1,147 research outputs found

    Out of Sight,...:How Asymmetry in Video-Conference Affects Social Interaction

    Get PDF
    As social-mediated interaction is becoming increasingly important and multi-modal, even expanding into virtual reality and physical telepresence with robotic avatars, new challenges emerge. For instance, video calls have become the norm and it is increasingly common that people experience a form of asymmetry, such as not being heard or seen by their communication partners online due to connection issues. Previous research has not yet extensively explored the effect on social interaction. In this study, 61 Dyads, i.e. 122 adults, played a quiz-like game using a video-conferencing platform and evaluated the quality of their social interaction by measuring five sub-scales of social presence. The Dyads had either symmetrical access to social cues (both only audio, or both audio and video) or asymmetrical access (one partner receiving only audio, the other audio and video). Our results showed that in the case of asymmetrical access, the party receiving more modalities, i.e. audio and video from the other, felt significantly less connected than their partner. We discuss these results in relation to the Media Richness Theory (MRT) and the Hyperpersonal Model: in asymmetry, more modalities or cues will not necessarily increase feeling socially connected, in opposition to what was predicted by MRT. We hypothesize that participants sending fewer cues compensate by increasing the richness of their expressions and that the interaction shifts towards an equivalent richness for both participants

    Presence and Communication in Hybrid Virtual and Augmented Reality Environments

    Get PDF
    The use of virtual reality (VR) and augmented reality (AR) in connected environments is rarely explored but may become a necessary channel of communication in the future. Such environments would allow multiple users to interact, engage, and share multi-dimensional data across devices and between the spectrum of realities. However, communication between the two realities within a hybrid environment is barely understood. We carried out an experiment with 52 participants in 26 pairs, within two environments of 3D cultural artifacts: 1) a Hybrid VR and AR environment (HVAR) and 2) a Shared VR environment (SVR). We explored the differences in perceived spatial presence, copresence, and social presence between the environments and between users. We demonstrated that greater presence is perceived in SVR when compared with HVAR, and greater spatial presence is perceived for VR users. Social presence is perceived greater for AR users, possibly because they have line of sight of their partners within HVAR. We found positive correlations between shared activity time and perceived social presence. While acquainted pairs reported significantly greater presence than unacquainted pairs in SVR, there were no significant differences in perceived presence between them in HVAR

    A Composite Framework of Co-located Asymmetric Virtual Reality

    Get PDF
    As the variety of possible interactions with virtual reality (VR) continues to expand, researchers need a way to relate these interactions to users\u27 needs and goals in ways that advance understanding. Existing efforts have focused mainly on the symmetric use of technology, which excludes a rising form of interaction known as asymmetric VR, in which co-located participants use different interfaces to interact with a shared environment. There must be a clear path to creating asymmetric VR systems that are rooted in previous work from several fields, as these systems have use cases in education, hybrid reality teams (using VR and other technologies to interact online and face to face), accessibility, as well as entertainment. Currently, there is no systematic way to characterize 1) how a system may be asymmetric, 2) how the different mediation technology and affordances within asymmetric VR support (or do not support) users\u27 goals, and 3) the relationships and collaborative capabilities between users of these different technologies. In this paper, the authors use a scoping review to explore relevant conceptual frameworks for asymmetric interaction, mediation technology, and computer supported cooperative work to clarify the dimensions of asymmetry and synthesize the literature into a Composite framework for Asymmetric VR (CAVR). The paper concludes with suggestions of ways to test and expand the framework in order to guide future research as it identifies the most-beneficial interaction paradigms for co-located asymmetric VR

    Effect of Avatar Anthropomorphism on Body Ownership, Attractiveness and Collaboration in Immersive Virtual Environments

    Get PDF
    Effective collaboration in immersive virtual environments requires to be able to communicate flawlessly using both verbal and non-verbal communication. We present an experiment investigating the impact of anthropomorphism on the sense of body ownership, avatar attractiveness and performance in an asymmetric collaborative task. Using three avatars presenting different facial properties, participants have to solve a construction game according to their partner’s instructions. Results reveal no significant difference in terms of body ownership, but demonstrate significant differences concerning attractiveness and completion duration of the collaborative task. However the relative verbal interaction duration seems not impacted by the anthropomorphism level of the characters, meaning that participants were able to interact verbally independently of the way their character physically express their words in the virtual environment. Unexpectedly, correlation analyses also reveal a link between attractiveness and performance. The more attractive the avatar, the shorter the completion duration of the game. One could argue that, in the context of this experiment, avatar attractiveness could have led to an improvement in non-verbal communication as users could be more prone to observe their partner which translates into better performance in collaborative tasks. Other experiments must be conducted using gaze tracking to support this new hypothesis

    Conceitos e métodos para apoio ao desenvolvimento e avaliação de colaboração remota utilizando realidade aumentada

    Get PDF
    Remote Collaboration using Augmented Reality (AR) shows great potential to establish a common ground in physically distributed scenarios where team-members need to achieve a shared goal. However, most research efforts in this field have been devoted to experiment with the enabling technology and propose methods to support its development. As the field evolves, evaluation and characterization of the collaborative process become an essential, but difficult endeavor, to better understand the contributions of AR. In this thesis, we conducted a critical analysis to identify the main limitations and opportunities of the field, while situating its maturity and proposing a roadmap of important research actions. Next, a human-centered design methodology was adopted, involving industrial partners to probe how AR could support their needs during remote maintenance. These outcomes were combined with literature methods into an AR-prototype and its evaluation was performed through a user study. From this, it became clear the necessity to perform a deep reflection in order to better understand the dimensions that influence and must/should be considered in Collaborative AR. Hence, a conceptual model and a humancentered taxonomy were proposed to foster systematization of perspectives. Based on the model proposed, an evaluation framework for contextualized data gathering and analysis was developed, allowing support the design and performance of distributed evaluations in a more informed and complete manner. To instantiate this vision, the CAPTURE toolkit was created, providing an additional perspective based on selected dimensions of collaboration and pre-defined measurements to obtain “in situ” data about them, which can be analyzed using an integrated visualization dashboard. The toolkit successfully supported evaluations of several team-members during tasks of remote maintenance mediated by AR. Thus, showing its versatility and potential in eliciting a comprehensive characterization of the added value of AR in real-life situations, establishing itself as a generalpurpose solution, potentially applicable to a wider range of collaborative scenarios.Colaboração Remota utilizando Realidade Aumentada (RA) apresenta um enorme potencial para estabelecer um entendimento comum em cenários onde membros de uma equipa fisicamente distribuídos precisam de atingir um objetivo comum. No entanto, a maioria dos esforços de investigação tem-se focado nos aspetos tecnológicos, em fazer experiências e propor métodos para apoiar seu desenvolvimento. À medida que a área evolui, a avaliação e caracterização do processo colaborativo tornam-se um esforço essencial, mas difícil, para compreender as contribuições da RA. Nesta dissertação, realizámos uma análise crítica para identificar as principais limitações e oportunidades da área, ao mesmo tempo em que situámos a sua maturidade e propomos um mapa com direções de investigação importantes. De seguida, foi adotada uma metodologia de Design Centrado no Humano, envolvendo parceiros industriais de forma a compreender como a RA poderia responder às suas necessidades em manutenção remota. Estes resultados foram combinados com métodos da literatura num protótipo de RA e a sua avaliação foi realizada com um caso de estudo. Ficou então clara a necessidade de realizar uma reflexão profunda para melhor compreender as dimensões que influenciam e devem ser consideradas na RA Colaborativa. Foram então propostos um modelo conceptual e uma taxonomia centrada no ser humano para promover a sistematização de perspetivas. Com base no modelo proposto, foi desenvolvido um framework de avaliação para recolha e análise de dados contextualizados, permitindo apoiar o desenho e a realização de avaliações distribuídas de forma mais informada e completa. Para instanciar esta visão, o CAPTURE toolkit foi criado, fornecendo uma perspetiva adicional com base em dimensões de colaboração e medidas predefinidas para obter dados in situ, que podem ser analisados utilizando o painel de visualização integrado. O toolkit permitiu avaliar com sucesso vários colaboradores durante a realização de tarefas de manutenção remota apoiada por RA, permitindo mostrar a sua versatilidade e potencial em obter uma caracterização abrangente do valor acrescentado da RA em situações da vida real. Sendo assim, estabelece-se como uma solução genérica, potencialmente aplicável a uma gama diversificada de cenários colaborativos.Programa Doutoral em Engenharia Informátic

    Social gaming: A systematic review

    Get PDF
    Digital games often constitute a shared activity where people can spend time together, communicate and socialize. Several commercial titles place social interaction at the center of their design. Prior works have investigated the social outcomes of gaming, and factors that impact the experience. Yet, we lack a comprehensive understanding of how social gaming has been approached and explored before. In this work, we present a systematic review covering 263 publications, gathered in February 2021, that study gaming experiences involving more than one person, with a focus on the social element that emerges among partakers (players and/or spectators). We contribute with a systematized understanding of (1) how the topic is being defined and approached, (2) what facets (mainly in terms of outcomes and determinants of the experience) are being acknowledged and (3) the methodologies leveraged to examine these. Our analysis, based on mixed deductive and inductive coding, reveals relevant gaps and tendencies, including (1) the emphasis in novel technologies and unconventional games, (2) the apparent negligence of player diversity, and (3) lower ecological validity associated with totally mediated evaluations and a lack of established constructs to assess social outcomes

    Developing a Cross-Platform Multiplayer Game for VR and Tablet

    Get PDF
    Multiplayer gaming is a big market and there is a lot of supply for different platforms, but it seems that there are not that many games that could be played together with different platforms. In addition to that, there seems to be a lack of supply for systems to test the games suitability for several platforms. In this thesis, I tackle this problem by introducing a novel way to assess these properties of a game by focusing on the accessibility of the sensory information the game’s objects contains by trying to access them on different platforms. In my experiment, I found out that this method is useful in finding asymmetries in accessibility of sensory information between the devices, though I also found out that not all of it is necessarily bad for the game. I also focus on the development process of a cross-platform multiplayer game by introducing a game called Forest Friends – a project that I have been developing as a part of a team. It is a children’s game, that can be played with both VR and tablet

    Designing Hybrid Interactions through an Understanding of the Affordances of Physical and Digital Technologies

    Get PDF
    Two recent technological advances have extended the diversity of domains and social contexts of Human-Computer Interaction: the embedding of computing capabilities into physical hand-held objects, and the emergence of large interactive surfaces, such as tabletops and wall boards. Both interactive surfaces and small computational devices usually allow for direct and space-multiplex input, i.e., for the spatial coincidence of physical action and digital output, in multiple points simultaneously. Such a powerful combination opens novel opportunities for the design of what are considered as hybrid interactions in this work. This thesis explores the affordances of physical interaction as resources for interface design of such hybrid interactions. The hybrid systems that are elaborated in this work are envisioned to support specific social and physical contexts, such as collaborative cooking in a domestic kitchen, or collaborative creativity in a design process. In particular, different aspects of physicality characteristic of those specific domains are explored, with the aim of promoting skill transfer across domains. irst, different approaches to the design of space-multiplex, function-specific interfaces are considered and investigated. Such design approaches build on related work on Graspable User Interfaces and extend the design space to direct touch interfaces such as touch-sensitive surfaces, in different sizes and orientations (i.e., tablets, interactive tabletops, and walls). These approaches are instantiated in the design of several experience prototypes: These are evaluated in different settings to assess the contextual implications of integrating aspects of physicality in the design of the interface. Such implications are observed both at the pragmatic level of interaction (i.e., patterns of users' behaviors on first contact with the interface), as well as on user' subjective response. The results indicate that the context of interaction affects the perception of the affordances of the system, and that some qualities of physicality such as the 3D space of manipulation and relative haptic feedback can affect the feeling of engagement and control. Building on these findings, two controlled studies are conducted to observe more systematically the implications of integrating some of the qualities of physical interaction into the design of hybrid ones. The results indicate that, despite the fact that several aspects of physical interaction are mimicked in the interface, the interaction with digital media is quite different and seems to reveal existing mental models and expectations resulting from previous experience with the WIMP paradigm on the desktop PC

    The Benefits of Extended Reality for Technical Communication : Utilizing XR for Maintenance Documentation Creation and Delivery

    Get PDF
    The main goal of this dissertation is to explore the benefits of extended reality for technical communication. Both of these fields offer opportunities and also pose challenges to each other, and this dissertation provides insight into this relationship. The research was initiated by the author’s personal interest in both fields and also human-technology interaction and user needs in general. Even though this is an academic dissertation, it is first and foremost a practitioner’s view of these evolving technologies and their potential uses in industry and, specifically, in industrial maintenance and technical communication. Under the umbrella of extended reality and technical communication, this dissertation focuses on two main themes. The first part studies virtual reality as a technology to facilitate collaboration and digital content creation for technical documentation in industrial companies, and the second part explores the possibilities of augmented reality and smart glasses as a delivery channel for maintenance instructions. The developed concepts were tested by domain experts in user tests. The overall results of testing were positive, and domain experts expressed enthusiasm toward the concepts and technologies in general. The technical documentation process is an inherently collaborative process involving stakeholders from different teams and organizations, and virtual reality was evaluated to have a positive effect on that process, especially in the case of globally scattered teams. The developed tools were also rated positively for digital content creation. Therefore, virtual reality offers many benefits for technical documentation creation, an area where it has not been utilized until now. On the augmented reality side, domain experts were generally enthusiastic about the use of smart glasses even though the technologies are not yet mature enough for field use in industrial maintenance. Furthermore, the results show that content created in the technical communications industry standard, DITA XML, works well when delivered to smart glasses, and the same content can be single sourced to other delivery channels. The use of DITA XML, therefore, eliminates the need to tailor content for each delivery channel separately, and offers an effective way to create and update content for AR applications in industrial companies. This, in turn, can advance the use of AR technologies and related devices in field operations in industrial companies. In conclusion, the findings of this dissertation show that the fields of technical communication and extended reality have a significant amount of synergy. In this dissertation I establish use cases and guidelines for these areas
    corecore