
application domain.

Another approach that also considers different types of attack in abstract ar-
gumentation was proposed in [15]. The motivation is similar to ours, namely that
each attack relation can represent a different criterion according to which the
arguments can be evaluated one against another. The evaluation of arguments,
however, is based on the aggregation of the different relations using methods
from social choice theory, such as majority voting, and the use of the standard
acceptability semantics in the aggregate argumentation framework. They do not,
therefore, provide ways to treat certain criteria differently than others, which is
one of the main characteristics of Multi-Attack Argumentation Frameworks.

Different types of attack are common in structured argumentation frame-
works. For example, in ASPIC+ [13] arguments can be attacked in three dif-
ferent ways: on their uncertain premises (undermining), on their defeasible in-
ferences (undercutting), or on the conclusions of their defeasible inferences (re-
butting). Deductive argumentation [6] also supports different types of attack,
which depend on the underlying logic. For example, choosing classical logic as the
base logic provides seven different types of attack. The different types of attack
in such frameworks are associated with the internal structure of arguments and
cannot therefore be directly compared with Multi-Attack Argumentation Frame-
works in which arguments are abstract. They can, however, easily be mapped
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to the representation model of Multi-Attack Argumentation Frameworks, i.e. by
mapping each of the different types of attack they support to a different attack
type of MAAF. This mapping enables alternative ways to reason with struc-
tured arguments by treating differently the different types of attack, which may
be meaningful in some domains.

3 Multi Attack Argumentation Frameworks (MAAFs)

We define a multi-attack argumentation framework as an argumentation frame-
work where attacks are of multiple types. Formally:

Definition 1. A multi-attack argumentation framework (MAAF for short) is
a tuple 〈A, T,R〉, such that:

– A is a set of arguments
– T is a set of attack types
– R ⊆ A ×A × T is a set of type-annotated attacks among arguments

Note that A and/or T can be infinite, so R can be infinite too. Intuitively
an attack (a, b, τ) ∈ R represents that a attacks b, and that the attack is of type
τ. Note that the same two arguments may be related with attacks of different
types, in which case each attack type is represented as a different triple in R.

For any given set of types T0 ⊆ T, we say that a attacks b w.r.t. T0 (denoted
by a →T0 b) if there exists τ ∈ T0, such that (a, b, τ) ∈ R. For simplicity, we
often write →τ to denote →{τ}, and → to denote →T . We extend notation to
sets of arguments, and, for B,C ⊆ A, we write B →T0 C if and only if ∃b ∈ B,
c ∈ C such that b→T0 c. For singleton sets, we often write b→T0 C and B →T0 c
instead of {b} →T0 C and B →T0 {c}, respectively.

The restriction of an MAAF to a specific set of types T0 is the AAF that
is generated from the MAAF by considering only the attacks in T0. Formally,
given an MAAF 〈A, T,R〉, the restriction of 〈A, T,R〉 to T0 is an AAF 〈A′,R′〉,
where A′ = A and R′ = {(a, b) | (a, b, τ) ∈ R for some τ ∈ T0}.

The flattening of an MAAF is the AAF that is generated from the MAAF
by ignoring types. Formally, for an MAAF F = 〈A, T,R〉, the flattening of F is
an AAF 〈A′,R′〉, where A′ = A and R′ = {(a, b) | (a, b, τ) ∈ R for some τ ∈ T}.
Note that the flattening of F is the same as the restriction of F to T.

3.1 Classes of extensions for MAAFs

To define MAAF extensions, we introduce three new classes of semantics: firm,
restricted and loose. For each type of semantics defined in [8] (e.g., admissible,
complete, etc), we define its counterpart for each class (e.g., firmly admissible,
restrictedly stable, loosely complete, etc.). The three classes differ in how certain
types of attack are considered. As already mentioned, the idea behind our se-
mantics is the treatment of certain types of attacks as being conflict-generators
only or attackers only. To do this, we consider a certain set of types, say T0,
which are treated in the “normal” manner. Different types of semantics can now
result depending on the exact behaviour of the attacks in T \ T0. In particular:
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1. Firm semantics (e.g., admissible, complete etc) w.r.t. a certain set of attack
types (say T0) requires a candidate extension to be defended against all
types of attacks, and an attack can be defended only by attacks from T0.
In other words, attacks in T0 have the standard behaviour, but attacks in
T \ T0 act as conflict-generators only, not as defenders. We call them firm
because, while they allow any type of argument to unleash offensive attacks,
they only allow certain types of attack (those in T0) to defend an argument,
making its defense more difficult.

2. Restricted semantics (e.g., admissible, complete etc) w.r.t. a certain set of
attack types (say T0) require a candidate extension to be defended against
attacks from T0 only, and an attack can be defended only by attacks from T0.
Thus, restricted semantics essentially consider only the attacks in T0, both
for the attacks and for defending against them, i.e., attacks in T \ T0 are
totally ignored. This brings them quite close to the notion of the restriction
of an MAAF, a statement that will be made precise in Proposition 4.

3. Loose semantics (e.g., admissible, complete etc) w.r.t. a certain set of attack
types (say T0) are the most “relaxed” ones, as they require a candidate
extension to be defended only against attacks from T0, while defense can
happen by any type of attack. In other words, in loose semantics, attacks
in T \ T0 are treated as defenders only, and cannot generate attacks. Loose
semantics allows attacks to be ignored, so they may result to extensions that
are not defended against all attacks, specifically against attacks that are of
types not in T0.

In the following, we use shorthands to refer to the various types and classes
of semantics. In particular, for the three classes of semantics, we use fr for firm,
re for restricted, and lo for loose semantics. We also use θ as a catch-all variable
that refers to any of these classes. Similarly, for types of extensions, we use
cf for conflict-free, ad for admissible, co for complete, pr for preferred, gr for
grounded, and st for stable. We also use σ as a catch-all variable to indicate
any of these extension types. For example, we write fr-co-extension to refer to
a firmly complete extension, and θ-σ-extension to refer to an extension of class
θ and the type denoted by σ.

To formalise the above ideas, we first refine the notion of defense:

Definition 2. Consider an MAAF 〈A, T,R〉, some T0 ⊆ T, some a ∈ A and
some set E ⊆ A. We define the notion of defense for the different classes of
semantics as follows:

– E firmly defends a (or fr-defends a) w.r.t. T0 if and only if E →T0 b whenever
b→ a

– E restrictedly defends a (or re-defends a) w.r.t. T0 if and only if E →T0 b
whenever b→T0 a

– E loosely defends a (or lo-defends a) w.r.t. T0 if and only if E → b whenever
b→T0 a

Figure 2 visualises the notion of defense for various cases.
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a1 a2

a3

a4

a5

a6

τ

τ ′

τ

τ ′

τ

For T0 = {τ}, it holds that:
{a1} fr-defends a3 w.r.t. T0

{a1} re-defends a4 w.r.t. T0

{a2} lo-defends a6 w.r.t. T0

For any E, E fr-defends a1 w.r.t. T0

For any E, E re-defends a3 w.r.t. T0

For any E, E lo-defends a3 w.r.t. T0

{a2} does not fr-defend a5 w.r.t. T0

{a2} does not re-defend a6 w.r.t. T0

Fig. 2. The concept of fr/re/lo-defense visualised

3.2 Firm, restricted and loose extensions

Now we can recast the standard definitions for the different types of semantics
given in [8], using the above ideas:

Definition 3. Consider an MAAF 〈A, T,R〉 and some T0 ⊆ T. A set E ⊆ A is:

– Firmly conflict-free (fr-cf) w.r.t. T0 if and only if it is not the case that
E → E

– Restrictedly conflict-free (re-cf) w.r.t. T0 if and only if it is not the case that
E →T0 E

– Loose conflict-free (lo-cf) w.r.t. T0 if and only if it is not the case that
E →T0 E

Note how the intuition behind the different classes of semantics are applied
in Definition 3: lo-cf and re-cf sets may include self-attacks, as long as they
are not of types in T0 (because attacks in T \ T0 are not conflict-generators in
these semantics), whereas fr-cf sets cannot include any self-attack. As a result,
the definition of re-cf and lo-cf coincides, since the notion of defense (where
the two classes of semantics differ) is not relevant to that of conflict-freeness.
Nevertheless, for purposes of uniformity and symmetry, we decided to include
both definitions.

The same ideas are applied to admissible extensions, whose definition es-
sentially mimics the ones typically used in AAFs, but considers the alternative
notions of defense (Definition 2) for each case:

Definition 4. Consider an MAAF 〈A, T,R〉 and some T0 ⊆ T. For θ ∈ {fr, re, lo},
a set E ⊆ A is a θ-ad extension w.r.t. T0 (in words: firmly/restrictedly/loosely
admissible) if and only if:

– E is θ-cf
– If a ∈ E, then E θ-defends a w.r.t. T0
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Complete semantics’ definition slightly deviates from the respective one in
AAFs to accommodate the differences in the definition of conflict-freeness.

Definition 5. Consider an MAAF 〈A, T,R〉 and some T0 ⊆ T. For θ ∈ {fr, re, lo},
a set E ⊆ A is a θ-co extension w.r.t. T0 (in words: firmly/restrictedly/loosely
complete) if and only if:

– E is θ-ad
– If E θ-defends a w.r.t. T0, and E ∪ {a} is θ-cf w.r.t. T0, then a ∈ E

Note that, in the above definition, instead of only requiring that a ∈ E
whenever E θ-defends a, we have included the additional requirement that E∪{a}
is θ-cf , thereby deviating somewhat from the definition pattern used in AAFs for
co-semantics [8]. This additional requirement is redundant in the AAF setting,
because it results as a corollary of the weaker definition. The same is true in
the MAAF setting, but only for the fr and re semantics (see Proposition 2 and
the analysis that follows it). For this reason, and for purposes of uniformity and
symmetry, we decided to include this extra requirement in Definition 5.

Grounded and preferred semantics are defined analogously:

Definition 6. Consider an MAAF 〈A, T,R〉 and some T0 ⊆ T. A set E ⊆ A
is a θ-gr extension w.r.t. T0 (in words: firmly/restrictedly/loosely grounded) if
and only if E is a minimal with respect to set inclusion θ-co extension w.r.t. T0.

Definition 7. Consider an MAAF 〈A, T,R〉 and some T0 ⊆ T. A set E ⊆ A
is a θ-pr extension w.r.t. T0 (in words: firmly/restrictedly/loosely preferred) if
and only if E is a maximal with respect to set inclusion θ-ad extension w.r.t. T0.

Stable semantics also follow a similar pattern:

Definition 8. Consider an MAAF 〈A, T,R〉 and some T0 ⊆ T. A set E ⊆ A is:

– A firmly stable extension (fr-st) w.r.t. T0 if and only if:
• E is maximally fr-cf w.r.t. T0
• E →T0 a whenever a /∈ E

– A restrictedly stable extension (re-st) w.r.t. T0 if and only if:
• E is maximally re-cf w.r.t. T0
• E →T0 a whenever a /∈ E

– A loosely stable extension (lo-st) w.r.t. T0 if and only if:
• E is maximally lo-cf w.r.t. T0
• E → a whenever a /∈ E

Note that Definition 8 also deviates somewhat from the definition pattern
of st semantics in standard AAFs. In particular, instead of requiring that E is
θ-cf (for the various θ), we have required that it is maximally θ-cf , i.e., a θ-cf
set that is maximal among all other θ-cf sets. As with the co semantics, this
stronger requirement is redundant in the AAF setting, and also in the MAAF
setting for fr and re semantics (we have, however, included it in their definitions
for uniformity), but is necessary for lo semantics (see Proposition 3 and the
analysis that follows it).
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4 Properties of MAAFs

We can show several properties with regards to the interplay among various types
of θ-σ-extensions. To simplify presentation, all the following results assume an
arbitrary MAAF F = 〈A, T,R〉 and some T0 ⊆ T. Also, the reference to T0 is
often omitted when obvious; e.g., we write that E is a lo-co extension, to signify
that E is a lo-co extension w.r.t. T0.

4.1 Initial results and special cases

We first show the analogous of Dung’s fundamental lemma (Lemma 10 in [8]).
Note the different formulation of this result for lo semantics1:

Proposition 1. For any given E ⊆ A, a ∈ A, it holds that:

1. If E is θ-ad, and E θ-defends a, then E ∪ {a} is θ-ad, for θ ∈ {fr, re}
2. If E is lo-ad, E lo-defends a, and E ∪ {a} is lo-cf , then E ∪ {a} is lo-ad

Proposition 2 shows that the extra requirement of Definition 5 (compared to
its counterpart in AAFs) is redundant for fr and re semantics:

Proposition 2. For θ ∈ {fr, re}, E ⊆ A, the following are equivalent:

– E is a θ-co-extension w.r.t. T0
– The following hold for E:

• E is θ-ad w.r.t. T0
• If E θ-defends a w.r.t. T0, then a ∈ E

Note that the above equivalence does not hold for loose semantics. Indeed,
the different formulation of Proposition 1 does not allow its use in the proof of
Proposition 2. The MAAF visualised in Figure 3 provides a counter-example:
{a, b} is lo-co, despite the fact that {a, b} lo-defends c and c /∈ {a, b}. This is
due to the extra requirement that we added in Definition 5; without it, neither
{a, b}, nor {a, b, c} would be lo-co, i.e., we would end up having a maximal lo-
ad extension ({a, b}), that is not lo-co, which is against the intuition behind
complete extensions.

Similarly, Proposition 3 shows that the extra requirement of Definition 8
(compared to its AAF counterpart) is redundant for fr-st and re-st semantics:

Proposition 3. For θ ∈ {fr, re}, E ⊆ A, the following are equivalent:

– E is a θ-st-extension

– The following hold for E:

• E is θ-cf

• E →T0 a whenever a /∈ E
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a b c
τ ′ τ

For T0 = {τ}, we have that:
{a, b} is lo-ad w.r.t. T0

{a, b} lo-defends c w.r.t. T0

{a, b, c} is not lo-co w.r.t. T0

Fig. 3. Counter-example for the counterpart of Proposition 2 for lo semantics

a b c
τ ′ τ

For T0 = {τ}, we have that:
{b} is lo-cf w.r.t. T0

{b} → a, {b} → c,
{a, b} is lo-cf w.r.t. T0

Fig. 4. Counter-example for the counterpart of Proposition 3 for lo semantics

The example of Figure 4 shows a case where the counterpart of Proposition
3 would fail for lo semantics. The set {b} attacks all other arguments, and is
lo-cf , but not maximally so. Thus, it is not lo-st. On the contrary, {a, b} is lo-st.
This shows why the extra maximality condition that was added to Definition 8
(compared to its counterpart in AAFs) is necessary: without it, both {a, b} and
{b} would be lo-st.

The next result shows that restricted semantics can be computed using the
restriction of an MAAF:

Proposition 4. Consider an MAAF F = 〈A, T,R〉 and some T0 ⊆ T. Set
F ′ = 〈A′,R′〉 the restriction of F to T0. For any given σ ∈ {cf ,ad, co,gr,pr, st}
and E ⊆ A, E is a re-σ-extension w.r.t. T0 if and only if E is a σ-extension of
F.

The following result describes a special case, showing essentially that our
semantics is a generalisation of Dung’s (i.e., that AAF semantics emerge as a
special case of MAAFs):

Proposition 5. Consider an MAAF F = 〈A, T,R〉 and set T0 = T. Consider
also the MAAF’s flattening F ′ = 〈A′,R′〉, and its restriction to T0, F ′′ =
〈A′′,R′′〉. Then, for any σ ∈ {cf ,ad, co,gr,pr, st}, E ⊆ A the following are
equivalent:

1. E is a lo-σ-extension w.r.t. T0
1 The proofs of all results appear in the Appendix.
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2. E is a re-σ-extension w.r.t. T0
3. E is a fr-σ-extension w.r.t. T0
4. E is a σ-extension of F ′
5. E is a σ-extension of F ′′

4.2 Relations among extension types, and existence results

The next proposition shows that the hierarchy of extensions that holds in the
Dung setting, also holds for each class of extensions:

Proposition 6. For any E ⊆ A:

1. If E is a θ-ad-extension w.r.t. T0, then E is a θ-cf -extension w.r.t. T0
2. If E is a θ-co-extension w.r.t. T0, then E is a θ-ad-extension w.r.t. T0
3. If E is a θ-gr-extension w.r.t. T0, then E is a θ-co-extension w.r.t. T0
4. If E is a θ-pr-extension w.r.t. T0, then E is a θ-co-extension w.r.t. T0
5. If E is a θ-st-extension w.r.t. T0, then E is a θ-pr-extension w.r.t. T0

Our next result shows that we can “incrementally” construct minimally-
complete extensions starting from an ad one. The proof follows an iterative
function, similar to the function FAF used by Dung in [8]. However, for MAAFs,
there are two subtleties.

First, FAF (as defined in [8]) adds all acceptable arguments in each iteration;
for the lo case, this could lead to a set that is not lo-cf (see, e.g., Figure 5: both
b and c are acceptable by {a}, but {a, b, c} is not lo-cf); thus, a more elaborate
construction is needed.

Second, for infinite frameworks, the existence of a minimal fixpoint for FAF
(in [8]) is guaranteed by the implicit use of the Knaster-Tarski theorem ([14]),
which requires an order preserving function. Although FAF is order-preserving,
our alternative is not.

To overcome these problems, the proof of Proposition 7 uses a more complex
iterative function, employing ordinals. Importantly, this construction applies to
all our semantics, as well as to standard AAFs, so it can be viewed also as an
alternative proof for a well-known property of AAFs. Note also that the proof
employs the Axiom of Choice.

Proposition 7. Take any MAAF F = 〈A, T,R〉, some T0 ⊆ T, and some E∗ ⊆
A such that E∗ is θ-ad (for θ ∈ {fr, re, lo}). Then, there exists some E such that
E ⊇ E∗, and the following hold:

1. E is θ-co.
2. For any E ′ such that E∗ ⊆ E ′ ⊂ E, there exists a ∈ E \ E ′ which is θ-defended

by E ′ and E ′ ∪ {a} is θ-cf .
3. For any E ′ such that E∗ ⊆ E ′ ⊂ E, E ′ is not θ-co.

We next show that the existence of θ-σ extensions is guaranteed (except from
θ-st), for all θ, analogously to the AAF case (see [8], [4]). Note that the proof
for the infinite case in some of the semantics requires the Axiom of Choice:
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a

b c

τ ′ τ ′

τ

τ

For T0 = {τ}, we have that both
{a, b} and {a, c} are lo-gr extensions.

Fig. 5. An MAAF with two lo-gr extensions

Proposition 8. For any MAAF F = 〈A, T,R〉, θ ∈ {fr, re, lo}, σ ∈ {cf ,ad, co,gr,pr}
and T0 ⊆ T, there exists a θ-σ extension w.r.t. T0 in F.

In AAFs, a gr extension is unique. The counter-example of Figure 5 shows
that this is not the case for lo-gr extensions. However, for the other semantics
(fr, re), the uniqueness of gr extensions is guaranteed:

Proposition 9. For any MAAF F = 〈A, T,R〉, θ ∈ {fr, re} and T0 ⊆ T, there
exists a unique θ-gr extension w.r.t. T0 in F.

Conflict-free (1+)

Admissible (1+)

Complete (1+)

Preferred (1+)
Grounded

(1 for fr, re; 1+ for lo)

Stable (0+)

Fig. 6. Properties of MAAF extensions (apply to fr, re, lo, unless mentioned
otherwise)

Propositions 6, 8 and 9 are summarised in Figure 6.
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4.3 Relations among extension classes

The following propositions show the relation among fr, re and lo extensions, as
well as the relation between these extensions and the extensions of the flattened
AAF. This, along with Proposition 4, completes the picture with regards to the
relationship among the different extension classes. We provide one proposition
for each extension type (cf , ad, etc), starting with the simple case of cf :

Proposition 10. Take an MAAF F = 〈A, T,R〉, its flattened AAF FF =
〈A,R′〉 and some E ⊆ A. Then:

1. E is fr-cf if and only if E is cf in FF .
2. If E is fr-cf then E is re-cf .
3. E is re-cf if and only if E is lo-cf .

Interestingly, the direction of inference for the case of defense reverses (com-
pared to the cf case) for the flattened AAF and the re class:

Proposition 11. Take an MAAF F = 〈A, T,R〉, its flattened AAF FF =
〈A,RF 〉, some E ⊆ A and some a ∈ A. Then:

1. If E fr-defends a, then E re-defends a.
2. If E re-defends a, then E defends a in FF .
3. If E defends a in FF , then E lo-defends a.

This reversal of the direction of inference (in Propositions 10, 11) leads to
the following proposition:

Proposition 12. Take an MAAF F = 〈A, T,R〉, its flattened AAF FF =
〈A,RF 〉 and some E ⊆ A. Then:

1. If E is fr-ad, then E is re-ad.
2. If E is fr-ad, then E is ad in FF .
3. If E is re-ad, then E is lo-ad.
4. If E is ad in FF , then E is lo-ad.
5. If E is re-ad and cf in FF , then E is ad in FF .

For complete, grounded and preferred semantics, the situation is more com-
plex:

Proposition 13. Take an MAAF F = 〈A, T,R〉, its flattened AAF FF =
〈A,RF 〉 and some E ⊆ A. Then:

1. If E is re-co and fr-ad, then E is fr-co.
2. If E is co in FF and re-ad, then E is re-co.
3. If E is lo-co and ad in FF , then E is co in FF .

Proposition 14. Take an MAAF F = 〈A, T,R〉, its flattened AAF FF =
〈A,RF 〉 and some E ⊆ A. Then:

1. If E is fr-gr and re-co, then E is re-gr.
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2. If E is re-gr and co in FF , then E is gr in FF .
3. If E is gr in FF and lo-co, then E is lo-gr.

Proposition 15. Take an MAAF F = 〈A, T,R〉, its flattened AAF FF =
〈A,RF 〉 and some E ⊆ A. Then:

1. If E is re-pr and fr-ad, then E is fr-pr.
2. If E is pr in FF and re-ad, then E is re-pr.
3. If E is lo-pr and ad in FF , then E is pr in FF .

Finally, for stable semantics, the situation is similar to the case of admissible
semantics:

Proposition 16. Take an MAAF F = 〈A, T,R〉, its flattened AAF FF =
〈A,RF 〉 and some E ⊆ A. Then:

1. If E is fr-st, then E is re-st.
2. If E is fr-st, then E is st in FF .
3. E is re-st, if and only if E is lo-st.
4. If E is re-st and cf in FF , then E is st in FF .

Further corollaries can be derived by combining the above results (Proposi-
tions 10, 11, 12, 13, 14, 15, 16) with Propositions 4 and 6, to connect the various
types and classes of semantics among themselves, and with the semantics of
restricted/flattened AAF. These are direct and omitted.

5 Discussion and Conclusion

In this paper we presented the semantics of multi-attack argumentation frame-
works, i.e., frameworks which support multiple attack types among arguments.
The important novelty of our semantics is the discrimination between two roles of
attacks that have traditionally been considered inseparably: the role of conflict-
generator, and the role of defender. The combination of these two aspects allowed
us to define new classes of semantics, which model interesting real-life situations,
have nice formal properties, and engulf standard models as a special case. An
AAF cannot capture the aforementioned aspects to the extent that an MAAF
does.

Note that, although MAAFs admit several types of attacks, during the com-
putation of semantics, all attack types are split into two classes: those that are
in T0, and those that are not. Thus, we could define the same semantics by just
allowing two different types. However, such a solution, albeit simpler, would have
two disadvantages. The first is that it is intuitively better for the modeller to
have several attack types, and then decide which ones are “normal” (to be placed
in T0), and which ones are “special” (to be placed in T \ T0). This approach has
the additional advantage that the modeller can choose a different T0 depending
on the application at hand. Second, our modelling allows more sophisticated se-
mantics to be developed, e.g., by defining sets T1, T2 and treating the attacks in
T1 as defenders only, and attacks in T2 as conflict-generators only. This extension
is part of our future work.
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A Appendix

Proof of Proposition 1.
For the first result, E ∪ {a} θ-defends E ∪ {a}, since, by our assumptions, E θ-
defends E, and E θ-defends a. So it suffices to show that, E ∪ {a} is θ-cf .
Let us consider the case of firm semantics first. Suppose that E∪{a} is not fr-cf .
Then, there exist a1, a2 ∈ E ∪{a} such that a1 → a2. We consider four cases, all
of which lead to a contradiction, thus proving the point:

1. If a1, a2 ∈ E, then E is not fr-cf , a contradiction.
2. If a1 ∈ E, a2 = a, then, since E fr-defends a, it follows that there exists some
a3 ∈ E such that a3 →T0 a1, a contradiction by case #1.

3. If a1 = a, a2 ∈ E, then, since E is an fr-ad-extension, it follows that there
exists a3 ∈ E, such that a3 →T0 a, i.e., a3 → a, a contradiction by case #2.

4. If a1 = a2 = a, then, since E fr-defends a, it follows that there exists some
a3 ∈ E such that a3 →T0 a, i.e., a3 → a, a contradiction by case #2.

The case of restricted semantics is completely analogous and omitted.
For the second result, using the same reasoning we note that E ∪ {a} lo-defends
E ∪ {a}. Given that E ∪ {a} is lo-cf by our assumptions, the result follows. �

Proof of Proposition 2.
By Proposition 1 when E is θ-ad, and E θ-defends a, then E ∪ {a} is θ-cf , for
θ ∈ {fr, re}. The result then follows trivially. �

Proof of Proposition 3.
It suffices to show that when E is θ-cf , and E →T0 a whenever a /∈ E, then E is
maximally θ-cf . Indeed, suppose that E ′ is θ-cf and E ′ ⊃ E. Then, take some
a ∈ E ′ \ E. By our hypothesis, E →T0 a, i.e., E ′ →T0 E ′, a contradiction by our
hypothesis that E ′ is θ-cf . �

Proof of Proposition 4.
Since A = A′, take any a, b ∈ A, E ⊆ A. Then, apparently:

– a attacks b in F ′ if and only if a→T0 b in F
– E defends a in F ′ if and only if E re-defends a in F

Using the above two statements and Propositions 2, 3 (necessary for the case of
co- and st-extensions respectively), it is easy to show the result. �

Proof of Proposition 5.
Since T0 = T, we note that a →T0 b if and only if a → b. The equivalence
among #1, #2, #3 is then obvious by the respective definitions on θ-extensions.
Moreover, the equivalence among #2 and #4 is obvious from Proposition 4,
whereas the equivalence among #4 and #5 follows from the fact that F ′ = F ′′.
�

Proof of Proposition 6.
For re semantics, all results follow from Proposition 4 and the corresponding
results on the AAF (e.g., [8]), so let us consider the case of fr and lo semantics.
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#1, #2 and #3 are obvious by the respective definitions.
For #4, let θ ∈ {fr, lo}, and take E to be a θ-pr-extension. Then it is θ-ad.
Suppose that it is not θ-co. Then, there is some a /∈ E, such that E θ-defends a
and E ∪ {a} is θ-cf . But then, it is easy to see that E ∪ {a} is θ-ad, which is a
contradiction by the definition of θ-pr-extensions and the fact that E ∪ {a} ⊃ E.
For #5, let us consider the case of firm semantics first, and take E to be an fr-
st-extension. Then, it is fr-cf (and maximally so). We will show that it is also
fr-ad. Indeed, take some a, b ∈ A, such that a ∈ E and b→ a. Then b /∈ E (since
E is fr-cf), thus E →T0 b (since E is fr-st), which implies that E fr-defends a.
Thus, E is also fr-ad. It is also maximal, because E is maximally fr-cf . Therefore,
E is an fr-pr-extension.
For the lo case, take E to be a lo-st-extension. Then, it is lo-cf (and maximally
so). We will show that it is also lo-ad. Indeed, take some a, b ∈ A, such that
a ∈ E and b→T0 a. Then b /∈ E (since E is lo-cf), thus E → b (since E is lo-st),
which implies that E lo-defends a. Thus, E is also lo-ad. It is also maximal,
because E is maximally lo-cf . Therefore, E is a lo-pr-extension. �

Proof of Proposition 7.
We will prove the claim constructively. First, we will describe a construction
over F, and then we will show that this construction generates some E with
the above properties. The proof is broken down in steps, represented as claims
proved individually below. The last claim (Claim 5) shows the result.
Construction. We assume a well-order < over A (its existence is guaranteed
by the Axiom of Choice). For a given set E ⊆ A, we denote by min<E the
minimal element of E according to <.
Moreover, for E ⊆ A, set E � = {a ∈ A \ E | E: θ-defends a, E ∪ {a}: θ-cf},
i.e., the arguments that are defended by E, and do not conflict with E.
We define the function: φ : 2A 7→ 2A as follows:

φ(E) =

{
E , when E � = ∅
E ∪ {min<(E �)} , when E � 6= ∅

Finally, we define a function G recursively on the ordinals as follows:

G(β) = E∗ , when β = 0
G(β + 1) = φ(G(β)) , when β is a successor ordinal
G(β) =

⋃
{G(γ) | γ < β} , when β is a limit ordinal

Claim 1. For two ordinals β, γ, if β < γ, then G(β) ⊆ G(γ).
Proof of Claim 1. We will use transfinite induction on γ.
If γ = 0, then the result holds trivially as there is no β for which β < γ. Suppose
that the result holds for all γ < δ; we will show that it holds for γ = δ.
If δ is a successor ordinal, then there exists some δ− such that δ = δ−+1. Clearly,
by the definition of G and φ, G(δ) ⊇ G(δ−). Furthermore, by the inductive
hypothesis, G(δ−) ⊇ G(β), which shows the result.
If δ is a limit ordinal, then the result follows directly by the definition of G. ◦
Claim 2. For any ordinals β, G(β) ⊇ E∗.
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Proof of Claim 2. If β = 0 the result follows by the definition of G. If β > 0, the
result follows by Claim 1. ◦
Claim 3. For any ordinal β, G(β) is θ-ad.
Proof of Claim 3. We will use transfinite induction over β. For β = 0, the result
follows by our assumption on E∗. Now suppose that it holds for all β < γ. We
will show that it holds for β = γ.
If γ is a successor ordinal, then take γ− such that γ = γ−+1. Then, by definition,
G(γ) = φ(G(γ−)). By the inductive hypothesis G(γ−) is θ-ad. Moreover, by the
definition of φ, φ(E) is θ-ad whenever E is θ-ad, so G(γ) is θ-ad.
If γ is a limit ordinal, then suppose that G(γ) is not θ-cf . Then, there exist
a1, a2 ∈ G(γ) such that {a1, a2} is not θ-cf , and, thus, there exist ordinals δ1, δ2
such that δ1 < γ, δ2 < γ, a1 ∈ G(δ1), a2 ∈ G(δ2). If δ1 = δ2 then G(δ1) is not
θ-cf , a contradiction by the inductive hypothesis. If δ1 < δ2 then G(δ2) ⊇ G(δ1)
(by Claim 1), so a1, a2 ∈ G(δ2), a contradiction by the inductive hypothesis. The
case of δ2 < δ1 is analogous. Thus, G(γ) is θ-cf .
Now consider some a ∈ G(γ). Then, by the definition of G, there exists some
δ < γ such that a ∈ G(δ). Since G(δ) is θ-ad by the inductive hypothesis, it
follows that G(δ) θ-defends a, so, given that G(γ) ⊇ G(δ) (Claim 1), we conclude
that G(γ) θ-defends a. Thus, G(γ) is θ-ad. ◦
Claim 4. There exists ordinal β such that G(β) = G(β + 1).
Proof of Claim 4. By Claim 1, we conclude that G is an increasing function
from the ordinals into 2A . It cannot be strictly increasing, as if it were we
would have an injective function from the ordinals into a set, violating Hartogs’
lemma.Therefore the function must be eventually constant, so for some β, G(β) =
G(β + 1). ◦
Claim 5. There exists some E such that E ⊇ E∗, and the following hold:

1. E is θ-co.
2. For any E ′ such that E∗ ⊆ E ′ ⊂ E, there exists a ∈ E \ E ′ which is θ-defended

by E ′ and E ′ ∪ {a} is θ-cf .
3. For any E ′ such that E∗ ⊆ E ′ ⊂ E, E ′ is not θ-co.

Proof of Claim 5. By Claim 4, there exists ordinal β such that G(β) = G(β+ 1).
Set E = G(β). By Claim 2, E ⊇ E∗, so it is an adequate choice. We will show
that E satisfies the required properties.
For the first result, note that by Claim 3, E is θ-ad. Moreover, E = G(β) =

G(β + 1) = φ(G(β)) = φ(E), which implies that E � = ∅, which, in tandem with
the fact that E is θ-ad leads to the conclusion that E is θ-co.
For the second result, take some E ′ such that E∗ ⊆ E ′ ⊂ E.
Set S = {γ | G(γ) 6⊆ E ′}. We observe that β ∈ S, so S 6= ∅. Set δ = min< S.
Obviously, δ = β or δ < β.
If δ = 0, then G(δ) = E∗ ⊆ E ′, a contradiction.
If δ is a successor ordinal, then take δ− such that δ = δ− + 1. Thus, G(δ) =
φ(G(δ−)). By construction, G(δ−) ⊆ E ′ and G(δ) 6⊆ E ′, therefore G(δ) = G(δ−)∪
{a}, for some a for which G(δ−) θ-defends a and G(δ−) ∪ {a} is θ-cf . If a ∈ E ′,
then G(δ) ⊆ E ′, a contradiction by the choice of δ, so a /∈ E ′. Moreover, a ∈ G(δ).
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If δ = β then G(δ) = E, so a ∈ E. If δ < β then a ∈ G(δ) ⊆ G(β) (by Claim 1),
so a ∈ E. We conclude that a ∈ E \ E ′. Thus, we have found some a with the
required properties.
If δ is a limit ordinal, then, by the definition of δ, G(δ′) ⊆ E ′ for all δ′ < δ.
Therefore, G(δ) =

⋃
δ′<δ G(δ′) ⊆ E ′, a contradiction by the choice of δ.

The third result follows from the second: indeed, as there exists a ∈ E \E ′ which
is θ-defended by E ′ and E ′ ∪ {a} is θ-cf , it cannot be the case that E ′ is θ-co. ◦

�

Proof of Proposition 8.
For the case where θ = re, the proof follows directly by Proposition 4 and the
related results from the AAF literature. So suppose that θ ∈ {fr, lo}.
We first note that ∅ is θ-cf and θ-ad w.r.t. T0, so the claim is true for σ ∈
{cf ,ad}.
Let us now turn our attention to the case where σ = pr. Our proof follows the
lines of the respective proof in [4]. Set AD = {E | E is θ-ad} (AD 6= ∅, as shown
above). We will show that, any ⊆-chain (Ei)i∈I in AD possesses an upper bound.
Indeed, set E =

⋃
Ei. Obviously E ⊇ Ei, so it is an upper bound; it remains to

show that E ∈ AD, i.e., that E is θ-ad.
Now suppose that E is not θ-cf . Then there exist a1, a2 ∈ E that attack each
other (a → b for θ = fr, a →T0 b for θ = lo). By the definition of E, there exist
Ei, Ej such that a1 ∈ Ei, a2 ∈ Ej for some i, j ∈ I. It is the case that Ei ⊆ Ej or
Ei ⊆ Ej , so suppose, without loss of generality, that Ei ⊆ Ej . Then a1, a2 ∈ Ej ,
a contradiction, since Ej is θ-ad (thus θ-cf). Thus, E is θ-cf . It remains to show
that E defends all a ∈ E. Indeed, take some a ∈ E. Then, a ∈ Ei for some i ∈ I,
and, thus Ei θ-defends a, which implies that E θ-defends a, since E ⊇ Ei. Thus,
any ⊆-chain (Ei)i∈I in AD possesses an upper bound, which, by Zorn’s Lemma,
implies that AD has a maximal element, i.e., that there exists a θ-pr extension.
By proposition 6, this implies that there exists a θ-co extension as well.
For θ-gr extensions, note that ∅ is θ-ad, so applying Proposition 7 for E∗ = ∅
we ensure the existence of some E which is minimally θ-co, i.e., E is θ-gr. �

Proof of Proposition 9.
Given that ∅ is θ-ad, we can apply Proposition 7 for E∗ = ∅ to get some E
which is minimally θ-co, i.e., E is θ-gr. Now suppose that there is a second θ-gr
extension, say E ′ (E ′ 6= E). Obviously, E 6⊆ E ′ and E ′ 6⊆ E. Set E0 = E ∩ E ′. It
follows that ∅ ⊆ E0 ⊂ E, so by Proposition 7 again there exists some a ∈ E \ E0
which is θ-defended by E0 and E0∪{a} θ-cf . Moreover, E0 ⊂ E ′, so a is θ-defended
by E ′. Thus, E ′ is θ-gr, thus θ-co, and also E ′ θ-defends a, so by Proposition 2,
a ∈ E ′, a contradiction by the choice of a. �

Proof of Proposition 10.
The first case is direct from Definition 3 and the definition of FF . The second
case is direct using proof by contradiction and the fact that E →T0 E implies
E → E. The third is direct from Definition 3. �

Proof of Proposition 11.
The first case follows from the fact that b→T0 c implies that b→ c for any b, c ∈
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A. For the second and third cases, note that a → b if and only if (a, b) ∈ RF ,
and that a →T0 b implies that a → b. From these, and the definition of defense
in AAFs and MAAFs, the results follow easily. �

Proof of Proposition 12.
The first four cases are direct from Propositions 10, 11. For the fifth case, note
that, since E is re-ad, it follows that for all a ∈ E, E re-defends a for τ0, and,
thus, by Proposition 11, E defends a in FF . Combining this with the fact that
E is cf in FF , we get the result. �

Proof of Proposition 13.
For the first case, it suffices to show that, if E fr-defends a w.r.t. T0, then a ∈ E.
Indeed, if E fr-defends a, then, by Proposition 11, E re-defends a, so, given that
E is re-co, it follows that a ∈ E. The proofs for the other cases are analogous. �

Proof of Proposition 14.
For the first case, we note that ∅ is fr-ad, so applying Proposition 7 for E∗ = ∅,
we will get a fr-co extension (say E) that is minimal among fr-co extensions,
thus it is the (only) fr-gr extension of F. By Proposition 7 again, we observe
that, for any E ′ ⊂ E, there exists some a ∈ E \ E ′ such that E ′ fr-defends a, i.e.,
E ′ re-defends a, i.e., E ′ is not re-co. Thus, E is re-gr.
The second case is totally analogous.
The third case uses a similar proof (and the same reasoning, except that the
existence of a is guaranteed by the results in [8] (instead of Proposition 7). �

Proof of Proposition 15.
For the first case, suppose that E is not fr-pr. Then, there exists some E ′ ⊃ E
such that E ′ is fr-pr. But then, E ′ is fr-ad so (by Proposition 12) E ′ is re-ad, a
contradiction by the fact that E is re-pr. The other cases are analogous. �

Proof of Proposition 16.
For the first: observe that, by Proposition 10, E is maximally fr-cf if and only
if E is maximally re-cf . Then, the result is obvious by Definition 8.
For the second: we obtain by Proposition 10 that E is cf in FF . Also, since E is
fr-st, E →T0 a for all a /∈ E, thus E → a in FF . We conclude that E is st in FF .
For the third: we observe that, by Proposition 10, E is maximally re-cf if and
only if it is maximally lo-cf . Now take some a /∈ E. If E is re-st, then ext→T0 a,
so E → a, so E is lo-st. If E is lo-st, then E → a, and suppose that it is not the
case that E →T0 a. Then, E ∪ {a} ⊃ E and lo-cf , a contradiction.
For the fourth: since E is re-st, we get that E →T0 a whenever a /∈ E, thus E → a
in FF for all a /∈ E, and E is cf in FF by the hypothesis, so E is st in FF . �
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