60 research outputs found

    Secondary constructions of (non)weakly regular plateaued functions over finite fields

    Get PDF
    Plateaued (vectorial) functions over finite fields have diverse applications in symmetric cryptography, coding theory, and sequence theory. Constructing these functions is an attractive research topic in the literature. We can distinguish two kinds of constructions of plateaued functions: secondary constructions and primary constructions. The first method uses already known functions to obtain new functions while the latter do not need to use previously constructed functions to obtain new functions. In this work, the first secondary constructions of (non)weakly regular plateaued (vectorial) functions are presented over the finite fields of odd characteristics. We also introduce some recursive constructions of (non)weakly regular plateaued p-ary functions by using already known such functions. We obtain nontrivial plateaued functions from the previously known trivial plateaued (partially bent) functions in the proposed construction methods

    On the Derivative Imbalance and Ambiguity of Functions

    Full text link
    In 2007, Carlet and Ding introduced two parameters, denoted by NbFNb_F and NBFNB_F, quantifying respectively the balancedness of general functions FF between finite Abelian groups and the (global) balancedness of their derivatives DaF(x)=F(x+a)−F(x)D_a F(x)=F(x+a)-F(x), a∈G∖{0}a\in G\setminus\{0\} (providing an indicator of the nonlinearity of the functions). These authors studied the properties and cryptographic significance of these two measures. They provided for S-boxes inequalities relating the nonlinearity NL(F)\mathcal{NL}(F) to NBFNB_F, and obtained in particular an upper bound on the nonlinearity which unifies Sidelnikov-Chabaud-Vaudenay's bound and the covering radius bound. At the Workshop WCC 2009 and in its postproceedings in 2011, a further study of these parameters was made; in particular, the first parameter was applied to the functions F+LF+L where LL is affine, providing more nonlinearity parameters. In 2010, motivated by the study of Costas arrays, two parameters called ambiguity and deficiency were introduced by Panario \emph{et al.} for permutations over finite Abelian groups to measure the injectivity and surjectivity of the derivatives respectively. These authors also studied some fundamental properties and cryptographic significance of these two measures. Further studies followed without that the second pair of parameters be compared to the first one. In the present paper, we observe that ambiguity is the same parameter as NBFNB_F, up to additive and multiplicative constants (i.e. up to rescaling). We make the necessary work of comparison and unification of the results on NBFNB_F, respectively on ambiguity, which have been obtained in the five papers devoted to these parameters. We generalize some known results to any Abelian groups and we more importantly derive many new results on these parameters

    Landscape Boolean Functions

    Get PDF
    In this paper we define a class of Boolean and generalized Boolean functions defined on F2n\mathbb{F}_2^n with values in Zq\mathbb{Z}_q (mostly, we consider q=2kq=2^k), which we call landscape functions (whose class containing generalized bent, semibent, and plateaued) and find their complete characterization in terms of their components. In particular, we show that the previously published characterizations of generalized bent and plateaued Boolean functions are in fact particular cases of this more general setting. Furthermore, we provide an inductive construction of landscape functions, having any number of nonzero Walsh-Hadamard coefficients. We also completely characterize generalized plateaued functions in terms of the second derivatives and fourth moments.Comment: 19 page

    Towards a deeper understanding of APN functions and related longstanding problems

    Get PDF
    This dissertation is dedicated to the properties, construction and analysis of APN and AB functions. Being cryptographically optimal, these functions lack any general structure or patterns, which makes their study very challenging. Despite intense work since at least the early 90's, many important questions and conjectures in the area remain open. We present several new results, many of which are directly related to important longstanding open problems; we resolve some of these problems, and make significant progress towards the resolution of others. More concretely, our research concerns the following open problems: i) the maximum algebraic degree of an APN function, and the Hamming distance between APN functions (open since 1998); ii) the classification of APN and AB functions up to CCZ-equivalence (an ongoing problem since the introduction of APN functions, and one of the main directions of research in the area); iii) the extension of the APN binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}} into an infinite family (open since 2006); iv) the Walsh spectrum of the Dobbertin function (open since 2001); v) the existence of monomial APN functions CCZ-inequivalent to ones from the known families (open since 2001); vi) the problem of efficiently and reliably testing EA- and CCZ-equivalence (ongoing, and open since the introduction of APN functions). In the course of investigating these problems, we obtain i.a. the following results: 1) a new infinite family of APN quadrinomials (which includes the binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}}); 2) two new invariants, one under EA-equivalence, and one under CCZ-equivalence; 3) an efficient and easily parallelizable algorithm for computationally testing EA-equivalence; 4) an efficiently computable lower bound on the Hamming distance between a given APN function and any other APN function; 5) a classification of all quadratic APN polynomials with binary coefficients over F2nF_{2^n} for n≤9n \le 9; 6) a construction allowing the CCZ-equivalence class of one monomial APN function to be obtained from that of another; 7) a conjecture giving the exact form of the Walsh spectrum of the Dobbertin power functions; 8) a generalization of an infinite family of APN functions to a family of functions with a two-valued differential spectrum, and an example showing that this Gold-like behavior does not occur for infinite families of quadratic APN functions in general; 9) a new class of functions (the so-called partially APN functions) defined by relaxing the definition of the APN property, and several constructions and non-existence results related to them.Doktorgradsavhandlin

    Triplicate functions

    Get PDF
    We define the class of triplicate functions as a generalization of 3-to-1 functions over F2n\mathbb {F}_{2^{n}} for even values of n. We investigate the properties and behavior of triplicate functions, and of 3-to-1 among triplicate functions, with particular attention to the conditions under which such functions can be APN. We compute the exact number of distinct differential sets of power APN functions and quadratic 3-to-1 functions; we show that, in this sense, quadratic 3-to-1 functions are a generalization of quadratic power APN functions for even dimensions, in the same way that quadratic APN permutations are generalizations of quadratic power APN functions for odd dimensions. We show that quadratic 3-to-1 APN functions cannot be CCZ-equivalent to permutations in the case of doubly-even dimensions. We compute a lower bound on the Hamming distance between any two quadratic 3-to-1 APN functions, and give an upper bound on the number of such functions over F2n\mathbb {F}_{2^{n}} for any even n. We survey all known infinite families of APN functions with respect to the presence of 3-to-1 functions among them, and conclude that for even n almost all of the known infinite families contain functions that are quadratic 3-to-1 or are EA-equivalent to quadratic 3-to-1 functions. We also give a simpler univariate representation in the case of singly-even dimensions of the family recently introduced by Göloglu than the ones currently available in the literature. We conduct a computational search for quadratic 3-to-1 functions in even dimensions n ≤ 12. We find six new APN instances for n = 10, and the first sporadic APN instance for n = 12 since 2006. We provide a list of all known 3-to-1 APN functions for n ≤ 12.publishedVersio

    Triplicate functions

    Get PDF
    We define the class of triplicate functions as a generalization of 3-to-1 functions over GF(2^n) for even values of n. We investigate the properties and behavior of triplicate functions, and of 3-to-1 among triplicate functions, with particular attention to the conditions under which such functions can be APN. We compute the exact number of distinct differential sets of power APN functions and quadratic 3-to-1 functions; we show that, in this sense, quadratic 3-to-1 functions are a generalization of quadratic power APN functions for even dimensions, while quadratic APN permutations are generalizations of quadratic power APN functions for odd dimensions. We show that quadratic 3-to-1 APN functions cannot be CCZ-equivalent to permutations in the case of doubly-even dimensions. We survey all known infinite families of APN functions with respect to the presence of 3-to-1 functions among them, and conclude that for even n almost all of the known infinite families contain functions that are quadratic 3-to-1 or EA-equivalent to quadratic 3-to-1 functions. We also give a simpler univariate representation of the family recently introduced by Gologlu singly-even dimensions n than the ones currently available in the literature

    Value Distributions of Perfect Nonlinear Functions

    Full text link
    In this paper, we study the value distributions of perfect nonlinear functions, i.e., we investigate the sizes of image and preimage sets. Using purely combinatorial tools, we develop a framework that deals with perfect nonlinear functions in the most general setting, generalizing several results that were achieved under specific constraints. For the particularly interesting elementary abelian case, we derive several new strong conditions and classification results on the value distributions. Moreover, we show that most of the classical constructions of perfect nonlinear functions have very specific value distributions, in the sense that they are almost balanced. Consequently, we completely determine the possible value distributions of vectorial Boolean bent functions with output dimension at most 4. Finally, using the discrete Fourier transform, we show that in some cases value distributions can be used to determine whether a given function is perfect nonlinear, or to decide whether given perfect nonlinear functions are equivalent.Comment: 28 pages. minor revisions of the previous version. The paper is now identical to the published version, outside of formattin

    Minimal pp-ary codes from non-covering permutations

    Get PDF
    In this article, we propose several generic methods for constructing minimal linear codes over the field Fp\mathbb{F}_p. The first construction uses the method of direct sum of an arbitrary function f:Fpr→Fpf:\mathbb{F}_{p^r}\to \mathbb{F}_{p} and a bent function g:Fps→Fpg:\mathbb{F}_{p^s}\to \mathbb{F}_p to induce minimal codes with parameters [pr+s−1,r+s+1][p^{r+s}-1,r+s+1] and minimum distance larger than pr(p−1)(ps−1−ps/2−1)p^r(p-1)(p^{s-1}-p^{s/2-1}). For the first time, we provide a general construction of linear codes from a subclass of non-weakly regular plateaued functions, which partially answers an open problem posed in [22]. The second construction deals with a bent function g:Fpm→Fpg:\mathbb{F}_{p^m}\to \mathbb{F}_p and a subspace of suitable derivatives UU of gg, i.e., functions of the form g(y+a)−g(y)g(y+a)-g(y) for some a∈Fpm∗a\in \mathbb{F}_{p^m}^*. We also provide a sound generalization of the recently introduced concept of non-covering permutations [45]. Some important structural properties of this class of permutations are derived in this context. The most remarkable observation is that the class of non-covering permutations contains the class of APN power permutations (characterized by having two-to-one derivatives). Finally, the last general construction combines the previous two methods (direct sum, non-covering permutations and subspaces of derivatives) together with a bent function in the Maiorana-McFarland class to construct minimal codes (even those violating the Ashikhmin-Barg bound) with a larger dimension. This last method proves to be quite flexible since it can lead to several non-equivalent codes, depending to a great extent on the choice of the underlying non-covering permutation
    • …
    corecore