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Abstract

In this article, we propose several generic methods for constructing minimal linear codes over the
field Fp. The first construction uses the method of direct sum of an arbitrary function f : Fpr → Fp

and a bent function g : Fps → Fp to induce minimal codes with parameters [pr+s − 1, r + s + 1]
and minimum distance larger than pr(p − 1)(ps−1 − ps/2−1). For the first time, we provide a
general construction of linear codes from a subclass of non-weakly regular plateaued functions,
which partially answers an open problem posed in [22]. The second construction deals with a bent
function g : Fpm → Fp and a subspace of suitable derivatives U of g, i.e., functions of the form
g(y+a)−g(y) for some a ∈ F∗

pm . We also provide a sound generalization of the recently introduced
concept of non-covering permutations [45]. Some important structural properties of this class of
permutations are derived in this context. The most remarkable observation is that the class of
non-covering permutations contains the class of APN power permutations (characterized by having
two-to-one derivatives). Finally, the last general construction combines the previous two methods
(direct sum, non-covering permutations and subspaces of derivatives) together with a bent function
in the Maiorana-McFarland class to construct minimal codes (even those violating the Ashikhmin-
Barg bound) with a larger dimension. This last method proves to be quite flexible since it can
lead to several non-equivalent codes, depending to a great extent on the choice of the underlying
non-covering permutation.

Keywords: Minimal linear codes, p-ary functions, non-weakly regular functions, non-covering
permutations, derivatives, direct sum.

1 Introduction

Minimal codes form a class of linear codes characterized by the property that none of the (non-zero)
codewords are covered by any linearly independent codeword. These codes have been widely used in
certain applications, such as secret sharing schemes [8, 17, 43] and secure two-party computation [11].

Ashikhmin and Barg [2] proved that a linear code over Fp is minimal whenever the minimum weight
wmin and the maximum weight wmax are close to each other, precisely, wmin

wmax
> p−1

p . Nevertheless, this
condition is not necessary as shown by several constructions of infinite families of minimal linear codes
for which wmin

wmax
≤ p−1

p [3, 4, 9, 16, 21, 29, 33, 39, 40, 46, 44, 45]. Minimal codes violating Ashikhmin and

Barg’s bound appear to be intrinsically harder to specify. These minimal codes, satisfying wmin
wmax

≤ p−1
p ,

are called wide in this article.
Due to their important applications, an increasing interest in constructing minimal codes of dif-

ferent kinds has arisen. Several properties of these codes have been discovered, such as bounds,
characterizations and asymptotic properties [1, 4, 11, 24].

There are a vast number of methods for constructing minimal codes—constructions based on p-
ary functions are among the most renowned methods. In their pioneering work, Carlet, Charpin and
Zinoviev [7] showed the first explicit connection between AB (and APN) functions and linear codes.
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Soon after, Carlet and Ding [8] constructed error-correcting minimal codes based on perfect nonlinear
mappings. Since then, many authors have addressed the construction of minimal linear codes using
p-ary functions [3, 14, 17, 18, 21, 26, 27, 28, 29, 30, 31, 35, 37, 40, 41, 42].

In this work, we address the construction of p-ary minimal codes from general methods. These
constructions can be seen as generalizations of the methods presented in [45], where the authors
specified three generic methods for building minimal binary linear codes using the direct sum of
Boolean functions (given in the form h(x, y) = f(x) + g(y)) and subspaces of derivatives of bent
functions from the Maiorana-McFarland class. Nonetheless, unlike the binary case, explicit weight
distributions are much harder to derive in the non-binary case. This is also evident from diverse works
on this topic, e.g., the use of planar functions (whose all nonzero component functions are bent) by
Carlet et al. in [8], where the codes associated to the planar function x2 could be fully specified but

the full specification of the weight distribution for another planar function of the form xp
k+1 was left

as an open problem.
Our first method (Theorem 2) uses the direct sum of functions and it provides a simple way to

specify minimal codes. This method then allows us to readily obtain explicit minimal codes, namely,
selecting an arbitrary p-ary function f on Fpr and a bent function g on Fps is sufficient to specify a
minimal linear code of dimension n+1, where n = r+s, based on their direct sum h(x, y) = f(x)+g(y),
whose minimum distance is larger than pr(p − 1)(ps−1 − ps/2−1), see Corollary 1. Moreover, using
this approach we provide the first explicit use of non-weakly regular plateaued functions to construct
linear codes, whose weight distributions are fully derived. This partially answers an open problem
posed in [22] (Problem 3.2).

The second method is based on subspaces of derivatives and the concept of non-covering permu-
tations [45]. These permutations were used to construct non-equivalent (wide) minimal codes. The
authors of [45] pointed out that a straightforward generalization of the definition of a non-covering
permutation was doomed to fail due to the complications related to the computation of Walsh spectra
of p-ary permutations. Using an equivalent formulation, we propose a satisfactory definition of non-
covering p-ary permutations and we then use them to construct minimal codes based on subspaces
of derivatives, see Theorem 8. Moreover, we provide additional structural properties of non-covering
permutations. In particular, we show that every APN power permutation and every 4-uniform power
permutation are non-covering.

Finally, the third method introduces a construction of p-ary minimal linear codes having a larger
dimension than n + 1. This construction can be easily understood by following closely its binary
counterpart [45]. It can be described as a merger between the two previously mentioned methods.
Thus, using a p-ary function f , a suitable subspace of derivatives of dimension s

2 of a weakly regular
bent function g in the Maiorana-McFarland class and a non-covering p-ary permutation yields a (wide)
minimal code of length pn − 1 with dimension n+ s

2 , see Theorem 9.
This paper is organized as follows. In Section 2, we introduce some basic definitions and results

related to p-ary functions, cyclotomic fields, linear codes from functions and minimal codes. The
first construction using the direct sum method for the purpose of constructing minimal linear codes
is described in Section 3. In Section 4, we present a generalization of non-covering permutations to
larger fields and study their properties. In Section 5, we provide the second construction employing
non-covering permutations and the use of suitable subspaces of derivatives of weakly regular bent
functions. Additionally, the third general class of minimal codes is introduced. Some concluding
remarks are given in Section 6.

2 Preliminaries

2.1 p-ary functions

For any integer m > 0 and a prime number p, let Fpm denote the finite field with pm elements. Denote
by Fmp an m-dimensional vector space over Fp. These two algebraic structures can be identified by
fixing a basis. A function f from Fpm to Fp is called a p-ary function. When p = 2, a mapping
f from the the finite field F2m (or the vector space Fm2 ) to the binary field F2 is called a Boolean
function. Once an ordering of Fpm is fixed, say, Fpm = {α0 = 0, α1, . . . , αpm−1}, any p-ary function
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f : Fpm → Fp uniquely determines a sequence of output values (called the truth table) given as
(f(α0), f(α1), . . . , f(αpm−1)), which in turn can be viewed as a vector of length pm with entries in Fp.
We then treat a function f : Fpm → Fp and its truth table as the same object whenever there is no
ambiguity. The component functions of f : Fpm → Fq are the mappings x 7→ Trm1 (af(x)) for a ∈ F∗

pm ,
where the function Trmh denotes the usual relative trace function from Fpm to Fph for a positive divisor

h of m, i.e. Trmh (x) = x+ xp
h
+ xp

2h
+ · · ·+ xp

(m−1)h
.

The Hamming weight of a p-ary function f , denoted by wt(f), is the number of non-zero entries
in its truth table, or equivalently, the cardinality of its support supp(f) := {x ∈ Fpm : f(x) ̸= 0}.
The Hamming distance d(f, g) between f and g, where f, g : Fpm → Fp, equals the size of the set
{x ∈ Fpm : f(x) ̸= g(x)}. Throughout this paper, we represent the cardinality of a set using the
symbol #, so that #S is the cardinality of S, whereas |c| will denote the absolute value of a complex
number c. For a vector υ = (υ1, υ2, . . . , υm) ∈ Fmp , we will use the same notation as for functions to
define its support and weight, namely, supp(υ) = {i ∈ {1, 2, . . . ,m} : vi ̸= 0} and wt(υ) = #supp(υ).

The Walsh transform of f : Fpm → Fp at a point b ∈ Fpm is the sum of characters given by

Wf (b) =
∑
x∈Fpm

ξ
f(x)+Trm1 (bx)
p , (1)

where ξp = e2πi/p is the complex primitive p-th root of unity. Parseval identity is the expression∑
b∈Fpm

|Wf (b)|2 = p2m. (2)

Moreover, the values of f can be recovered by the inverse Walsh transform

pmξf(x)p =
∑
b∈Fpm

Wf (b)ξ
−Trm1 (bx)
p . (3)

The set of linear functions over Fpm will be denoted by Lm, whereas the set of affine functions will
be denoted by Am. The nonlinearity of a function f : Fpm → Fp is the minimum Hamming distance
between f and the set Am, that is, Nf = min

g∈Am

d(f, g). A function f is said to be p-ary bent (or, simply,

bent) if all its Walsh coefficients satisfy |Wf (b)|2 = pm.
In the binary case, a Boolean function f : F2m → F2 is bent if and only if Wf (b) = ±2

m
2 for any

b ∈ F2m and the Walsh transform of a Boolean function f can be related to Nf using the equality

Nf = 2m−1 − 1

2
max
λ∈F2m

|Wf (b)|.

A bent function f : Fpm → Fp is said to be regular bent if for every b ∈ Fpm , p−m/2Wf (b) = ξ
f∗(b)
p

for some mapping f∗ : Fpm → Fp. Such a function f∗ is called the dual function. A bent function
f : Fpm → Fp is said to be a weakly regular bent function if there exists a complex number u with

|u| = 1 such that up−m/2Wf (b) = ξ
f∗(b)
p for all b ∈ Fpm . Regular bent functions can only be found for

even m and for odd m with p ≡ 1 (mod 4). Weakly regular bent functions always come in pairs, since
their dual is bent as well. This, in general, does not hold for non-weakly regular bent functions.

A function f : F2m → F2m is called an almost bent or AB function if and only if the Walsh

coefficients of its components belong to {0,±2
m+1

2 }. More generally, a p-ary k-plateaued function
f : Fpm → Fp is characterized by the property |Wf (b)|2 ∈ {0, pm+k} for every b ∈ Fpm . When k = 0,
this definition coincides with the definition of a p-ary bent function given above since the number
Wf (b) is non-zero in this case.

The derivative of a function f : Fpm → Fpm at direction γ ∈ Fpm is defined as the function

Dγf(x) = f(x+ γ)− f(x). (4)

A function f : Fpm → Fp is called partially bent if its derivatives are either constant or balanced,
i.e., #{x ∈ Fpm : f(x) = j} = pm−1 for each j ∈ Fp. A mapping f : Fpm → Fpm is called planar
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provided that all of its derivatives are permutations. Planar functions can exist only when p is odd.
A function f : F2m → F2m is called almost perfect nonlinear or APN if its derivatives are two-to-one.
For any a ∈ F∗

2m and b ∈ F2m , we define

δ(a, b) = #{x ∈ F2m : Daf(x) = b}.

The differential uniformity δ of f is defined as δ = maxa∈F∗
2m ,b∈F2m

δ(a, b). We also say that f is
δ-uniform.

2.2 Legendre symbol and cyclotomic fields

The field Q can be extended by adjoining the p-th root of unity ξp. Since ξp is a root of the polynomial

1 + x + . . . + xp−1 =
∑p−1

i=0 x
i, this is a Galois extension of degree p − 1 denoted by Q(ξp). The ring

of integers of Q(ξp), denoted by Z(ξp), is the ring of elements x in Q(ξp) for which there is an n ∈ N
and there are integers a0, . . . , an−1 ∈ Z such that a0 + · · · + an−1x

n−1 + xn = 0. Moreover, the set
{ξp, . . . , ξp−1

p } is an integral basis for Q(ξp).
For a prime p and i ∈ Fp, the Legendre symbol is defined as

(
i

p

)
=


0 i = 0;

1 i ̸= 0, i is a quadratic residue modulo p;

−1 i ̸= 0, i is a quadratic non-residue modulo p.

The Legendre symbol is multiplicative, meaning that for any i, j ∈ Fp,
(
i
p

)(
j
p

)
=

(
ij
p

)
. Additionally,∑

i∈F∗
p

(
i
p

)
= 0 and (

−1

p

)
=

{
1 p ≡ 1 (mod 4)

−1 p ≡ 3 (mod 4)
.

Let k be an integer, it can be proved [23] that there exist unique coefficients ai in Q that satisfy the
equation

a1ξp + · · ·+ ap−1ξ
p−1 =

{√
ppk p ≡ 1 (mod 4);

i
√
ppk p ≡ 3 (mod 4),

where ai =
(
i
p

)
pk. For more on cyclotomic fields and field extensions we refer the interest reader to

[23].

2.3 Standard constructions of linear codes from functions

A linear [n, k, d]-code C over the alphabet Fp is a k-dimensional linear subspace of Fnp , whose minimum
Hamming distance (equivalently, the minimum weight of its non-zero codewords) is d. Every code
considered in this paper is a linear code, thus we will not distinguish between the terms linear code
and code. A generator matrix G for a code C is a matrix whose rows form a basis for C. A generator
matrix which consists of columns that are projective representatives (i.e., up to scalar multiplication)
of every non-zero vector spans a code with parameters [p

m−1
p−1 ,m, p

m−1] that is called the projective

m-simplex code and denoted by S̃m. The code Sm spanned by all linear functionals over Fpm is a a
[pm − 1,m, pm−1]-code, called the (affine) m-simplex code, i.e., Sm = {(L(x))x∈F∗

pm
: L ∈ Lm}.

The dual code C⊥ of C is defined as its orthogonal complement in Fpn , namely, C⊥ = {x ∈ Fnp :
x ·y = 0 for every x ∈ C}. Let ai be the number of codewords with Hamming weight i in C. The weight
distribution of a code C is the vector (1, a1, . . . , an) and it is fully specified by its weight enumerator
polynomial, which is the polynomial 1+a1z+ · · ·+anzn. We say that a code with parameters [n, k, d]
is distance-optimal, or simply optimal, provided that there does not exist an [n, k, d′] linear code with
d < d′. A [n, k, d]-code is called almost optimal if there is an optimal [n, k, d+ 1] linear code.
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There are two standard methods to define linear codes that stem from mappings F : Fpm → Fpm
[15]. The first generic method specifies linear codes using a mapping F : Fpm → Fpm with F (0) = 0.

Namely, for a positive divisor t of m, the linear code CF ⊂ Fp
m−1
pt is defined by

CF = {ca,u := (Trlt(aF (x)) + Trmt (ux))x∈F∗
pm

: a ∈ Fpl , u ∈ Fpm}, (5)

where l = t if the image of F is contained in Fpt and otherwise l = m. The dimension of CF is at most
2m/t and its length is pm − 1. For p = 2, the code CF can be used to characterize AB functions and
APN functions [7]. To avoid any room of ambiguity, we will use capital letters to denote functions
from Fpm to Fpm whose image is not contained in the base field Fpt (so that l = m in (5)).

The second generic construction of linear codes from functions fixes a subset D = {d1, d2, . . . , ds}
of Fpm , called the defining set, so that

CD = {(Trm1 (d1x),Tr
m
1 (d2x), . . . ,Tr

m
1 (dsx)) : x ∈ Fpm}. (6)

Some codes with good error-correcting parameters were found [14, 15] using special classes of vectorial
mappings from Fmp to Fmp . If F : Fpm → Fpm has no linear components, the linear code CF derived
from the generic construction in (5) has dimension 2m/t. Moreover, its weights can be expressed by
the Walsh transform of absolute trace functions of the map F : Fpm → Fpm as shown by the following
theorem.

Theorem 1. [26] Let F be a function from Fpm to Fpm with F (0) = 0. Consider the linear code CF
defined in (5), where l = m. If F has no linear component, then CF has dimension 2m/t. Moreover,
for every a ∈ Fpm , u ∈ Fpm, we have

wt(ca,u) = pm − 1

pt

∑
ω∈Fp

Wψωa(ωu), (7)

where ψα : Fpm → Fp is defined by x 7→ Trm1 (αF (x)) for α ∈ Fpm. Additionally, let f = Trm1 (F (x)).
The linear code Cf (where we consider l = t = 1) defined in (5) has dimension m + 1 when f is not
linear. Moreover, for every a ∈ F∗

p, u ∈ Fpm, we have

wt(ca,u) = pm − pm−1 − 1

p

∑
ω∈F∗

p

σω(σa(Wf (a
−1u))), (8)

where σα : Q(ξp) → Q(ξp) denotes the automorphism σα(ξp) = ξαp .

In particular, for p = 2, the non-zero weights of CF are 2m−1 and 2m−1− 1
2Wψα(λ) for α ∈ F∗

2m , λ ∈
F2m [15]. For a survey on the known construction of linear codes from cryptographically significant
functions we refer the reader to [22].

2.4 Minimal linear codes

For every u,v ∈ Fnp , we say that u covers v if and only if supp(v) ⊆ supp(u). We denote this relation
by v ⪯ u. Given an [n, k, d]-code C ⊆ Fnp , a codeword u ∈ C is called minimal if for every v ∈ C, the
condition v ⪯ u implies that there exists a ∈ Fp such that v = au. The code C is said to be minimal
if every element c ∈ C is minimal.

A sufficient condition for a code to be minimal over Fp was given by Ashikhmin and Barg [2]. This
condition states that if the minimum weight and the maximum weight of a code are sufficiently close
to each other, then the code must be minimal. More precisely, we have the following theorem.

Lemma 1. Let C be a linear code over Fp. Denote by wmin and wmax the minimum and maximum
nonzero Hamming weights in C, respectively. If it holds that wmin

wmax
> p−1

p , then C is minimal.

In this article, a linear code will be called narrow if it satisfies the condition of Lemma 1, namely,
if wmin

wmax
> p−1

p . Lemma 1 can thus be rephrased as “narrow linear codes are minimal”. The above

condition is not necessary and the codes satisfying wmin
wmax

⩽ p−1
p are called wide.
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Since the property of minimality is related to the supports of codewords, it is natural to think of
a characterization of minimality in terms of the weights of codewords within the given linear code.
This is indeed the case and it is the content of the following lemma.

Proposition 1. [21] Let C ⊂ Fnp be a linear code. The code C is minimal if and only if for each pair
of nonzero linearly independent (over Fp) codewords a and b in C, we have∑

c∈F∗
p

wt(a+ cb) ̸= (p− 1)wt(a)− wt(b).

3 Minimal codes from the direct sum of functions

In this section, we present the direct sum method that describes a simple way to construct minimal
linear codes using the bent concatenation of functions. Note that, in general, the exact weight distri-
butions of these codes are harder to specify than in the binary setting presented in [45]. Given two
functions f : Fpr → Fp and g : Fps → Fp, their direct sum is the p-ary function h : Fpr × Fps → Fp
defined by h(x, y) = f(x) + g(y). For any (a, b) ∈ Fpr × Fps , we can write

Wh(a, b) =
∑
x∈Fpr

∑
y∈Fps

ξ
f(x)+g(y)+Trm1 (ax+by)
p =

∑
x∈Fpr

ξ
f(x)+Trr1(ax)
p

∑
y∈Fps

ξ
g(y)+Trs1(by)
p =Wf (a)Wg(b).

Thus, the Walsh spectrum of the direct sum is completely determined by the spectra of the summands.
To state the main theorem in this section we will need one more concept, which describes a particular
class of p-ary functions.

Definition 1. A surjective function f : Fpm → Fp is called Lm-surjective if the function remains
surjective after the addition of an element in Lm. Equivalently, if, for each v ∈ Fpm and a ∈ Fp, there
exists x ∈ Fpm such that f(x) + lv(x) = a, where lv(x) = Trm1 (vx).

In characteristic two, every non-affine function is Lm-surjective. Some important examples of Lm-
surjective functions in odd-characteristic are the class of bent functions and the class of weakly regular
s-plateaued functions. The following theorem was first stated in [45] and essentially proved for the
binary case. Here we present a complete proof for any prime p.

Theorem 2. Let n, r, s be three positive integers such that r+s = n. Let f : Fpr → Fp be any function
with f(0) = 0 and g : Fps → Fp be an Ls-surjective function with g(0) = 0 such that Cg is minimal.
Consider their direct sum h(x, y) = f(x) + g(y). Then the code

Ch = {ca,u := (ah(x, y) + Trn1 (ux+ vy))(x,y)∈Fpr×Fps\(0,0) : a ∈ Fp, (u, v) ∈ Fpr × Fps},

is a minimal p-ary linear code.

Proof. First we will prove that if two codewords c1, c2 in Ch are linearly independent and c1 ⪯ c2,
then the induced codewords in Cg are linearly independent unless either one is zero. Let

c = (ag(y) + lv(y))y∈Fps
, c′ = (a′g(y) + lv′(y))y∈Fps

∈ Cg

be two linearly dependent non-zero codewords, i.e. c′ = λc for some λ ∈ F∗
p, c ̸= 0. This easily implies

v′ = λv and a′ = λa since g is non-affine. Consider two codewords in Ch of the form

c1 = af(x) + ag(y) + lw(x) + lv(y) and c2 = λaf(x) + λag(y) + lw′(x) + lλv(y).

Since g is Ls-surjective, for every x ∈ Fpr , there exists at least one yx such that λa(f(x) + g(yx)) +
λlv(yx) + lw′(x) = 0, equivalently, lw′(x) = −λ(a(f(x) + g(yx)) + lv(yx)). If c1 ⪯ c2, then lw(x) =
a(f(x) + g(yx)) + lv(yx) for every x ∈ Fpr . Thus, the function lw′(x) is equal to λlw(x). This implies
that c2 = λc1. Let c1, c2 ∈ Ch be two linearly independent codewords in Ch. By the previous paragraph
and by minimality of Cg, c1 ̸⪯ c2 unless either of the induced codewords in Cg is the zero codeword.
In this case, either c1 or c2 is a linear function depending on the variable x only. It cannot happen
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that c1 ⪯ c2 and both codewords are linear depending on x only since the simplex code is minimal.
Without loss of generality, suppose that

c1 = (lw′(x))(x,y)∈Fpr×Fps
and c2 = (a(f(x) + g(y)) + lw(x) + lv(y))(x,y)∈Fpr×Fps

.

To prove that c1 ̸⪯ c2, if a ̸= 0, then let x0 ∈ Fpr be such that lw′(x0) ̸= 0 and yx0 ∈ Fps be such that
g(yx0) + la−1v(yx0) = −a−1(af(x0) + lw(x0)). If a = 0, then take x0 ∈ Fpr such that lw′(x0) ̸= 0 and
yx0 ∈ Fps such that lv(yx0) = −lw(x0). Analogously, we can prove that c2 ̸⪯ c1. This shows that Ch is
minimal.

An immediate consequence of Theorem 2 is that a bent function g together with any other function
f give rise to minimal linear codes.

Corollary 1. Let n, r, s be three integers such that r ⩾ 2, s > 2 and r + s = n (when p = 2, let s be
even). Let f : Fpr → Fp be a function with f(0) = 0, g : Fps → Fp be bent with g(0) = 0. Consider
the direct sum h(x, y) = f(x) + g(y). The code Ch is a minimal code with parameters [pn − 1, n+ 1, d]
where d > (p− 1)(pn−1 − pr+

s
2
−1).

Proof. Since g is bent, the minimum weight wmin of Cg satisfies wmin ⩾ (p − 1)(ps−1 − p
s
2
−1) and

every weight is at most (p− 1)(ps−1 + p
s
2
−1) (for a proof of these facts, see, for instance, [8, Theorem

2]). This tells us that the ratio wmin
wmax

is at least ps−1−p
s
2−1

ps−1+p
s
2−1 , which is larger than p−1

p because either

p > 2 and s ⩾ 3 or p = 2 and s ⩾ 4. By Lemma 1, the code Cg is minimal. Since bent functions are
Ls-surjective, Ch is a minimal code by Theorem 2. For every z ∈ Fpr and every two linear functions
lu : Fpr → Fp, lv : Fps → Fp, the set {y ∈ Fps : g(y) + lv(y) ̸= f(z) + lu(z)} has cardinality at least

(p− 1)(ps−1 − p
s
2
−1) + 1

since g(y)+lv(y) is bent. Thus, any codeword in Ch has weight greater than pr(p−1)(ps−1−p
s
2
−1).

Unlike the binary linear codes derived from bent and plateaued functions used in the direct sum
whose weight distributions are relatively easy to derive (see [45]), in the non-binary case more reg-
ularity is required as demonstrated in [26] and [28], where in the first reference weakly regular bent
functions are employed whereas in [28] the authors considered weakly regular plateaued functions
for the purpose of specifying p-ary linear codes with few weights. Notice that these cases of using
entirely weakly regular bent or plateaued functions are intrinsically less complicated than mixing two
(possibly) different structures in the direct sum h = f + g.

3.1 Specifying the weight distribution for the direct sum

As remarked above, the weight distribution of p-ary codes is in general hard to derive and can behave
quite unexpectedly if no structure on the direct sum functions is imposed. To deal with this, we will
consider plateaued functions in order to get additional information on the weight distribution of the
codes obtained using the direct-sum method.

It can be shown [28] that the Walsh values of a p-ary k-plateaued function f : Fpm → Fp can be

expressed as ubp
−(m+k)/2Wf (b) = ξ

f∗(b)
p for a complex number ub with |ub| = 1 and a p-ary function

f∗, where f∗ : Fpm → Fp is such that f∗(a) = 0 for all a ∈ Fpm \ supp(Wf ), where

supp(Wf ) = {a ∈ Fpm : |Wf (a)|2 = pm+k}.

If the value of ub does not depend on b, then the function f is called p-ary weakly regular k-plateaued,
and non-weakly regular k-plateaued otherwise. The function f∗(x) is called the dual of f(x). Further-

more, it was shown [28] that a weakly regular k-plateaued function f satisfiesWf (b) = ϵf
√
p∗
m+k

ξ
f∗(b)
p ,

where ϵf = ±1 is called the sign of the Walsh transform of f(x) and p∗ = (−1
p)p. Similarly, one can

easily show that a non-weakly regular k-plateaued function f satisfies Wf (b) = ϵf (b)
√
p∗
m+k

ξ
f∗(b)
p ,

where ϵf (b) = ±1 will be called the sign of the Walsh transform of f(x) at b ∈ Fpm . Note that the
direct sum of two plateaued functions is again a plateaued function, which is weakly regular only if
both functions are weakly regular.
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Theorem 3. Let f = Trr1(F (x)) be k1-plateaued on Fpr and g = Trs1(G(x)) be k2-plateaued on Fps,
where F : Fpr → Fpr , G : Fps → Fps, F (0) = 0 and G(0) = 0. Let n = r + s and k = k1 + k2. For
α ∈ F∗

p, β = (a, b) ∈ Fpr × Fps, the weight of the vector

cα,β = (α(f(x) + g(y)) + Trn1 (ax+ by))(x,y)∈Fpr×Fps

is given by

wt(cα,β) = pn − pn−1 − 1

p
ϵf (a)ϵg(b)η(α

n+k)
√
p∗
n+k ∑

ω∈F∗
p

η(ωn+k)ξωα(f
∗(α−1a)+g∗(α−1b))

p , (9)

where η(i) =
(
i
p

)
denotes the Legendre symbol of i.

Proof. By Theorem 1, the weight wt(cα,β) equals

pn − pn−1 − 1

p
ϵf (a)ϵg(b)

∑
ω∈F∗

p

σω(σα(
√
p∗
n+k

ξf
∗(α−1a)+g∗(α−1b)
p ))

plugging in the corresponding values ofWf+g in (8). Using the fact that σz(
√
p∗
n+k

) =
(
zn+k

p

)√
p∗
n+k

for each z ∈ F∗
p gives ∑

ω∈F∗
p

(
αn+k

p

)(
ωn+k

p

)√
p∗
n+k

ξωα(f
∗(α−1a)+g∗(α−1b))

p ,

which establishes the result.

Since the direct sum of two weakly regular plateaued functions is weakly regular, we can derive
the weight distribution of the code Ch given in (5) adapting the results of Mesnager et. al. [28] for
our method. The weight distribution is displayed in Table 1 when n + k := r + s + k is even and in
Table 2 when n+ k is odd.

Table 1: Weight distribution of Ch for h(x, y) = f(x) + g(y) with f : Frp → Fp a weakly regular
k-plateaued function and g : Fsp → Fp a weakly regular bent function, when n+ k is even.

Weight w Number of codewords

pn − pn−1 pn − 1 + (p− 1)(pn − pn−k)

pn − pn−1 − ϵf ϵg

(
−1
p

)n+k
2
p(n+k−2)/2(p− 1) (p− 1)pn−k−1 +

(
−1
p

)n+k
2

(p− 1)2(ϵf ϵgp
n−k−2

2 )

pn − pn−1 + ϵf ϵg

(
−1
p

)n+k
2
p(n+k−2)/2 (p− 1)(pn−k − pn−k−1)−

(
−1
p

)n+k
2

(p− 1)2(ϵf ϵgp
n−k−2

2 )

Table 2: Weight distribution of Ch for h(x, y) = f(x) + g(y) with f : Frp → Fp a weakly regular
k-plateaued function and g : Fsp → Fp a weakly regular bent function, when n+ k is odd.

Weight w Number of codewords

pn − pn−1 pn+1 − pn−k−1(p− 1)2 − 1

pn − pn−1 − ϵf ϵg

(
−1
p

)n+k+1
2

p(n+k−1)/2 (p−1)2

2 (pn−k−1 + ϵf ϵg

(
−1
p

)n+k+1
2

p
n−k−1

2 ).

pn − pn−1 + ϵf ϵg

(
−1
p

)n+k+1
2

p(n+k−1)/2 (p−1)2

2 (pn−k−1 − ϵf ϵg

(
−1
p

)n+k+1
2

p
n−k−1

2 ).

In order to explicitly compute the weights of the derived codes we must count the number of
elements in the preimage of a given function. More precisely, given f : Fpm → Fp and any function
f ′ : supp(Wf ) → Fp, define the sets

Nf ′(j) = {x ∈ supp(Wf ) : f
′(x) = j} (10)

and the numbers nf ′(j) = #Nf ′(j) for j ∈ Fp.
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Remark 1. The authors in [28] considered general weakly regular plateaued functions f , however,
their results (Proposition 4 and its consequences) apply only to the case when the dual f∗ fulfils the
condition Nf∗(j) ̸= ∅ for each j, i.e., f∗ is surjective—there exist weakly regular plateaued functions
whose dual f∗ is not surjective. On the other hand, the direct sum h of any weakly regular plateaued
function with a weakly bent function always satisfies Nh∗(j) ̸= ∅, which can then be used in Corollary
1 to obtain 3-weight minimal codes (see Example 1).

Example 1. Let p = r = s = 3. The ternary function f(x) = Tr31(2x
4 + x2) is a weakly regular 2-

plateaued function withWf (b) ∈ {0, i35/2, i35/2ξ23}. Moreover, supp(Wf ) = F3 and f
∗ : supp(Wf ) → F3

satisfies nf∗(0) = 1, nf∗(1) = 0, and nf∗(2) = 2. The code Cf has two non-zero weights and its weight
enumerator is 1+ 4x9 +76x18. Furthermore, take any weakly regular bent function g : Fps → Fp. The
direct sum

h(x, y) = f(x) + g(y) = Tr31(2x
4 + x2) + g(y)

will yield a 3-weight code (with weight distribution displayed in Table 2) since h is weakly regular
2-plateaued, whose dual h∗ = f∗ + g∗ satisfies Nh∗(j) =

∑
i∈Fp

Nf∗(i)Ng∗(j − i) ̸= ∅ for each j.

A very similar description of the weight distribution of Ch can be carried out when one of f and
g is non-weakly regular and the other is weakly regular assuming that the dual of the non-weakly
constituent has additional symmetry. For simplicity, we will only discuss the case when g is a weakly
regular bent function and f is a non-weakly regular k-plateaued function.

Following the terminology introduced in [32, 34], for a given set S ⊆ Fpm , we say that a function
f : S → Fp is bent relative to S if |Wf (α)| = #S1/2 for all α ∈ Fpm , where Wf (α) is considered

as the restriction to S of the Walsh transform of f , i.e., Wf (α) =
∑

x∈S ξ
f(x)+Trm1 (αx)
p . For weakly

regular plateaued functions, the dual function f∗ is bent relative to supp(Wf ). For non-weakly regular
plateaued functions, the dual may or may not be bent relative to supp(Wf ). There are infinitely many
examples of both cases.

Unlike the weakly regular case, little is known for non-weakly regular functions. To the best of
our knowledge, the only constructions of linear codes from non-weakly regular functions are given in
[32, 34], where they introduced codes from non-weakly regular bent functions. Then, the present work
proposes linear codes from non-weakly regular plateaued functions for the first time.

Let S ⊆ Fpm be such that |S| is a positive divisor of pm. Let f : S → Fp be a function such that

Wf (0) = t(f)νp
µ
2 ξjp, where t(f) = ±1, ν ∈ {1, i}, j ∈ Fp and µ = m + k or µ = m − k for some

0 ≤ k ≤ m. The number t(f) will be called the type of f . Note that t(f) = ϵf (0)
(
−1
p

)µ
, where ϵf (0)

denotes the sign of Wf at 0. If f : S → Fp is balanced, then set t(f) = 0.
For a k-plateaued function f : Fpm → Fp with 0 ≤ k ≤ m, let Γ+(f) and Γ−(f) be the sets of the

partition of S = supp(Wf ) given by

Γ+(f) = {w ∈ S :Wf (w) = νp
m+k

2 ξf
∗(w)
p }, Γ−(f) = {w ∈ S :Wf (w) = −νp

m+k
2 ξf

∗(w)
p }, (11)

where ν ∈ {1, i}.

Lemma 2. [28, 34] Let f : Fpm → Fp be a k-plateaued function such that its dual f∗ is bent relative
to supp(f), it satisfies Nf∗(j) ̸= ∅ for each j and f∗∗(0) = i0, where f

∗∗ denotes the dual of f∗. When
m− k is odd, for 1 ≤ j ≤ p− 1,

nf∗(i0) = pm−k−1, nf∗(i0 + j) = pm−k−1 + t(f∗)

(
j

p

)
p

m−k−1
2 .

When m− k is even,

nf∗(i0) = pm−k−1 + t(f∗)p
m−k

2 − t(f∗)p
m−k

2
−1, nf∗(j) = pm−k−1 − t(f∗)p

m−k
2

−1

for j ̸= i0.

For a k-plateaued function f : Fpm → Fp, define the numbers Aj := #(Nf∗(j) ∩ Γ+(f)) and
Bj := #(Nf∗(j) ∩ Γ−(f)) for j ∈ Fp. Set Z0 := A0 −B0.

9



Lemma 3. Let f = Trr1(F (x)) be a non-weakly regular k-plateaued on Fpr , where F : Fpr → Fpr

and F (0) = 0. If the dual f∗ is the constant zero function, then A0 = #Γ+(f) = pr−k+p
r−k
2

2 and

B0 = #Γ−(f) = pr−k−p
r−k
2

2 . If f∗ is bent relative to supp(f) and it satisfies Nf∗(j) ̸= ∅ for every

j ∈ Fp, define θγ = t(f∗) + γ
(
−1
p

)r+k
for γ ∈ {−1, 0, 1}, then we have:

� For r − k odd, #Γ+(f) = pr−k+pZ0

2 , #Γ−(f) = pr−k−pZ0

2 and

Aj =
pr−k−1 + θ1

(
j
p

)
p

r−k−1
2 + Z0

2
, Bj =

pr−k−1 + θ−1

(
j
p

)
p

r−k−1
2 − Z0

2
,

for j ∈ F∗
p.

� For r − k even, #Γ+(f) = pr−k−p
r−k
2 (p−1)+pZ0

2 , #Γ−(f) = pr−k−pZ0+p
r−k
2 (p−1)

2 and

Aj =
pr−k−1 − p

r−k
2 − θ0p

r−k
2

−1 + Z0

2
, Bj =

pr−k−1 + p
r−k
2 − θ0p

r−k
2

−1 − Z0

2
,

for j ∈ F∗
p.

Proof. For this proof, set A = #Γ+(f) and B = #Γ−(f). If f∗ is the zero function, then only A0 and
B0 are non-zero. In the other case, Aj , Bj are non-zero for each j. By the inverse Walsh transform
and f(0) = 0,

p−1∑
j=0

(
∑

x∈Γ+(f)

νp
r+k
2 ξjp −

∑
x∈Γ−(f)

νp
r+k
2 ξjp) = pr. (12)

Suppose that f∗ is the zero function. In this case, Equation 12 yields A − B = Z0 = ν−1p
r−k
2 which

implies that ν = 1 and r − k is even. Moreover, since A + B = pr−k, we get A = pr−k+p
r−k
2

2 and

B = pr−k−p
r−k
2

2 . Suppose that f∗ is bent relative to supp(Wf ) and Nf∗(j) ̸= ∅ for each j. For r − k
odd, working out Equation 12, we get

p−1∑
j=1

ξjp(Aj −Bj − Z0) = ν−1p
r−k
2 =

(
−1

p

)r+k
ν
√
pp

r−k−1
2 .

Now, as ξp, . . . , ξ
p−1
p form a basis for Q(ξp) over Q, then

(
−1
p

)r+k
(Aj −Bj −Z0) =

(
j
p

)
p

r−k−1
2 . Then(

−1
p

)
(A−B) =

(
−1
p

)∑p−1
j=0(Aj−Bj) =

(
−1
p

)
pZ0 so A−B = pZ0. On the other hand, A+B = pr−k.

Therefore, A = pr−k+pZ0

2 and B = pr−k−pZ0

2 . For the case r− k even, rearrange Equation 12 to obtain

p−1∑
j=1

ξjp(Aj −Bj − Z0 + p
r−k
2 ) = 0,

then Aj−Bj−Z0+p
r−k
2 = 0 by linear independence of {ξp, . . . , ξp−1

p }, so that (A−B) = pZ0−p
r−k
2 (p−

1). On the other hand, A+B = pr−k. Therefore, A = pr−k−p
r−k
2 (p−1)+pZ0

2 and B = pr−k−pZ0+p
r−k
2 (p−1)

2 .
Finally, by combining the obtained values for Aj −Bj with Lemma 2, we get the result.

Remark 2. Lemma 3 gives the full description of the Walsh spectrum of a subclass of non-weakly
regular plateaued functions in terms of Z0. Therefore, it provides an efficient computation of Walsh
values from the knowledge of A0 and B0. Moreover, we highlight the possibility of extending this
result to a broader class of non-weakly regular plateaued functions, e.g., when exactly one of the sets
Nf∗(j), j ̸= 0, is empty.
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We are now able to get the weight distributions of the codes Cf in (5) when f is a non-weakly
regular plateaued function satisfying the conditions of Lemma 3.

Theorem 4. Let f = Trr1(F (x)) be a non-weakly regular k-plateaued on Fpr , whose dual is bent relative
to supp(Wf ) and Nf∗(j) ̸= ∅ for each j ∈ Fp, where F : Fpr → Fpr and F (0) = 0. The code Cf is a
[pr − 1, r + 1, d]-code that is either five-valued or three-valued depending on the parity of r + k, whose
weight distribution is displayed in Tables 3 and Table 4 for r + k even and r + k odd, respectively

Proof. We will only prove the case r + k odd since the even case is similar. The weights of Cf are
easily derived from Theorem 1, which are pr − pr−1 − p(r+k−1)/2, pr − pr−1 and pr − pr−1 + p(r+k−1)/2.
To count the number of codewords that attain the weight pr − pr−1 − p(r+k−1)/2, we must count the

number of pairs (α, β) ∈ F∗
pr × Fpr such that f∗(α−1β) ̸= 0 and make

(
−1
p

)r+k
ϵf (α

−1β)
(
f∗(α−1β)

p

)
positive. That is to say, we must compute the number∑

j∈F∗
p,
(

j
p

)
=
(

−1
p

)r+k

(p− 1)Aj +
∑

j∈F∗
p,
(

j
p

)
=−

(
−1
p

)r+k

(p− 1)Bj .

By Lemma 3, this sum equals 1
2(p−1)2(pr−k−1+

(
−1
p

)r+k
p

r−k−1
2 ). Similarly, the number of codewords

for the weight pr − pr−1 + p(r+k−1)/2 is 1
2(p − 1)2(pr−k−1 −

(
−1
p

)r+k
p

r−k−1
2 ). Finally, the number of

balanced codewords equals

pr − 1 + #{(α, β) ∈ F∗
pr × Fpr :Wf (α

−1β) = 0}+#{(α, β) ∈ F∗
pr × Fpr : f∗(α−1β) = 0},

which is, by Lemma 2 and using the fact that #supp(Wf ) = pr−k, pr − 1 + (p− 1)(pr − pr−k) + (p−
1)pr−k−1 = pr+1 − pr−k+1 + 2pr−k − pr−k−1 − 1, equivalently, pr+1 − (p− 1)2pr−k−1 − 1.

Table 3: Weight distribution of Cf in Theorem 4 for a non-weakly regular k-plateaued function f :
Fpr → Fp, whose dual is bent relative to supp(Wf ), when r + k is even.

Weight w Number of codewords

pr − pr−1 − p(r+k−2)/2(p− 1) (p−1)
2 (pr−k−1 + t(f∗)p

r−k
2 − t(f∗)p

r−k
2

−1 + Z0)

pr − pr−1 − p(r+k−2)/2 (p−1)2

2 (pr−k−1 + p
r−k
2 − t(f∗)p

r−k
2

−1 − Z0)

pr − pr−1 pr+1 − (p− 1)pr−k − 1

pr − pr−1 + p(r+k−2)/2 (p−1)2

2 (pr−k−1 − p
r−k
2 − t(f∗)p

r−k
2

−1 + Z0)

pr − pr−1 + p(r+k−2)/2(p− 1) (p−1)
2 (pr−k−1 + t(f∗)p

r−k
2 − t(f∗)p

r−k
2

−1 − Z0)

Table 4: Weight distribution of Cf Theorem 4 for a non-weakly regular k-plateaued function f : Fpr →
Fp, whose dual is bent relative to supp(Wf ), when r + k is odd.

Weight w Number of codewords

pr − pr−1 − p(r+k−1)/2 (p−1)2

2 (pr−k−1 +
(
−1
p

)r+k
p

r−k−1
2 )

pr − pr−1 pr+1 − (p− 1)2pr−k−1 − 1

pr − pr−1 + p(r+k−1)/2 (p−1)2

2 (pr−k−1 −
(
−1
p

)r+k
p

r−k−1
2 )

Note that if f = Trr1(F (x)) is a non-weakly regular k-plateaued on Fpr such that F : Fpr → Fpr
and F (0) = 0, whose dual f∗ is bent relative to supp(Wf ) and Nf∗(j) ̸= ∅, and g = Trs1(G(x)) is
a weakly regular bent function on Fps , where G : Fps → Fps and G(0) = 0. Then the function
h(x, y) = f(x)+g(y) is a non-weakly regular n+k-plateaued function whose dual h∗ = f∗+g∗ is bent

relative to supp(Wh), Nh∗(j) ̸= ∅ for each j and it has type t(h∗) = t(f∗)ϵg

(
−1
p

)s
. Thus, the code Ch,
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where h(x, y) = f(x) + g(y), is a minimal code. The weight distributions are obtained by Theorem 3
and displayed in Tables 3 and Table 4.

Moreover, we can deduce a similar result when the dual of f is the zero function.

Theorem 5. Let f = Trr1(F (x)) be a non-weakly regular k-plateaued on Fpr , where F : Fpr → Fpr
and F (0) = 0, whose dual f∗ is the constant zero function (hence r + k is even). Let g = Trs1(G(x))
be a weakly regular bent function on Fps, where G : Fps → Fps and G(0) = 0. Let n = r + s. For
α ∈ Fp, β = (a, b) ∈ Fpr ×Fps, the code Ch, where h(x, y) = f(x)+ g(y), is a minimal [pn− 1, n+1, d]-
code that is either five-valued or three-valued depending on the parity of n+k, whose weight distribution
is displayed in Tables 5 and Table 6 for n+ k even and n+ k odd, respectively.

Proof. The function h(x, y) = f(x) + g(y) is clearly a non-weakly regular (n+ k)-plateaued function.
The weights are easily derived from Theorem 3. Let us find their distribution only for the case when
s is even since the other case is similar. Using Lemma 2, we see that the number of (α, β) ∈ F∗

pn ×Fpn
such that α−1β ∈ supp(Wh) and h

∗(α−1β) = 0, which lead to a positive sign in Wh equals

(1 + t(g∗))

2
(p− 1)A0(p

s−1 + t(g∗)p
s
2 − t(g∗)p

s
2
−1) +

(1− t(g∗))

2
(p− 1)B0(p

s−1 + t(g∗)p
s
2 − t(g∗)p

s
2
−1).

According to Theorem 3, A0 =
pr−k+p

r−k
2

2 , B0 =
pr−k−p

r−k
2

2 , so that the weight pn−pn−1−p(n+k−2)/2(p−
1) is attained 1

2(p − 1)(ps−1 + t(g∗)p
s
2 − t(g∗)p

s
2
−1)(pr−k + t(g∗)p

r−k
2 ), where t(g∗) =

(
−1
p

)s
ϵg as g

is weakly regular. Similarly, the weight pn − pn−1 + p(n+k−2)/2(p − 1) is attained 1
2(p − 1)(ps−1 +

t(g∗)p
s
2 − t(g∗)p

s
2
−1)(pr−k − t(g∗)p

r−k
2 ) times. Again using Lemma 2, the number of times that

h∗(α−1β) ̸= 0, which lead to a positive sign in Wh and to a negative sign in Wh equal to, respectively,
1
2(p−1)(ps−1−t(g∗)p

s
2
−1)(pr−k+t(g∗)p

r−k
2 ) and 1

2(p−1)(ps−1−t(g∗)p
s
2
−1)(pr−k−t(g∗)p

r−k
2 ), which cor-

respond to the number of occurrences of pn−pn−1−p(n+k−2)/2 and pn−pn−1+p(n+k−2)/2, respectively.
Finally, the number of balanced codewords is equal to pn−1+#{(α, β) ∈ F∗

pn ×Fpn :Wh(α
−1β) = 0},

which is pn − 1 + (p− 1)(pn − pn−k) = pn+1 − pn−k+1 + pn−k − 1.

Table 5: Weight distribution of Ch in Theorem 5 for h(x, y) = f(x) + g(y) with f : Fpr → Fp a
non-weakly regular k-plateaued function with zero dual f∗ and g : Fps → Fp a weakly regular bent
function, when n+ k is even.

Weight w Number of codewords

pn − pn−1 − p(n+k−2)/2(p− 1) p−1
2 (ps−1 + t(g∗)p

s
2 − t(g∗)p

s
2
−1)(pr−k + t(g∗)p

r−k
2 )

pn − pn−1 − p(n+k−2)/2 p−1
2 (ps−1 − t(g∗)p

s
2
−1)(pr−k + t(g∗)p

r−k
2 )

pn − pn−1 pn+1 − pn−k+1 + pn−k − 1

pn − pn−1 + p(n+k−2)/2 p−1
2 (ps−1 − t(g∗)p

s
2
−1)(pr−k − t(g∗)p

r−k
2 )

pn − pn−1 + p(n+k−2)/2(p− 1) p−1
2 (ps−1 + t(g∗)p

s
2 − t(g∗)p

s
2
−1)(pr−k − t(g∗)p

r−k
2 )

Table 6: Weight distribution of Ch in Theorem 5 for h(x, y) = f(x) + g(y) with f : Fpr → Fp a
non-weakly regular k-plateaued function with zero dual f∗ and g : Fps → Fp a weakly regular bent
function, when n+ k is odd.

Weight w Number of codewords

pn − pn−1 − t(g∗)p(n+k−1)/2 (p−1)2

2 (pn−k−1 + t(g∗)p
n−k−1

2 )

pn − pn−1 pn+1 − pn−k−1(p− 1)2 − 1

pn − pn−1 + t(g∗)p(n+k−1)/2 (p−1)2

2 (pn−k−1 − t(g∗)p
n−k−1

2 )

Example 2. Set p = 3 and r = s = 3. Consider the function f : F33 → F3 given by f(x) = Tr(x7),
whose Walsh values are Wf (ω) ∈ {−9, 0, 9} for each ω, thus it is a non-weakly regular 1-plateaued
function with zero dual f∗. Let also g : F33 → F3 be the weakly regular bent function given by
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g(y) = Tr(y2) for which t(g∗) = 1. The code Ch where h(x, y) = f(x) + g(y), given in Theorem 5, is a
3-valued minimal ternary [728, 7, 459]-code whose weight enumerator polynomial is

1 + 180z459 + 1862z486 + 144z513.

Similarly, if r = 3 and s = 4, then the function f : F33 → F3 given by f(x) = Tr(x7) and the bent
function g : F34 → F3 given by g(y) = Tr(y2) for which t(g∗) = −1, induce a 5-valued ternary minimal
code Ch with parameters [2186, 8, 1404], whose weight enumerator polynomial is

1 + 126z1404 + 720z1431 + 5102z1458 + 360z1485 + 252z1512.

Remark 3. To the best of our knowledge, Theorem 4 and Theorem 5 give the first construction
of linear codes from non-weakly regular plateaued functions. Moreover, these constructions partially
answer an open problem (Problem 3.2) proposed in [26].

Remark 4. Note that the codes constructed from the direct sum of (non-)weakly regular functions
are in general narrow, thus minimality can be inferred from Ashikhmin-Barg’s condition, however, the
importance of Theorem 2 lies on the possibility of specifying minimal codes from wide minimal codes
or even, using exactly one non-minimal constituent. In general, the weight distributions of the codes
from Theorem 2 are hard to derive. Hence, more structure is needed to specify such distributions, as
illustrated by the codes constructed in Theorem 4 and Theorem 5.

4 Non-covering permutations

Non-covering permutations were introduced in [45] to construct infinite families of minimal binary
linear codes. In this section, we generalize this concept to the non-binary setting and provide similar
results as in the binary case together with additional observations. Throughout the rest of the article,

for a given function F : Fpm → Fpm and b ∈ F∗
pm , we will denote the b-component of F by ψ

(F )
b , that

is ψ
(F )
b : Fpm → Fp is the p-ary function defined by ψ

(F )
b (x) = Trm1 (bF (x)). Whenever there is no

ambiguity, we will omit the super index (F ).
In the binary case, a permutation ϕ on F2m such that ϕ(0) = 0 is non-covering if the following two

conditions are satisfied:

� For every b ∈ F∗
2m and a1, a2 ∈ F2m with a1 ̸= a2,

Wψb
(a1)±Wψb

(a2) ̸= 2m, (13)

� For every pair (a1, b1), (a2, b2) ∈ F2m × F∗
2m with b1 ̸= b2, the following is satisfied

Wψb1
(a1)−Wψb2

(a2) +Wψb1+b2
(a1 + a2) ̸= 2m. (14)

One could try to generalize this definition directly, however, it seems to be a difficult task if
one requires the definition to be useful (allowing to compute weights of codewords), that is why, an
equivalent property will be more suitable for our purposes. Due to the form of the above defining
conditions, it can be foreseen that the concept of a non-covering permutation is somehow related to
minimality of the associated code Cϕ, defined in (5) (thus t = 1 and l = m). This is indeed the case
and these two properties are in fact equivalent.

Theorem 6. Let ϕ : F2m → F2m be a permutation without affine components such that ϕ(0) = 0.
Consider the code Cϕ defined by equation (5). The permutation ϕ is non-covering if and only if Cϕ is
minimal.

Proof. Assume that ϕ is a non-covering permutation. Let cb1,a1 , cb2,a2 ∈ Cϕ be two different non-zero
codewords. Suppose that cb1,a1 ⪯ cb2,a2 . Note that at most one out of the three relations cb1,a1 ∈ Sm,
cb2,a2 ∈ Sm and cb1+b2,a1+a2 ∈ Sm can be true, as the simplex code is minimal. By Proposition 1, we
have

wt(cb1+b2,a1+a2) = wt(cb2,a2)− wt(cb1,a1). (15)
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We consider now a few cases according to the values of b1 and b2. If b1 = b2 (so that a1 ̸= a2), then
the LHS of (15) is equal to 2m−1 since c0,a1+a2 is a non-zero linear function. Thus (15) becomes

2m−1 = 2m − 1

2
Wψb1

(a2)− 2m +
1

2
Wψb1

(a1).

Multiplying by two and rearranging, we obtain 2m = Wψb1
(a1) −Wψb1

(a2), which is a contradiction
to (13) in the definition of a non-covering permutation. A similar argument works when either b1 = 0
and b2 ̸= 0 or b1 ̸= 0 and b2 = 0. If b1 ̸= b2 and b1 ̸= 0, b2 ̸= 0, then (15) becomes

2m − 1

2
Wψb1+b2

(a1 + a2) = 2m − 1

2
Wψb2

(a2)− 2m +
1

2
Wψb1

(a1).

Again, multiplying by two and rearranging, we obtain

2m =Wψb1
(a1)−Wψb2

(a2) +Wψb1+b2
(a1 + a2),

which is a contradiction to (14) in the definition of a non-covering permutation. This yields that every
two different non-zero codewords in Cϕ do not cover each other, thus Cϕ is minimal.

Conversely, assume that Cϕ is minimal. Take a1, a2 ∈ F2m with a1 ̸= a2 and b ∈ F∗
2m . Consider the

codewords cb,a1 , cb,a2 ∈ Cϕ, which are non-zero since ϕ does not have affine components. Now, as Cϕ
is minimal, we know that 2m−1 ̸= wt(cb,a2)−wt(cb,a1) and wt(cb,a2) ̸= 2m−1 −wt(cb,a1). This readily
implies that 2m ̸=Wψb

(a1)±Wψb
(a2). Similarly, minimality of Cϕ applied to the codewords cb1,a1 , cb2,a2

for a1, a2,∈ F2m and b1, b2 ∈ F∗
2m with b1 ̸= b2, gives 2m ̸= Wψb1

(a1) −Wψb2
(a2) +Wψb1+b2

(a1 + a2).
We have thus proved that ϕ is a non-covering permutation on F2m .

If the absolute Walsh values of a permutation ϕ are strictly bounded above by 2m

3 , i.e.,

max
a∈F2m ,b∈F∗

2m

|Wψb
(a)| < 2m

3
,

then Equations (13) and (14) are satisfied, thus ϕ is non-covering. Equivalently, if the nonlinearity of

ϕ satisfies Nϕ = 2m− 1
2 maxb∈F∗

2m ,a∈F2m
|Wψb

(a)| > 2m− 2m−1

3 = 2m

3 , then ϕ is non-covering. We state
this in the following proposition to further refer to it.

Proposition 2. Any permutation ϕ : F2m → F2m with ϕ(0) = 0 whose nonlinearity Nϕ is strictly
larger than 2m

3 is a non-covering permutation.

In the particular case of power permutations, the non-covering property (14) can be reduced to
b1 = b2 = 1, namely, for ϕ : F2m → F2m given by ϕ(x) 7→ xd with gcd(d, n) = 1,

Wψb
(a) =

∑
y∈F2m

(−1)Tr
m
1 (byd+ay) =

∑
x∈F2m

(−1)Tr
m
1 (xd+aϕ−1(b)−1x) =Wψ1(aϕ

−1(b)−1).

Thus, for a power permutation it is enough to verify (13) and that for every a1, a2 ∈ F2m , b1, b2 ∈
F∗
2m with b1 ̸= b2, we have

Wψ1(a1ϕ
−1(b1)

−1)−Wψ1(a2ϕ
−1(b2)

−1) +Wψ1((a1 + a2)ϕ
−1(b1 + b2)

−1) ̸= 2m. (16)

Example 3 (Dobbertin’s APN permutation). In F25, the permutation ϕ given by x 7→ x29 is an APN
permutation since 24 + 23 + 22 + 2 − 1 = 29 [19]. The Walsh spectrum of the component ψ1 defined
by x 7→ Tr51(ϕ(x)) is displayed in Table 7. Condition (13) readily follows since the maximum spectral
value is 12. It can also be verified that if Wψ1(a1ϕ

−1(b1)
−1) = Wψ1((a1 + a2)ϕ

−1(b1 + b2)
−1) = 12

for some a1, a2 ∈ F25 , b1, b2 ∈ F∗
25 then, necessarily, Wψ1(a2ϕ

−1(b2)
−1) is non-negative and its values

belong to {0, 4, 8}. Hence the left hand side of (16) is at most 28, so (16) is satisfied. We conclude
that ϕ is a non-covering permutation.
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Table 7: Walsh spectrum of the component x 7→ Tr51(ϕ(x)) of Dobbertin’s APN permutation x 7→ x29

in F25 = {v0, . . . , v31} ordered lexicographically.

v0 0 v8 0 v16 12 v24 −4

v1 0 v9 8 v17 −4 v25 4

v2 4 v10 4 v18 8 v26 8

v3 4 v11 −4 v19 −8 v27 0

v4 0 v12 −8 v20 −4 v28 4

v5 −8 v13 −8 v21 4 v29 4

v6 −4 v14 4 v22 0 v30 8

v7 4 v15 4 v23 −8 v31 8

For m = 5, non-affine power permutations are either AB or they have the same Walsh spectra of
Dobbertin’s permutation. As it was observed in [45], the former class of permutations is non-covering.
The previous example shows that Dobbertin’s permutation is non-covering. Thus every non-affine
power permutation over m = 5 is non-covering.

Remark 5. When m ∈ {6, 7, 8}, performing an exhaustive search over all possible exponents d for
permutations ϕ(x) = xd over F2m leads to the conclusion that all power permutations give rise to
minimal linear codes, even though in few cases Nϕ ≤ 2m

3 which is only a sufficient condition.

For m > 8, the following results show that a power permutation ϕ on Fm2 with low differential
uniformity δ = maxa∈F∗

2m ,b∈F2m
#{x ∈ F2m : ϕ(x)+ϕ(x+a) = b} is non-covering since its nonlinearity

is high.

Theorem 7. [10] Let ϕ be a power permutation over F2m with differential uniformity δ. The nonlin-
earity Nϕ of the permutation ϕ satisfies

Nϕ ⩾ 2m−1 − 2
3m−4

4
4
√
δ.

Corollary 2. Let m > 8 be an arbitrary integer and d > 1 be a non-power of two such that (d, 2m−1) =
1. Every δ-differentially uniform power permutation ϕ over F2m defined by ϕ(x) = xd is non-covering
for δ ∈ {2, 4}.

Proof. By Theorem 7, it is enough to prove that 2m−1 − 2
3m−4

4
4
√
δ is strictly larger than 2m/3 when

m > 8 and δ = 2 or δ = 4. Note that 2m−1 − 2
3m−4

4
4
√
δ ⩾ 2m−1 − 2

3m−4
4

√
2. Now, the number

2m−1 − 2
3m−4

4

√
2 is strictly larger than 2m/3 if and only if 3 · 2m−1 − 3 · 2

3m−4
4

√
2 > 2m. Rearranging

this equation, we see that the inequality is true if and only if 2m − 3 · 2
3m−4

4

√
2 > 2m−1, equivalently,

3 · 2
3m−4

4

√
2 < 2m−1. Hence, the assertion is true provided that 3

√
2 < 2m/4, or, equivalently, 2m >

34 · 22, which is true for m > 8.

For m ⩾ 6, all known examples of APN permutations have high nonlinearity, namely, strictly
larger than 2m/3, thus they are non-covering. the same applies to 4-differentially uniform permuta-
tions (without affine components), since most known examples have high nonlinearity over F2m (m
necessarily even). A particular instance of this fact is the case of quadratic 4-differentially uniform
permutations, which attain the best nonlinearity 2m−1 − 2

m
2 [10]. A known example of a class of

4-differentially uniform permutations that does not attain an optimal nonlinearity in general [36] is
given by permutations of the form

x2
m−2 +Trm1 (x(2

m−2)d + (x2
m−2 + 1)d),

where d = 3(2t+1), 2 ⩽ t ⩽ m
2 − 1. These permutations have algebraic degree m− 1 and nonlinearity

at least 2m−2 − 2
m
2
−1 − 1. Nevertheless, their nonlinearity is still larger than 2m/3 except for some

sporadic examples over F26 . This leads to a natural question regarding non-covering permutations,
namely, we state the following conjecture.
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Conjecture 1. For δ = 2 or δ = 4, every δ-uniform permutation over F2m without affine components
is a non-covering permutation.

This conjecture is closely related to the question “does every APN and 4-differentially uniform
permutation without affine components have good nonlinearity?”, here by good nonlinearity we mean
strictly larger than 2m

3 . If the answer to this question is positive, then Conjecture 1 is true. However,
if the answer is negative, then it may happen that Conjecture 1 is still true.

Remark 6. By Proposition 2, any permutation ϕ over F2m with nonlinearity Nϕ larger than 2m

3 allows
us to construct a minimal code Cϕ with parameters [2m−1, 2m, d], where d > 2m

3 . Moreover, as shown
in [45], any such permutation can also be used to construct (wide) minimal codes with parameters

[22m− 1, 2m+m+1, d], where d ≥ 2mNϕ >
22m

3 from a generic construction using bent functions and
subspaces of derivatives. An interesting open problem is then to specify an infinite class of non-covering
permutations with Nϕ ≤ 2m

3 . Another related problem is to describe an infinite class of non-covering
permutations for which Cϕ is minimal and wide.

With the characterization of non-covering permutations in terms of the minimality of the associated
code Cϕ given in Theorem 6, we can now formulate a satisfactory generalization of this concept to
non-binary alphabets.

Definition 2. A permutation ϕ on Fpm with ϕ(0) = 0 is called a p-ary non-covering permutation
or, simply, non-covering permutation provided that the associated code Cϕ defined in (5) is a 2m-
dimensional minimal code.

The following examples corroborate the existence of non-covering permutations in odd character-
istics.

Example 4. Working in F34, consider the mapping ϕ defined by ϕ(x) = x11. Note that ϕ is a
permutation since gcd(11, 34 − 1) = 1. Since ϕ has no affine components, Cϕ has dimension 8. Using
computer-based simulations, we observed that the minimum weight in Cϕ is 42, whereas the maximum
weight is 60. This yields wmin

wmax
= 7

10 , which is larger than 2
3 , hence the ternary code Cϕ is minimal.

This implies that ϕ is a non-covering permutation. Similarly, we can consider the mapping ϕ defined
by ϕ(x) = x5 on F35 for which the associated code Cϕ is also minimal.

Open Problem 1. It turns out (based on computer simulations) that power monomials ϕ = xd over
Fpm induce minimal linear codes Cϕ and are therefore non-covering. We leave a formal proof of this
observation as an open problem. Similarly, one can conjecture that permutations over Fpm with low
differential uniformity also give rise to minimal codes.

In the sequel, we will use the assumption on non-covering property to provide a generic method
of constructing minimal linear codes over non-binary alphabets which can have additional property of
being wide as well.

5 Minimal linear codes through derivative subspaces

In this section, we will provide two constructions of minimal codes using bent functions, non-covering
permutations and suitable subspaces of derivatives in characteristic p > 2. The results can be seen as
generalization of the corresponding results in [45].

First, we will extract useful properties from bent functions in the MM class, which will allow us
to construct minimal codes using certain subspaces of derivatives. Let m be an even positive integer
and consider the bent functions g : Fpm/2 × Fpm/2 → Fp in the Maiorana-McFarland class (MM),
defined as follows:

g(x, y) = Tr
m
2
1 (xϕ(y)) for (x, y) ∈ Fpm/2 × Fpm/2 , (17)

where ϕ : Fpm/2 → Fpm/2 is a non-covering permutation. Define the m
2 -dimensional subspace of

derivatives U := {D(γ,0)g : γ ∈ Fpm/2}, and the mapping Ψ : U + Lm/2 × Lm/2 → Cϕ given by

Ψ(D(γ,0)g(x, y) + Trm1 (ux+ vy)) = (Tr
m
2
1 (ϕ(y)γ) + Tr

m
2
1 (vy))y∈F∗

pm/2
.
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Observe that the restriction of Ψ to Lm, i.e., γ = 0, is a pm/2-to-one map onto Lm/2, whereas
the restriction of Ψ to U , that is, u = v = 0, is clearly an isomorphism between U and Compϕ :=

{(Tr
m
2
1 (ϕ(y)γ))y∈F∗

pm/2
: γ ∈ Fpm/2}.

For w = (Tr
m
2
1 (vy))y∈F∗

pm/2
∈ Lm/2, the vector vw = (Trm1 (vy))(x,y)∈F∗

pm
∈ Lm (i.e. u = 0), is such

that for every derivative D(γ,0)g(x, y) ∈ U ,

wt((D(γ,0)g(x, y) + Trm1 (vy))(x,y)∈F∗
pm

) = pm/2wt((ϕ(y)γ +Tr
m
2
1 (vy))y∈F∗

pm/2
)

since the vector ϕ(y)γ + Tr
m
2
1 (vy) does not depend on x. Note that, for any u ∈ F∗

pm/2 , the vector

D(γ,0)g(x, y) + Trm1 (ux+ vy))(x,y)∈F∗
pm

is always balanced for every derivative D(γ,0)g(x, y) ∈ U .

Define the inclusion map ι : Lm/2 → Lm as

ι(w) = vw := (Trm1 (vy))(x,y)∈F∗
pm
,

where w = (Tr
m
2
1 (vy))y∈F∗

pm/2
. It is clear that ιy is a linear isomorphism. Denote

Λ0 = {vw : w ∈ Lm/2} and Λ1 = Lm \ Λ0.

For each Tr
m
2
1 (vy) ∈ Λ0,Tr

m
1 (u′x + v′y) ∈ Λ1 (u′ ̸= 0) and c ∈ F∗

p, it holds that Trm1 (cu′x + (v +
cv′)y),Trm1 (u′x + (cv + v′)y) ∈ Λ1. Finally, if Trm1 (ux + vy),Trm1 (u′x + v′y) ∈ Λ1 (thus u ̸= 0 and
u′ ̸= 0), there is at most one c ∈ F∗

pm such that Trm1 ((u+ cu′)x+ (v + cv′)y) ∈ Λ0, namely, if u, u′ are
Fp-linearly independent, then there is no such c. Moreover, if they are Fp-linearly dependent, this c is
unique.

The above discussion provides structural properties of functions in the Maiorana-McFarland class
when ϕ is a non-covering permutation and certain subspaces of derivatives are used for defining minimal
linear codes over Fp. These properties can be abstracted into a more general concept that we will call
k-minimal pair, which we introduce below.

Definition 3. Let m be an integer and k be a positive integer smaller than m. We will say that a
bent function g : Fpm → Fp with g(0) = 0 and a non-covering permutation ϕ : Fpk → Fpk form a k-

minimal pair if there exist a k-dimensional subspace U of Fp
m

p , whose non-zero elements are non-affine
derivatives of g, and a linear mapping Ψ : U + Lm → Cϕ such that the following hold.

(i) (Coherence) The restriction of Ψ to Lm is a pm−k-to-one map onto Lk and the restriction of Ψ
to U is an isomorphism between U and Compϕ = {(Trk1(ϕ(y)γ))y∈F∗

pk
: γ ∈ Fpk}.

(ii) (Weight-preserving) For each w ∈ Lk, there exists a unique vw ∈ Lm with Ψ(vw) = w such that,
for every u ∈ U ,

pm−kwt(Ψ(u) + w) = wt(u+ vw)

and wt(u+ v′) = pm − pm−1 for every other v′ ∈ Lm with v′ ̸= vw and Ψ(v′) = w.

(iii) (Closure) Denote Λ0 = {vw : w ∈ Lk} and Λ1 = Lm \ Λ0.

(a) The assignation ι : Lk → Lm given by w 7→ vw (described in (ii)) is a linear isomorphism;

(b) For each v ∈ Λ0, v
′ ∈ Λ1 and c ∈ F∗

p, cv + v′, v + cv′ ∈ Λ1;

(c) If v, v′ ∈ Λ1, then there exists at most one c ∈ F∗
p such that v + cv′ ∈ Λ0.

The concept introduced in the previous definition identifies a subspace of derivatives of a bent
function and the components of a non-covering permutation. This identification is carried out in such
a way that, when adding linear functions, the preimages of linear parts are tacitly partitioned into
two groups. This idea will help to construct examples of minimal codes.
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Theorem 8. Let g : Fpm → Fp be a bent function with g(0) = 0 and ϕ : Fpk → Fpk be a non-
covering permutation such that they form a k-minimal pair. Assume that U = {Dγg : γ ∈ I}, where
I = {0, γ1, . . . , γpk−1} ⊆ Fpm. Let B be a basis for U and B′ be a basis for Lm. Suppose that the
following conditions hold.

� For each v ∈ Fpm and for each f(x) ∈ U , the function f(x)+Trm1 (vx) has weight strictly smaller
than pm − pk and strictly larger than 2(p− 1)(pm/2 − pm/2−1);

� The function f(x) + cg(x+ γ) is bent for every f(x) ∈ U, c ∈ F∗
p and γ ∈ I.

Then, the code spanned by B ∪ B′ ∪ {g} punctured at zero is a [pm − 1,m+ k + 1]-minimal code.

Proof. Let C∗ = ⟨B ∪ B′ ∪ {g}⟩ and let C be the code obtained from C∗ by puncturing the x = 0
coordinate. Note that every codeword in C can be expressed as

cv,γ,δ := (Trm1 (vx) + g(x+ γ) + (δ − 1)g(x))x∈F∗
pm

for some v, γ ∈ Fpm , δ ∈ Fp (where we used δ − 1 above for convenience of computation). Consider
two linearly independent codewords c1 := cv,γ,δ, c2 := cv′,γ′,δ′ in C. We will show that∑

c∈F∗
p

wt(c1 + cc2) ̸= (p− 1)wt(c1)− wt(c2),

for all the choices of parameters v, γ, δ and v′, γ′, δ′. For this, we will break down the proof into several
cases according to the possible values of the indices. Throughout the proof, we will denote by η the
number (p− 1)(pm−1 − pm/2−1) and θ = (p− 1)(pm−1 + pm/2−1).

Case γ = 0, δ = 1 and δ′ ̸= 0: In this case, the weight wt(c1) equals pm − pm−1. Since
g(x+ γ′) + (δ′ − 1)g(x) is bent, the codewords c1 + cc2 and c2 have weight at least η for every c ∈ F∗

p.
Hence,

∑
c∈F∗

p
wt(c1 + cc2) ⩾ (p− 1)η. On the other hand,

(p− 1)wt(c1)− wt(c2) ⩽ (p− 1)(pm − pm−1)− η < pη − η = (p− 1)η.

Case γ′ = 0, δ′ = 1 and δ ̸= 0: The weight wt(c2) equals p
m−pm−1. Since g(x+γ)+(δ−1)g(x) is

bent, the codewords c1+cc2 and c1 have weight at least η for every c ∈ F∗
p. Hence

∑
c∈F∗

p
wt(c1+cc2) ⩾

(p− 1)η. On the other hand,

(p− 1)wt(c1)− wt(c2) ⩽ (p− 1)θ − pm + pm−1 = (p− 1)pm/2−1 < (p− 1)η.

The latter inequality holds as pm/2−1 < pm−1 − pm/2−1 for m > 2.
Case γ′ ̸= 0∨ δ′ ̸= 1 and δ ̸= 0: Since g(x+ γ′)+ (δ′− 1)g(x) and g(x+ γ)+ cg(x+ γ′)+ (δ− 1+

c(δ′−1))g(x) are bent for every c ∈ Fp, the weights wt(c2), wt(c1+cc2) are at least η for every c ∈ F∗
p.

Hence
∑

c∈F∗
p
wt(c1 + cc2) ⩾ (p− 1)η. On the other hand, (p− 1)wt(c1)−wt(c2) ⩽ (p− 1)wt(c1)− η.

By assumption, wt(c1) < (pm − pk). Then, we have

(p− 1)wt(c1)− η < (p− 1)(pm − pk)− η = (p− 1)(pm − pk − pm−1 + pm/2−1) ⩽ (p− 1)η.

Case γ ̸= 0∨ δ ̸= 1 and δ′ ̸= 0: Since g(x+γ)+(δ−1)g(x) and cg(x+γ)+ g(x+γ′)+(c(δ−1)+
δ′ − 1))g(x) are bent for every c ∈ Fp, the weights wt(c1), wt(c1 + cc2) are at least η for every c ∈ F∗

p.
Hence

∑
c∈F∗

p
wt(c1 + cc2) ⩾ (p− 1)η. On the other hand, (p− 1)wt(c1)−wt(c2) ⩽ (p− 1)θ−wt(c2).

By assumption, wt(c2) > 2(p− 1)(pm/2 − pm/2−1). Then, we have

(p− 1)θ − wt(c2) < (p− 1)(pm − pm−1 + pm/2 − pm/2−1 − 2pm/2 + 2pm/2−1) ⩽ (p− 1)η.

Case δ = δ′ = 0: Let Ψ : U + Lm → Cϕ be a linear map as in Definition 3. Let Λ0,Λ1 be as in
Condition (iii) of Definition 3. Set v := Trm1 (vx) ∈ Lm and v′ := Trm1 (v′x) ∈ Lm. We will consider
three additional subcases according to the possible memberships in Λ1 or Λ0.
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Subcase v ∈ Λ1∧v′ ∈ Λ0 or v ∈ Λ0∧v′ ∈ Λ1: In any of these cases, for any c ∈ F∗
p, v+cv

′ ∈ Λ1,
thus c1 + cc2 is balanced. Hence, S1 :=

∑
c∈F∗

p
wt(c1 + cc2) = (p − 1)(pm − pm−1). In the first case,

we have S2 := (p− 1)wt(c1)−wt(c2) = (p− 1)(pm − pm−1)−wt(c2). This implies that S1 > S2 since
c2 is not zero. In the second case, S2 := (p − 1)wt(c1) − wt(c2) = (p − 1)wt(c1) − (pm − pm−1). If
S1 = S2, then wt(c1) = pm, which is impossible as c1 has weight strictly smaller than pm − pk. We
conclude that S1 ̸= S2 in both cases.

Subcase v ∈ Λ1 ∧ v′ ∈ Λ1: By Condition (iii).(c), there is at most one c0 ∈ F∗
p such that

v + c0v
′ ∈ Λ0. This implies that

∑
c∈F∗

p
wt(c1 + cc2) = (p − 2)(pm − pm−1) + wt(c1 + c0c2). On the

other hand, (p − 1)wt(c1) − wt(c2) = (p − 2)(pm − pm−1). Putting everything together, we conclude
that S1 ̸= S2 since c1 + c0c2 is not the zero codeword (by linear independence).

Subcase v ∈ Λ0 ∧ v′ ∈ Λ0: By Condition (iii).(a), for each c ∈ F∗
p, v + cv′ ∈ Λ0. First we

will prove that the codewords Ψ(c1),Ψ(c2) in Cϕ are linearly independent. Suppose not, that is, there
exists λ ∈ Fp such that Ψ(c1) = λΨ(c2). Note that λ ̸= 0 as c1 ̸= 0 and Ψ is linear. From this,
it is easy to see that Dγg = λDγ′g and Ψ(v − λv′) = 0. By uniqueness of v0 = 0, it must be that
v = λv′ since v− λv′ ∈ Λ0. This yields that c1 and c2 are linearly dependent, a contradiction. Thus
we know that Ψ(c1),Ψ(c2) are linearly independent, therefore they cannot cover each other since
ϕ is non-covering. Hence,

∑
c∈F∗

p
wt(c1 + cc2) = pm−k∑

c∈F∗
p
wt(Ψ(c1) + cΨ(c2)) is different from

pm−k(p− 1)wt(Ψ(c1))− pm−kwt(Ψ(c2)) = (p− 1)wt(c1)− wt(c2).

Corollary 3. Let s be an even integer greater than two. Let g : Fps/2 × Fps/2 → Fp be a bent function
in the MM class defined as in (17) whose underlying permutation ϕ : Fps/2 → Fps/2 is a non-covering
permutation. Define

U := {D(γ,0)g : γ ∈ Fps/2}. (18)

Let B be a basis for U and B′ be a basis for the linear functions on Fps. Then, the code spanned by
B ∪ B′ ∪ {g} punctured at zero is a minimal [ps − 1, s+ s

2 + 1]-code.

Proof. The result follows immediately from Theorem 8 and the fact that ϕ and g form an s
2 -minimal

pair witnessed by U .

Example 5. Let s = 8. The power permutation ϕ : F34 → F34 defined by ϕ(y) = y17 is non-covering
since the code Cϕ is an 8-dimensional narrow code with minimum weight 42 and maximum weight 60.
Using computer simulations (to verify that none of the nonzero codewords is covered by each other), we
verified that the code C described in Corollary 3 derived from g(x, y) = Tr41(xϕ(y)) and the subspace of
derivatives U = {D(γ,0)g : γ ∈ F34}, is a minimal ternary [6560, 13, 3402]-code, which is in accordance
with Corollary 3. Moreover, its weight enumerator polynomial is

1 + 960z3402 + 720z3888 + 363042z4320 + 527840z4374 + 699840z4401 + 1920z4860,

so that C is six-valued and narrow, thus respecting Ashikhmin and Barg’s condition.

The code presented in the previous example is a narrow code, thus its minimality can be deduced
by simply looking at the weight distribution. However, an interesting feature of Corollary 3 is that
wide minimal codes can be generated, as shown by the following example.

Example 6. Let s = 8. Let ϕ : F34 → F34 be the power permutation defined by ϕ(y) = y79. It can be
verified that the code Cϕ is an 8-dimensional wide minimal code with minimum weight 42 and maximum
weight 64, thus ϕ is a non-covering permutation. We have verified that the code C described in
Corollary 3 derived from g(x, y) = Tr41(xϕ(y)) and the subspace of derivatives U = {D(γ,0)g : γ ∈ F34},
is a minimal ternary [6560, 13, 3402]-code, which is in accordance with Corollary 3. Moreover, its
weight distribution is displayed in Table 8 so that C is fourteen-valued and also wide since 3402

5184 =
21
32 <

2
3 .

Remark 7. One useful criterion for deciding the optimality of linear codes is the well-known Griesmer
bound [20], which states that for a p-ary code C with parameters [n, k, d], where k ≥ 1, it holds that∑k−1

i=0 ⌈
d
pi
⌉ ≤ n. It can be verified that the codes in Example 5 and 6 (having the same minimum
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Table 8: Weight distribution of the ternary code in Example 6 showing weights in ascending order.

Weight w Number of codewords aw
3402 160

3564 560

3726 320

3888 640

4050 640

4212 1120

4320 363042

4374 525360

4401 699840

4536 640

4698 400

4860 960

5022 320

5184 320

distance) do not have optimal parameters. This is not surprising since wide minimal codes commonly
do not reach optimality due to the fact that the Ashikhmin-Barg’s bound is violated, which then implies
that the ratio between the minimum and maximum weight becomes smaller implying a strong restriction
on the minimum distance of such codes.

Finally, we consider one more approach of designing minimal linear codes. In order to avoid
unnecessary notation, we will identify Fpr × Fps with Fpn (thus n = r + s). Similarly, the elements in
Fps/2 × {0s/2} will be identified with elements in Fps/2 without further mentioning.

Lemma 4. Let r, s, n be positive integers such that r ≥ 2, s > 2 is even and n = r + s. Let
f : Fpr → Fp be a non-affine function, γ ∈ F∗

pr be such that f and Dγf are linearly independent

and g(y1, y2) = Tr
s
2
1 (y1ϕ(y2)) be a bent function on Fps/2 × Fps/2, where ϕ is a permutation on Fps/2

without affine components. Consider the direct sum h(x, y) = f(x)+g(y). Denote by C(γ)
h the subspace

spanned by the linear functions on Fpn and the functions hα,β, where hα,β(x, y) = h(x+ α, y + β) for

α ∈ {0, γ}, β ∈ Fps/2 × {0}. Then the set C(γ)
h is a linear code with parameters [pn, n+ s

2 + 2].

Proof. Set β0 := 0. Let B = {β1, . . . , β s
2
} be a basis of Fps/2 × {0s/2} and define B = B ∪ {β0}. We

claim that the set {h0,β : β ∈ B}∪{hγ,0} is linearly independent. Suppose that ς :=
∑ s

2
i=0 λih0,βi(x, y)+

λ s
2
+1hγ,0 = 0 for some scalars λ0, . . . , λ s

2
, λ s

2
+1 ∈ Fp. Since the sum ς is the direct sum of the functions

(

s
2∑
i=0

λi)f(x) + λ s
2
+1f(x+ γ) and

s
2∑
i=1

λig(y + βi) + (λ0 + λ s
2
+1)g(y),

then ς equals zero if and only if
∑ s

2
i=0 λig(y + βi) + (λ0 + λ s

2
+1)g(y) = 0,

∑ s
2
i=0 λi = 0 and λ s

2
+1 = 0.

The latter can be inferred from the linear independence of f and Dγf . By definition, the sum∑ s
2
i=0 λig(y+βi) can be rewritten as Tr

s
2
1 (ϕ(y2)(y1(

∑ s
2
i=0 λi)+

∑ s
2
i=0 λiβi)). Since

∑ s
2
i=0 λi = 0, it holds

that
∑ s

2
i=0 λig(y + βi) = 0 if and only if

∑ s
2
i=0 λiβi = 0. This last condition implies that λi = 0 for

each 1 ⩽ i ⩽ s
2 by linear independence of B. Thus, λ0 = 0 as well. Finally, note that the code C(γ)

h

is equal to the direct sum of the subspace of linear functions over Fpn and the span ⟨h0,β, hγ,0⟩, hence
its dimension is n+ s

2 + 2.

For a function f : Fpr → Fp with a derivative Dγf , γ ∈ F∗
pr , we also define the code Cf ⊕ CDγf by

Cf ⊕ CDγf := {(λ1f(x) + λ2Dγf(x) + lv(x))x∈F∗
pr

: λ1, λ2 ∈ Fp, v ∈ Fpr}. (19)
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This code has length pr−1 and dimension at most r+2. As we will see in Theorem 9, some properties

of the code C(γ)
h introduced in Lemma 4 can be related to those of Cf ⊕ CDγf .

Example 7. Consider the field F34. Define the function f(x) = Tr41(x
8 + x4 + x2) and consider its

derivative Dγf at direction γ = ω61, where ω is a generator of F∗
34. Using Magma, we have verified

that the code Cf is a narrow [80, 5, 47]-code with weight enumerator polynomial

1 + 16x47 + 40x50 + 52x53 + 80x54 + 20x56 + 32x59 + 2x62.

Whereas, the code CDγf is a wide minimal [80, 5, 48]-code with weight enumerator polynomial

1 + 16x48 + 26x51 + 146x54 + 24x57 + 18x60 + 8x66.

Furthermore, the code Cf ⊕CDγf , defined by (19), is a wide minimal [80, 6, 42]-code whose enumerator
polynomial is

1+4x42+2x44+46x47+16x48+88x50+26x51+126x53+146x54+116x56+24x57+92x59+18x60+16x62+8x66.

Now we are in a position to prove the main result of this section.

Theorem 9. Let r, s, n be positive integers such that r ≥ 2, s > 2 is even and n = r + s. Let
f : Fpr → Fp be a non-affine function with f(0) = 0 and γ ∈ F∗

pr be such that {f,Dγf} is linearly

independent. Let g : Fps/2×Fps/2 → Fp be a bent function in MM of the form g(y1, y2) = Tr
s
2
1 (y1ϕ(y2)),

where ϕ is a non-covering permutation on Fps/2. Suppose that the following two conditions hold:

1. For each β ∈ Fps/2 and a, b ∈ Fp such that the triplet (β, a, b) is not zero, the function ag(y1, y2)+
g(by1 + β, y2) is Ls-surjective.

2. The code Cf ⊕ CDγf defined in (19) is an (r + 2)-dimensional minimal code.

Then, the code C(γ)
h , spanned by the linear functions on Fpn and the functions hα,β, where hα,β(x, y) =

h(x+α, y+β) for α ∈ {0, γ}, β ∈ Fps/2 ×{0}, is a minimal linear code with parameters [pn, n+ s
2 +2].

Moreover, if CDγf is wide, then so is C(γ)
h .

Proof. The parameters of C(γ)
h can be deduced from Lemma 4. Let B = {β1, . . . , β s

2
} be a basis of

Fps/2 . Note that each codeword in C(γ)
h can be expressed as

λ(f(x) + g(y1, y2)) + µf(x) + g(µy1 + β, y2) + ν(f(x+ γ) + g(y1, y2)) + L(x, y1, y2) (20)

for some λ, ν ∈ Fp, L ∈ Ln, β =
∑ s

2
i=1 µiβi ∈ Fps/2 and µ =

∑ s
2
i=1 µi. First we will show that if the

underlying functions that depend on y are linearly dependent then the corresponding codewords are

linearly dependent provided they cover each other. Let c, c′ ∈ C(γ)
h be two non-zero codewords such

that c′ ⪯ c, where the defining parameters of c and c′ are λ, µ, β, ν, L and λ′, µ′, β′, ν ′, L′. Assume that

(λ′ + ν ′)g(y1, y2) + g(µ′y1 + β′, y2) + L′y(y1, y2)

is equal to
ξ((λ+ ν)g(y1, y2) + g(µy1 + β, y2) + Ly)

for some ξ ∈ Fp, where Ly denotes the restriction of L to the (y1, y2) coordinates. Rearranging this

equality, we get that Tr
s
2
1 (ϕ(y2)((λ

′ − ξλ+ ν ′ − ξν +µ′ − ξµ)y1 + β′ − ξβ)) is a linear function. This is
possible only if β′ − ξβ = 0 and λ′ − ξλ+ ν ′ − ξν + µ′ − ξµ = 0, so that β′ = ξβ. This implies µ′ = ξµ
by linear independence of the βi’s. We also have λ′ + ν ′ = ξ(λ+ ν) and L′ = ξL. By condition (i), for

each x ∈ Fpr , there exists y(x) = (y
(x)
1 , y

(x)
2 ) such that λf(x) + µf(x) + νf(x+ γ) + Lx(x) is equal to

−((λ+ ν)g(y
(x)
1 , y

(x)
2 ) + g(µy

(x)
1 + β) + Ly(y

(x)
1 , y

(x)
2 )).
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Since c′ ⪯ c, for every x ∈ Fpr , λ′f(x) + ξµf(x) + ν ′f(x+ γ) + L′x(x) is equal to

−ξ((λ+ ν)g(y
(x)
1 , y

(x)
2 ) + g(µy

(x)
1 + β) + Ly(y

(x)
1 , y

(x)
2 )).

In other words, for every x ∈ Fpr , (λ′−ξλ)f(x)+(ν ′−ξν)f(x+γ)+(L′ − ξLx)(x) = 0. Since Cf⊕CDγf

is (r + 2)-dimensional, we infer that λ′ = ξλ, ν ′ = ξν and L′x = ξLx. Suppose that c, c′ ∈ C(γ)
h are

linearly independent and c′ ⪯ c. By the above discussion and Lemma 3, the function corresponding
to the coordinate y of either c or c′ is zero. Both of these functions cannot be simultaneously zero
by minimality of Cf ⊕ CDγf . W.L.O.G, assume that the underlying function of c′ that depends on y
is zero. In this case, using condition (i), take an element (x, y) ∈ Fpr × Fps such that (the underlying
function of) c evaluated at this point is zero but c′ evaluated at x is non-zero. This contradicts c′ ⪯ c.
Analogously, we can rule out the case when the underlying function of c that depends on y is zero.

Hence, if c, c′ are linearly independent, then they cannot cover each other. This proves that C(γ)
h is

minimal. To prove the last part of the statement, note that each element in CDγf can be identified

(up to weight-scaling) with a codeword in C(γ)
h (take µ = 0, β = 0, ν = −λ and Ly = 0 in Equation

20).

In view of Example 7, there exist functions f(x) that satisfy the conditions of Theorem 9. There-
fore, employing any such function together with a non-covering permutation will yield wide minimal
codes in arbitrary characteristics. Note that, in general, explicitly specifying infinite classes of wide
minimal codes over non-binary alphabets is a hard problem. In our case, the choice for the permu-

tation ϕ(x) will heavily influence the resulting code C(γ)
h , so that one can, in principle, obtain infinite

classes of non-equivalent (wide) minimal codes. However, we then have to specify infinite classes of
p-ary non-covering permutations, which seems to be a non-trivial task.

6 Conclusions

In this article, we have presented three generic methods of constructing minimal linear codes over
non-binary alphabets. These results are generalizations of the constructions presented in [45]. The
first class of minimal linear codes involves the use of the direct sum of functions. It is important to
remark that this method does not require strong conditions thus it is a very general method. More re-
markably, we provided the first explicit construction of linear codes from non-weakly regular plateaued
functions, partially solving an open problem proposed in [22]. We have also studied structural prop-
erties of non-covering permutations, introduced in [45]. In particular, we have observed that every
power APN permutation and every 4-uniform permutation are non-covering, thus raising the question
whether this is true in general for arbitrary APN or 4-uniform permutations. Moreover, we provided
a sound definition of non-covering permutations in fields with odd characteristic. Employing these
generalizations, we have given a second generic method for constructing classes of minimal codes us-
ing suitable subspaces of derivatives of a bent function. Furthermore, extending these approaches, we
provided a construction of minimal codes which gives rise to non-equivalent minimal codes depending
upon the election of the underlying non-covering permutation. We leave as a research challenge to
provide different approaches to specifying the weight distributions of more classes of minimal codes
that arise from the constructions presented in this work.
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[44] Zhang, F., Pasalic, E., Rodŕıguez, R., Wei, Y.: Wide minimal binary linear codes from
the general Maiorana–McFarland class. Des. Codes Cryptogr. 89, 1485–1507 (2021)
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