The Benefits of Extended Reality for Technical Communication : Utilizing XR for Maintenance Documentation Creation and Delivery

Abstract

The main goal of this dissertation is to explore the benefits of extended reality for technical communication. Both of these fields offer opportunities and also pose challenges to each other, and this dissertation provides insight into this relationship. The research was initiated by the author’s personal interest in both fields and also human-technology interaction and user needs in general. Even though this is an academic dissertation, it is first and foremost a practitioner’s view of these evolving technologies and their potential uses in industry and, specifically, in industrial maintenance and technical communication. Under the umbrella of extended reality and technical communication, this dissertation focuses on two main themes. The first part studies virtual reality as a technology to facilitate collaboration and digital content creation for technical documentation in industrial companies, and the second part explores the possibilities of augmented reality and smart glasses as a delivery channel for maintenance instructions. The developed concepts were tested by domain experts in user tests. The overall results of testing were positive, and domain experts expressed enthusiasm toward the concepts and technologies in general. The technical documentation process is an inherently collaborative process involving stakeholders from different teams and organizations, and virtual reality was evaluated to have a positive effect on that process, especially in the case of globally scattered teams. The developed tools were also rated positively for digital content creation. Therefore, virtual reality offers many benefits for technical documentation creation, an area where it has not been utilized until now. On the augmented reality side, domain experts were generally enthusiastic about the use of smart glasses even though the technologies are not yet mature enough for field use in industrial maintenance. Furthermore, the results show that content created in the technical communications industry standard, DITA XML, works well when delivered to smart glasses, and the same content can be single sourced to other delivery channels. The use of DITA XML, therefore, eliminates the need to tailor content for each delivery channel separately, and offers an effective way to create and update content for AR applications in industrial companies. This, in turn, can advance the use of AR technologies and related devices in field operations in industrial companies. In conclusion, the findings of this dissertation show that the fields of technical communication and extended reality have a significant amount of synergy. In this dissertation I establish use cases and guidelines for these areas

    Similar works