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Abstract. In this paper we define a class of generalized Boolean functions

defined on Fn
2 with values in Zq (we consider q = 2k, k ≥ 1, here), which we

call landscape functions (whose class contains generalized bent, semibent, and

plateaued) and find their complete characterization in terms of their Boolean

components. In particular, we show that the previously published characteri-
zations of generalized plateaued Boolean functions (which includes generalized

bent and semibent) are in fact particular cases of this more general setting.

Furthermore, we provide an inductive construction of landscape functions, hav-
ing any number of nonzero Walsh-Hadamard coefficients. We also completely

characterize generalized plateaued functions in terms of the second derivatives

and fourth moments.
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MSC2010: 06E30, 94C10, 11A07.

1. Introduction. Generalized Boolean functions have become an active area of
research [5, 6, 7, 9, 10, 11, 16, 18, 19, 21], with most of these papers dealing with
descriptions/constructions of generalized bent/plateaued functions. In this work,
we show that in fact the class of generalized plateaued functions, which includes
the class of generalized bent and semibent, and their characterizations in terms of
their Boolean components, are in fact particular instances of the more general case
of landscape functions, which are introduced in this paper.

We take Fn2 to be an n-dimensional vector space over the two-element field F2

and for an integer q, let Zq be the ring of integers modulo q. By ‘+’ and ‘−’ we
respectively denote addition and subtraction modulo q, while ‘⊕’ is the addition
over Fn2 . A generalized Boolean function on n variables is a function from Fn2 to Zq
(q ≥ 2), whose set is denoted by GBqn, and when q = 2, by Bn. If 2k−1 < q ≤ 2k for
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2 CONSTANZA RIERA AND PANTELIMON STĂNICĂ

some k ≥ 1, the binary expansion of integers gives a unique decomposition of any
f ∈ GBqn as a sequence of Boolean functions ai ∈ Bn (i = 0, 1, . . . , k − 1) such that

f(x) = a0(x) + 2a1(x) + · · ·+ 2k−1ak−1(x), for all x ∈ Fn2 .

The (Hamming) weight of x = (x1, . . . , xn) ∈ Fn2 is denoted by wt(x) and equals∑n
i=1 xi. For f : Fn2 → F2, we have wt(f) =

∑
x∈Fn2

f(x) = #{x ∈ Fn2 : f(x) = 1},
where #S denotes the cardinality of the set S. The complement (in a universal set
understood from the context) of a set S is denoted by S.

For a generalized Boolean function f : Fn2 → Zq we define the (unnormalized)
generalized Walsh-Hadamard transform to be the complex valued function

H(q)
f (u) =

∑
x∈Fn2

ζf(x)
q (−1)u·x,

where ζq = e
2πi
q is a q-primitive complex root of 1 and u · x denotes the conven-

tional dot product on Fn2 (for simplicity, we sometimes use ζ, Hf , instead of ζq,

respectively, H(q)
f , when q is fixed). The map Ff (u) =

∑
x∈Fn2

f(x)(−1)u·x is called

the Fourier transform. For q = 2, we obtain the usual Walsh-Hadamard transform

Wf (u) =
∑
x∈Fn2

(−1)f(x)(−1)u·x.

For f, g ∈ GBqn, the sum

C(q)
f,g(z) =

∑
x∈Fn2

ζf(x⊕z)−g(x)

is the crosscorrelation of f and g at z ∈ Fn2 , and the autocorrelation of f ∈ GBqn at

u ∈ Fn2 is C(q)
f (u) := Cf,f (u) (we will drop the superscript if there is no danger of

confusion). It is known (see [19]) that if f, g ∈ GBqn, then,∑
u∈Fn2

Cf,g(u)(−1)u·x = Hf (x)Hg(x),

Cf,g(u) = 2−n
∑
x∈Fn2

Hf (x)Hg(x)(−1)u·x,

Cf (u) = 2−n
∑
x∈Fn2

|Hf (x)|2(−1)u·x.

A function f : Fn2 → Zq is generalized bent (gbent) if |Hf (u)| = 2n/2, for all

u ∈ Fn2 . This is a generalization of functions f for which |Wf (u)| = 2n/2, for all
u ∈ Fn2 , which are called bent functions. In the spirit of Zheng and Zhang [24],
we say that f ∈ GBqn is (generalized) s-gplateaued if |Hf (u)| ∈ {0, 2(n+s)/2} for all
u ∈ Fn2 for a fixed integer s depending on f . If s = 0, we recover the (generalized)
bent functions, and if s = 1, or s = 2, we obtain the f (generalized) semibent. See
Mesnager’s excellent survey [12] for more on (g)plateaued Boolean functions. Note
that, for Boolean functions, bent functions exist only when n is even; however, when
q > 2, generalized bent functions exist for all dimensions. A similar result holds for
semibent functions, as well, since the conditions n odd for s = 1, and n even for
s = 2 are no longer necessary when q > 2.
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Given a generalized Boolean function f : Fn2 → Zq, the derivative Duf of f with
respect to a vector u is the generalized Boolean function Duf : Fn2 → Zq defined by

Daf(x) = f(x)− f(x⊕ u), for all x ∈ Fn2 .
Certainly, if f is Boolean, then Daf(x) = f(x) ⊕ f(x ⊕ u). For f ∈ GBqn, the
spectrum (or Walsh) support of f is defined by supp(Hf ) = {u : Hf (u) 6= 0}. In
this paper, we consider the case q = 2k.

2. Landscape functions and their regularity. As defined in [10], a gbent func-

tion f ∈ GBqn is regular, if Hf (u) = 2n/2ζ
f∗(u)
q for some function f∗ ∈ GBqn, called

the dual. We extend this definition in the following way (we let N0 = {k ∈ Z : k ≥
0} and, N = {k ∈ Z : k > 0}).

Definition 2.1. We call a function f ∈ GBqn regular, if for all u ∈ supp(Hf ),

Hf (u) = 2
nu
2 `u ζ

f∗(u)
q , for some nu ∈ N0, `u ∈ 2N0 + 1 and some f∗(u) ∈ Zq.

Extending these values outside of the spectrum support of f by f∗(u) = 0, for all

u ∈ supp(Hf ), we obtain a function f∗ ∈ GBqn, which we call the dual of f (note:
the function f cannot be recovered from f∗, in general).

By modifying a method of Kumar, Scholtz and Welch [7], in [10] it was shown that

all gbent functions f ∈ GB2k

n are regular, except for n odd and k = 2, in which case

one has Hf (u) = 2
n−1
2 (±1± i). We observe that with our definition of regularity, a

function cannot be regular unless the absolute value of all nonzero Walsh-Hadamard
coefficients of f are of the form 2

m1
2 `1, 2

m2
2 `2, . . . with m1,m2, . . . ∈ N0, `1, `2, . . . ∈

2N0 + 1. With that in mind, we introduce the following notion.

Definition 2.2. We call a function f ∈ GBqn a landscape function if there exist
t ≥ 1, mi ∈ N0, `i ∈ 2N0 + 1, 1 ≤ i ≤ t, such that

{|Hf (u)|}u∈supp(Hf ) = {2
m1
2 `1, . . . , 2

mt
2 `t}.

We call the set of pairs {(m1, `1), (m2, `2), . . .}, the levels of f , and t+1 (if 0 belongs
to the Walsh-Hadamard spectrum), or t (if 0 is not in the spectrum) the length of
f .

Certainly, every classical Boolean function is a landscape function. That is not
true for q > 2 (as the Walsh-Hadamard values are ± sums of powers of the primitive

root, so the moduli of the spectra values may contain elements outside Z ∪
√

2Z),
however, gplateaued (which includes generalized bent/semibent) functions are all
examples of landscape functions.

In Theorem 4.2 we will construct, in an inductive fashion, large classes of land-
scape functions : Fn2 → Z2k , for all k ≥ 2.

First, we show the regularity of landscape functions, by modifying the proof

from [7, 10]. Recall that when q = 2k is fixed, we use Hf , in lieu of H(2k)
f .

The interested reader can consult the necessary algebraic number theory material
from [15, 23] or his/her favorite book on the subject.

Theorem 2.3. Let f ∈ GBqn, q = 2k, k ≥ 1, be a landscape function, and ζ =

e
2πi

2k be a 2k-primitive root of unity. Let u ∈ supp(Hf ), with |Hf (u)| = 2
m
2 `,

m ∈ N0, ` ∈ 2N0 + 1. Then, if m is even, or m is odd and k > 2, we have
Hf (u) = 2

m
2 `ζf

∗(u), for some value f∗(u) ∈ Zq. If m is odd and k = 2, and

a0 6= 0, Hf (u) = 2bm/2c`(ε1+ε2i), with ε1, ε2 ∈ {±1}, with the additional possibility,
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if ` is the largest component of a Pythagorean triple `21 + `22 = `2, of Hf (u) =

2bm/2c (`1ε1 + `2ε2 ± i(`1ε2 − `2ε1)). If m is odd and k = 2, there is no function f
with a0 = 0 such that |Hf (u)| = 2

m
2 `. If m is odd and k = 1, there is no function

f such that |Hf (u)| = |Hf (u)| = 2
m
2 `, m ∈ N0, ` ∈ 2N0 + 1.

Proof. If k = 1 and m is even, the result simply states that if u ∈ supp(Wf ) and

|Wf (u)| = 2
m
2 `, thenWf (u) = 2

m
2 `(−1)f

∗(u), which is certainly true, since the two
roots of unity are ±1.

Let k ≥ 2, u ∈ supp(Hf ) with |Hf (u)| = 2
m
2 ` (recall that m, ` ∈ N0, ` odd), and

assume that m is even, or, m is odd and k 6= 2. As in [7, 10], the ideal generated by
2 is totally ramified in Z[ζ] (which is the ring of algebraic integers in the cyclotomic

field Q(ζ)), so we have the decomposition in Z[ζ] of the ideal 〈2〉 = 〈1−ζ〉2
k−1

, where

〈1−ζ〉 is a prime ideal in Z[ζ]. Observe thatHf (u)Hf (u) = 2m`2. From [7, Property

7], we observe that Hf (u) and Hf (u) will generate the same ideal in Z[ζ] and so,
2−m`−2(Hf (u))2 is a unit, and consequently, 2−

m
2 `−1Hf (u) is an algebraic integer.

Therefore, by Proposition 1 of [7], 2−
m
2 `−1Hf (u) is a root of unity. Further, observe

that the Gauss quadratic sum G(2k) =

2k−1∑
i=0

ζi
2

= 2k/2(1 + i) and so,
√

2 ∈ Q(ζ),

and so the root of unity 2−
m
2 `−1Hf (u) must be in the cyclotomic field Q(ζ), unless

k = 2 (since then 1 + i 6∈ Q(ζ)). The first assertion is shown for m even, as well as
for m odd with k 6= 2.
When m is odd and k = 2, then Hf (u) = au + bu i, for some integers au, bu.

We distinguish between two cases:
Case 1. We first consider the case a0 6= 0. Since |Hf (u)|2 = 2m`2, we get the

diophantine equation a2
u + b2u = 2m`2.

Since m is odd, the solutions for x2 + y2 = 2m are (x, y) = (ε12bm/2c, ε22bm/2c),
with ε1, ε2 ∈ {±1}. If ` is not the largest component of a Pythagorean triple,
all solutions of a2

u + b2u = 2m`2 are of the form (au, bu) = (ε12bm/2c`, ε22bm/2c`).
If ` is the largest component of a Pythagorean triple (`1, `2, `), all solutions of
a2
u + b2u = 2m`2 are of the form (au, bu) = (ε12bm/2c`, ε22bm/2c`) and (au, bu) =

(2bm/2c(`1ε1 + `2ε2),±2bm/2c(`1ε2− `2ε1)) (here we use the fact that the product of
sums of squares is a sum of squares, that is, (a2+b2)(c2+d2) = (ac+bd)2+(ad−bc)2).
Case 2. Finally, we consider here the case when m is odd, k = 2, and a0 = 0. In
this case, f = 2a1. Therefore, Hf (u) =

∑
x∈Fn2

if(x)(−1)u·x =
∑

x∈Fn2
(−1)a1(x)+u·x.

Since Hf (u) is then an integer, |Hf (u)|2 = 2
m
2 ` is impossible, and the proof for

k = 2 is completed.
Finally, when m is odd and k = 1, there is no function f such that |Hf (u)| =

|Hf (u)| = 2
m
2 `, m ∈ N0, ` ∈ 2N0 + 1, since |Hf (u)| ∈ N.

Remark 1. When the length of the involved landscape functions in the theorem
above is 3, if 0 is in the spectrum, length 2, otherwise, that is, we have generalized
plateaued functions (gplateaued), q = 2 and k ≥ 2, the regularity was given by
Mesnager et al. [13].

3. Characterizing landscape functions in terms of components. In this
section, we will completely characterize the landscape functions in terms of their
components, by using the method of [9]. It is rather intriguing that generalized
bentness does not play a role in the method, rather the modulus of values of the
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Walsh-Hadamard spectrum being of the form 2
m
2 ` is important, independent of how

many such different values occur.

We define the “canonical bijection” ι : Fk−1
2 → Z2k−1 by ι(c) =

∑k−2
j=0 cj2

j

where c = (c0, c1, . . . , ck−2). We gather in the next lemma some computations
from [9, 19, 20], providing a relationship between the generalized Walsh-Hadamard
transform and the classical transform.

Lemma 3.1. For a generalized Boolean f ∈ GB2k

n , f(x) = a0(x) + 2a1(x) + · · · +
2k−1ak−1(x), ai ∈ Bn, we have

Hf (u) =
1

2k−1

∑
(c,d)∈Fk−1

2 ×Fk−1
2

(−1)c·dζ
ι(d)

2k
Wfc(u),

where fc(x) = c0a0(x)⊕ c1a1(x)⊕ · · · ⊕ ck−2ak−2(x)⊕ ak−1(x).

We now show the main theorem of this section. We note that the case of the
generalized bent and the larger class of gplateaued functions (particular cases of
our theorem below) has appeared in the works [13, 9, 19, 20].

Theorem 3.2. Let f : Fn2 → Z2k , k ≥ 2, be a function given as f(x) = a0(x) +
2a1(x) + · · ·+ 2k−1ak−1(x). Then, f is a landscape function whose spectra moduli

are in
{

0, 2
m1
2 L1, . . . , 2

mt
2 Lt

}
(t ∈ N,mi ∈ N0, Li ∈ 2N0 + 1) if and only if for

each c ∈ Fk−1
2 , the Boolean function fc defined as

fc(x) = c0a0(x)⊕ c1a1(x)⊕ · · · ⊕ ck−2ak−2(x)⊕ ak−1(x)

is a Boolean function such that (we take ` ∈ {L1, . . . , Lt}):

(i) Hf (u) = 0, if and only if Wfc(u) = 0.

(ii) |Hf (u)| = 2
m
2 `, m even, if and only if Wfc(u) = (−1)c·ι

−1(g(u))+s(u)2
m
2 `, for

some g : Fn2 → Z2k−1 , s : Fn2 → F2.
(iii) |Hf (u)| = 2

m
2 `, m odd, k 6= 2, if and only if

Wfc(u) =
(

(−1)c·ι
−1(g1(u))+s1(u) − (−1)c·ι

−1(g2(u))+s2(u)
)

2b
m
2 c`,

for some gj : Fn2 → Z2k−1 , sj : Fn2 → F2, j = 1, 2, where g2(u) − g1(u) +
2k−1(s2(u)− s1(u)) = 2k−2 in Z2k .

(iv) |Hf (u)| = 2
m
2 `, m odd, k = 2, if and only if a0 6= 0 and (note that c is a bit)

Wfc(u) =

{
2
m−1

2 (`1ε1 + `2ε2 ± (−1)c(`1ε2 − `2ε1)) , or

2
m−1

2 ` (ε1 + ε2(−1)c) ,

if `21 + `22 = `2; otherwise,

Wfc(u) = 2
m−1

2 ` (ε1 + ε2(−1)c) .

If m is odd, k = 2, and a0 = 0, there are no functions f such that |Hf (u)| =
2
m
2 `.

Consequently, fc has nonzero spectra moduli given by
{

2d
m1
2 eL1, . . . , 2

dmt2 eLt

}
.

Proof. (i) First, let us treat the case of u /∈ supp(Hf ). Thus,

0 =
∑

(c,d)∈Fk−1
2 ×Fk−1

2

(−1)c·dζ
ι(d)

2k
Wfc(u) =

∑
d∈Fk−1

2

 ∑
c∈Fk−1

2

(−1)c·dWfc(u)

 ζ
ι(d)

2k
,

(1)
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and so,
∑

c∈Fk−1
2

(−1)c·dWfc(u) = 0, since {1, ζ2k , . . . , ζ2k−1−1
2k

} is a basis of Q(ζ2k).

Inverting, we get

Wfc(u) =
1

2k−1

∑
(u,v)∈Fk−1

2

(−1)(u+c)·vWfu(u) = 0.

The converse follows easily.
(ii) Let now u ∈ supp(Hf ) with |Hf (u)| = 2

m
2 `, m ∈ Z even, ` odd. Then,

f : Fn2 → Z2k satisfies Hf (u) = 2
m
2 ` ζ

f∗(u)

2k
for some f∗ : Fn2 → Z2k . Decompose

f∗ as f∗ = g + 2k−1s with g : Fn2 → Z2k−1 and s : Fn2 → F2 so that

Hf (u) = 2
m
2 ` (−1)s(u)ζ

g(u)

2k
.

Then, ∑
d∈Fk−1

2

 1

2k−1

∑
c∈Fk−1

2

(−1)c·dWfc(u)

 ζ
ι(d)

2k
− 2

m
2 `(−1)s(u)ζ

g(u)

2k
= 0. (2)

Again using that {1, ζ2k , . . . , ζ2k−1−1
2k

} is a basis of Q(ζ2k) (denoting by δ0 the
Dirac symbol δ0(u, v) = 1 if u = v, and 0, otherwise), we infer

1

2k−1

∑
c∈Fk−1

2

(−1)c·dWfc(u) = 2
m
2 ` (−1)s(u)δ0 (ι(d), g(u)) . (3)

We now invert the above identity, so, for any c ∈ Fk−1
2 ,

Wfc(u) =
1

2k−1

∑
(u,v)∈Fk−1

2

(−1)(u+c)·vWfu(u)

=
∑

v∈Fk−1
2

(−1)c·v

 1

2k−1

∑
u∈Fk−1

2

(−1)u·vWfu(u)


= (−1)c·ι

−1(g(u))+s(u)2
m
2 `,

which shows that fc satisfies the imposed conditions on the Walsh-Hadamard coef-
ficient at u.

Conversely, suppose that there exist g : Fn2 → Z2k−1 and s : Fn2 → F2 such

that, for every c ∈ Fk−1
2 , Wfc(u) = 2

m
2 `(−1)c·ι

−1(g(u))+s(u). By Lemma 3.1, we
can write

Hf (u) =
1

2k−1

∑
(c,d)∈Fk−1

2 ×Fk−1
2

(−1)c·dζ
ι(d)

2k
Wfc(u)

=2
m
2 ` · 1

2k−1

∑
(c,d)∈Fk−1

2 ×Fk−1
2

(−1)c·d+c·ι−1(g(u))+s(u)ζ
ι(d)

2k

=2
m
2 ` (−1)s(u)

∑
d∈Fk−1

2

 1

2k−1

∑
c∈Fk−1

2

(−1)c·(d+ι−1(g(u)))

 ζ
ι(d)

2k

=2
m
2 ` (−1)s(u)ζ

g(u))

2k
,

proving that f satisfies |Hf (u)| = 2
m
2 `.
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(iii) Now, let u ∈ supp(Hf ), with |Hf (u)| = 2
m
2 `, m, ` ∈ Z≥1 odd, k 6= 2. By

Theorem 2.3, then

Hf (u) = 2
m
2 ` ζ

f∗(u)

2k
= 2

m−1
2

√
2 ` ζ

f∗(u)

2k
,

for some power f∗(u) ∈ Z2k . Recall now that Q(
√

2) ⊂ Q(ζ2k), since
√

2 = ζ8+ ζ̄8 =

ζ8 − ζ3
8 = ζ2k−3

2k − ζ3·2k−3

2k . Thus,

Hf (u) = 2
m−1

2 `
(
ζ
f∗(u)+2k−3

2k
− ζf

∗(u)+3·2k−3

2k

)
.

As in [9], we let f∗(u) + 2k−3 = g1(u) + 2k−1s1(u) + 2kt1(u) and f∗(u) + 3 · 2k−3 =
g2(u) + 2k−1s2(u) + 2kt2(u), where gi : F2n → Z2k−1 and si, ti : F2n → F2, so that

Hf (u) = 2
m−1

2 ` (−1)s1(u)ζ
g1(u)

2k
− 2

m−1
2 ` (−1)s2(u)ζ

g2(u)

2k
. (4)

Observe that from their definition, we have g2(u)− g1(u) + 2k−1(s2(u)− s1(u)) =
2k−2 in Z2k . If g2(u) = g1(u), then 2k−1(s2(u) − s1(u)) = 2k−2 in Z2k , which is
impossible, since s2(u), a1(u) ∈ {0, 1}.

Recall that ι is the canonical bijection from Fk−1
2 to Z2k−1 , ι(c0, . . . , ck−2) =∑k−2

j=0 cj2
j . Using Lemma 3.1, we write

Hf (u) =
∑

d∈Fk−1
2

 1

2k−1

∑
c∈Fk−1

2

(−1)c·dWfc(u)

 ζ
ι(d)

2k
,

which, when combined with equation (4) (recall that g1(u) 6= g2(u)), implies that
for all d ∈ Z2k−1 ,

1

2k−1

∑
c∈Fk−1

2

(−1)c·dWfc(u) = 2
m−1

2 ` (−1)s1(u)δ0 (ι(d), g1(u))

− 2
m−1

2 ` (−1)s2(u)δ0 (ι(d), g2(u)) .

Thus,

Wfc(u) =
1

2k−1

∑
(u,v)∈Fk−1

2 ×Fk−1
2

(−1)(u+c)·vWfu(u)

=
∑

v∈Fk−1
2

(−1)c·v
1

2k−1

∑
u∈Fk−1

2

(−1)u·vWfu(u)

=
(−1)c·ι

−1(g1(u))+s1(u) − (−1)c·ι
−1(g2(u))+s2(u)

2
2
m+1

2 `.

By the definition of the gi, si, we have that g2(u)− g1(u) + 2k−1(s2(u)− s1(u)) =
2k−2 in Z2k . Since

(−1)c·ι
−1(g1(u))+s1(u) − (−1)c·ι

−1(g2(u))+s2(u)

2
∈ {−1, 0, 1},

for the fixed u ∈ F2n , the claim is proven.
Conversely, for a fixed u ∈ Fn2 , assume that for all c ∈ Fk−1

2 , fc have their
Walsh-Hadamard transforms of the form

Wfc(u) =
(

(−1)c·ι
−1(g1(u))+s1(u) − (−1)c·ι

−1(g2(u))+s2(u)
)

2
m−1

2 `,

for some gj : Fn2 → Z2k−1 , sj : Fn2 → F2, j = 1, 2, with g2(u)− g1(u) + 2k−1(s2(u)−
s1(u)) = 2k−2 in Z2k , and m, ` odd integers.
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Observe that (we use the fact that g1(u) 6= g2(u), which follows easily from the
identity above),∑

c∈Fk−1
2

(−1)c·(d⊕ι
−1(g1(u))+s1(u) −

∑
c∈Fk−1

2

(−1)c·(d⊕ι
−1(g2(u))+s2(u)

=


0 if ι(d) 6∈ {g1(u), g2(u)}
2k−1(−1)s1(u) if ι(d) = g1(u) 6= g2(u)

−2k−1(−1)s2(u) if ι(d) = g2(u) 6= g1(u).

Further, using this identity and Lemma 3.1, we get

Hf (u) = 2
m+1

2 −k`
∑

d∈Fk−1
2

ζ
ι(d)

2k

 ∑
c∈Fk−1

2

(−1)c·(d⊕ι
−1(g1(u))+s1(u)

−
∑

c∈Fk−1
2

(−1)c·(d⊕ι
−1(g2(u))+s2(u)


= 2

m−1
2 `

(
(−1)s1(u)ζ

g1(u)

2k
− (−1)s2(u)ζ

g2(u)

2k

)
= 2

m−1
2 ` (−1)s1(u)ζ

g1(u)

2k

(
1− ζg2(u)−g1(u)+2k−1(s2(u)−s1(u))

2k

)
= 2

m−1
2 ` (−1)s1(u)ζ

g1(u)

2k
(1− ζ2k−2

2k ) = 2
m
2 ` (−1)s1(u)ζ

g1(u)

2k
ζ̄8,

and so, |Hf (u)| = 2
m
2 `. The claim is shown.

(iv) First, let u ∈ supp(Hf ), with |Hf (u)| = 2
m
2 `, m, ` ∈ N odd, k = 2 (observe

now that ζ2k = i), a0 6= 0. Let us consider the case where ` is not the largest
component of a Pythagorean triple. From Theorem 2.3, we infer that Hf (u) =

2
m−1

2 ` (ε1 + ε2i).
Using Lemma 3.1, we write

Hf (u) =
∑
d∈F2

(
1

2

∑
c∈F2

(−1)cdWfc(u)

)
id.

Together with the previous value of Hf (u), this renders

1

2

∑
c∈F2

(−1)cdWfc(u) = ±2
m−1

2 ` for d = 0, 1.

Thus,

Wfc(u) =
1

2

∑
(u,v)∈F2×F2

(−1)(u+c)vWfu(u) =
∑
v∈F2

(−1)cv
1

2

∑
u∈F2

(−1)uvWfu(u)

= 2
m−1

2 ` (ε1 + ε2(−1)c).

Conversely, let Wfc(u) = 2
m−1

2 ` (ε1 + ε2(−1)c). Then, using Lemma 3.1, we write

Hf (u) =
∑
d∈F2

(
1

2

∑
c∈F2

(−1)cdWfc(u)

)
id

=
1

2
2
m−1

2 `
∑
d∈F2

(
(−1)0(ε1 + ε2) + (−1)d(ε1 − ε2)

)
id = 2

m−1
2 ` (ε1 + ε2i).
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Assume that ` is the largest component of a Pythagorean triple, `21 + `22 =
`2. By Theorem 2.3, we obtain either the previous case, or that Hf (u) =

2
m−1

2 (`1ε1 + `2ε2 ± (`1ε2 − `2ε1) i). In the latter case, using Lemma 3.1, we write

Hf (u) =
∑
d∈F2

(
1

2

∑
c∈F2

(−1)cdWfc(u)

)
id.

Together with the previous identity, this renders

1

2

∑
c∈F2

(−1)cdWfc(u) = 2
m−1

2 (`1ε1 + `2ε2) for d = 0,

1

2

∑
c∈F2

(−1)cdWfc(u) = ±2
m−1

2 (`1ε2 − `2ε1) for d = 1.

Thus,

Wfc(u) =
1

2

∑
(u,v)∈F2×F2

(−1)(u+c)vWfu(u)

=
∑
v∈F2

(−1)cv
1

2

∑
u∈F2

(−1)uvWfu(u)

= 2
m−1

2 (`1ε1 + `2ε2 ± (−1)c(`1ε2 − `2ε1)) .

Conversely, let Wfc(u) = 2
m−1

2 (`1ε1 + `2ε2 ± (−1)c(`1ε2 − `2ε1)). Then, using
Lemma 3.1, we write

Hf (u) =
∑
d∈F2

(
1

2

∑
c∈F2

(−1)cdWfc(u)

)
id

=
1

2
2
m−1

2

∑
d∈F2

(
(−1)0(`1ε1 + `2ε2 ± (`1ε2 − `2ε1))

+(−1)d(`1ε1 + `2ε2 ∓ (`1ε2 − `2ε1))
)
id

= 2
m−1

2 (`1ε1 + `2ε2)± (`1ε2 − `2ε1)i.

Finally, the case m odd, k = 2, a0 = 0, is stated in Theorem 2.3.

The following corollary is then immediate.

Corollary 1. Let f : Fn2 → Z2k , k ≥ 1, be a function given as f(x) = a0(x) +
2a1(x) + · · · + 2k−1ak−1(x). Let s ≥ 0 be an integer. Then f is s-gplateaued if

and only if for each c ∈ Fk−1
2 , the Boolean function fc defined as in Theorem 3.2

is an s-plateaued (if n + s is even), respectively, an (s + 1)-plateaued function (if
n + s is odd) with the extra conditions on the Walsh-Hadamard coefficients, as in
Theorem 3.2.

We will derive other characterizations of gplateaued functions in the last section.
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4. Some constructions of landscape functions. First, we start with some ex-
amples of five valued spectra (certainly, landscape) functions, and later on, we shall
give constructions of arbitrary length landscape functions. In [8, Theorem 19], a
class of functions with five valued spectra was constructed. These are (see [2, 4]
for the definitions of these notions) n-variable, m-resilient, degree (n − m − 1)
functions with nonlinearity nl(f) = 2n−1 − 2(n+m−2)/2, if n − m + 1 is odd, and
nl(f) = 2n−1 − 2(n+m−1)/2, if n −m + 1 is even. They are also five valued Walsh
spectrum (under n − m ≥ 5), namely, {±2(n+m)/2, 2(n+m)/2 − 2m+2,−2m+2, 0},
if n −m + 1 is odd, respectively, {±2(n+m+1)/2, 2(n+m+1)/2 − 2m+2,−2m+2, 0}, if
n −m + 1 is even. To generate landscape functions that have five valued spectra,
we take m := n− 5, and so, n−m+ 1 = 6, n+m+ 1 = 2n− 4, and the spectrum
will be {±2n−2,±2n−3, 0}; also, n −m = 6, so n −m + 1 = 7, and the spectrum
will be {±2n−3,±2n−4, 0}.

We do not need it here, but using Catalan’s Conjecture (now known as Mihăilescu’s
Theorem [14]), which states that the only nontrivial (that is, a, b > 1, x, y > 0) dio-
phantine solution to xa − yb = 1 is x = 3, a = 2, y = 2, b = 3), we can infer that we
can only get these examples of landscape functions from the specific construction
of [8, Theorem 19].

Starting with the existence of generalized bent functions in any dimension, it is
not very difficult to show that landscape functions of any level exist for every dimen-
sion, as our next proposition shows. We adapt some classical inductive plateaued
construction (see, for instance, [7, 10, 11, 16, 19] for the construction of generalized
Boolean bent functions), as well as the paper [17], which contains some constructions
of semibent and even more general plateaued in the spirit of Maiorana-McFarland
construction of bent functions. There are certainly quite a few works on the analy-
sis of the spectrum of a Boolean functions and we point out here [3, 8, 22], just to
mention a few.

Proposition 1. Let a ∈ F2, q = 2k, k ≥ 1, f be a generalized Boolean function in
GBqn and g : Fn+1

2 → Zq be defined by g(x, y) = f(x) + 2k−1ay.

(i) If f is s-gplateaued, s ≥ 0, then g is (s+ 1)-gplateaued (in particular, if f is
generalized bent, then g is 1-gplateaued).

(ii) If f is a landscape function of length t and levels {(m1, `1), (m2, `2), . . .}, then
g is a landscape function of length t and levels {(m1 + 1, `1), (m2 + 1, `2), . . .}.

Proof. Let f be a landscape function of levels {(m1, `1), (m2, `2), . . . , (mt, `t)}. We
compute the Walsh-Hadamard transform of g at (u,v) ∈ Fn2 × F2, and get

Hg(u,v) =
∑

(x,y)∈Fn2×F2

ζf(x)+2k−1ay(−1)u·x+vy

=
∑

x∈Fn2 ,y=0

ζf(x)(−1)u·x +
∑

x∈Fn2 ,y=1

ζf(x)+2k−1a(−1)u·x+v

= Hf (u) + (−1)a+vHf (u) =
(
1 + (−1)a+v

)
Hf (u).

Thus, |Hg(u, v)| ∈ {0, 2|Hf (u)|}, from which we can infer all of our claims.

Carlet [1] introduced a secondary construction (often called the “indirect sum”),
as follows. Let n = r + s, where r and s are positive integers, and f1, f2 ∈ Br,
g1, g2 ∈ Bs. Define h as the concatenation of the four functions f1, f̄1, f2, f̄2, in an
order controlled by g1(y) and g2(y),

h(x,y) = f1(x)⊕ g1(y)⊕ (f1(x)⊕ f2(x))(g1(y)⊕ g2(y)). (5)
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It is known that in the Boolean case, if r, s are even and f1, f2 are semibent and
g1, g2 are bent, then h is semibent. In fact, a more general result is true as we shall
show next. The following lemma is known and easy to show.

Lemma 4.1. For s ∈ F2 and z ∈ C, it holds that

zs =
1 + (−1)s

2
+

1− (−1)s

2
z.

Theorem 4.2. Let q = 2k, k ≥ 1, and h : Fr2 × Fs2 → Zq be given by h(x,y) =
f1(x) + 2k−1g1(y) + (f2(x)−f1(x))(g1(y) + g2(y)) (all operations are in Zq), where
f1, f2 ∈ GBqr, g1, g2 ∈ Bs, q = 2k, with g1, g2 bent (thus, s is even). The following
hold:

(i) If f1, f2 are t-gplateaued, then h is t-gplateaued (hence, of length 2).
(ii) If t1 6= t2 and g1 6= g2, g1 6= g2, then h is a landscape function of length 3,

namely, the moduli of its spectra are {0, 2
n+t1

2 , 2
n+t2

2 }. In particular, if q = 2,
then h has five valued spectra.

(iii) If f1, f2 are landscape functions such that

{|Hf1(u)|}u∈supp(Hf1 ) = {2
p1
2 `211, . . . , 2

pt
2 `21t},

{|Hf2(u)|}u∈supp(Hf2 ) = {2
q1
2 `221, . . . , 2

qf
2 `22f},

and g1 6= g2, g1 6= g2, then h is a landscape function such that

{|Hh(u,v)|}u,v = {0, 2
s+p1

2 `211, . . . , 2
s+pt

2 `21t, 2
s+q1

2 `221, . . . , 2
s+qf

2 `22f}.

Proof. Using Lemma 4.1 and the indicators of the sets {y : g1(y)+g2(y) = j}, j =

0, 1, being
1 + (−1)j(−1)g1(y)+g2(y)

2
, we compute the Walsh–Hadamard transform

of h and obtain

2Hh(u,v) = 2
∑

x∈Fr2,y∈Fs2

ζf1(x)+2k−1g1(y)+(f2(x)−f1(x))(g1(y)+g2(y))(−1)u·x+v·y

= 2
∑
x∈Fr2

∑
y∈Fs2

g1(y)+g2(y)=0

ζf1(x)+2k−1g1(y)(−1)u·x+v·y

+ 2
∑
x∈Fr2

∑
y∈Fs2

g1(y)+g2(y)=1

ζf2(x)+2k−1g1(y)(−1)u·x+v·y

= 2
∑
x∈Fr2

ζf1(x)(−1)u·x
∑
y∈Fs2

(−1)g1(y) 1 + (−1)g1(y)+g2(y)

2
(−1)v·y

+ 2
∑
x∈Fr2

ζf2(x)(−1)u·x
∑
y∈Fs2

(−1)g1(y) 1− (−1)g1(y)+g2(y)

2
(−1)v·y

= Hf1(u)
∑
y∈Fs2

(
(−1)g1(y) + (−1)g2(y)

)
(−1)v·y

+Hf2(u)
∑
y∈Fs2

(
(−1)g1(y) − (−1)g2(y)

)
(−1)v·y

= Hf1(u) (Wg1(v) +Wg2(v)) +Hf2(u) (Wg1(v)−Wg2(v)) .
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If f1, f2 are, respectively, t1, t2-gplateaued, and g1, g2 are bent, and observing that

(Wg1(v) +Wg2(v)) (Wg1(v)−Wg2(v)) =W2
g1(v)−W2

g2(v) = 0,

then either (Wg1(v) +Wg2(v)) = ±2
s
2 +1 and (Wg1(v)−Wg2(v)) = 0, render-

ing |Hh(u,v)| ∈
{

0, 2−12
r+t1

2 · 2 s2 +1
}

=
{

0, 2
n+t1

2

}
, or (Wg1(v) +Wg2(v)) = 0

and (Wg1(v)−Wg2(v)) = ±2
s
2 +1, rendering |Hh(u,v)| ∈

{
0, 2−12

r+t2
2 · 2 s2 +1

}
={

0, 2
n+t2

2

}
. If t1 6= t2, we have the cases (both occurring, since g1 6= g2, g2),

|Hh(u,v)| ∈
{

0, 2
n+t1

2

}
and |Hh(u,v)| ∈

{
0, 2

n+t2
2

}
. Consequently, |Hh(u,v)| ∈{

0, 2
n+t1

2 , 2
n+t2

2

}
. Certainly, if t1 = t2 = t, then |Hh(u,v)| ∈

{
0, 2

n+t
2

}
, so h is

t-gplateaued. Claim (i) and (ii) are shown.
Next, assume that f1, f2 are landscape functions, and pick u ∈ supp(Hf1) ∩

supp(Hf2), and so, |Hf1(u)| = 2
p
2 `1, |Hf2(u)| = 2

q
2 `2, for some p, q ∈ Z and

odd `1, `2. The argument above shows that either |Hh(u,v)| ∈
{

0, 2
s+p
2 `1

}
, or

|Hh(u,v)| ∈
{

0, 2
s+q
2 `2

}
(both occurring since g1 6= g2, g1 6= g2). If u ∈ supp(Hf1)∩

supp(Hf2) (respectively, u ∈ supp(Hf1)∩ supp(Hf2)), then |Hh(u,v)| ∈
{

0, 2
s+p
2 `1

}
(respectively, |Hh(u,v)| ∈

{
0, 2

s+q
2 `2

}
). If u ∈ supp(Hf1) ∩ supp(Hf2), then

|Hh(u,v)| = 0. Therefore, if

{|Hf1(u)|}u∈supp(Hf1 ) = {2
p1
2 `11, . . . , 2

pt
2 `1t},

{|Hf2(u)|}u∈supp(Hf2 ) = {2
q1
2 `21, . . . , 2

qf
2 `2f},

then {|Hh(u,v)|}u,v = {0, 2
s+p1

2 `11, . . . , 2
s+pt

2 `1t, 2
s+q1

2 `21, . . . , 2
s+qf

2 `2f}.

Remark 2. One might critique the previous theorem that in some of its claims
we “recursively” construct landscape functions from landscape functions, with no
initial conditions. However, Proposition 1 shows that one can increase the lengths
of the landscape functions, and so we can easily start from generalized bent or,
more generally, from existing constructions of gplateaued, thus obtaining, using our
theorem, either higher lengths or different levels landscape functions, albeit with no
precise controlled on the spectra.

5. Characterizing gplateaued functions in terms of second derivatives
and fourth moments.

Theorem 5.1. Let f : Fn2 → Z2k , k ≥ 2, s be an integer with 0 ≤ s ≤ n, and

ζ := ζ2k = e
2π i

2k be the primitive root of 1. Then f is s-gplateaued if and only if for
all x ∈ Fn2 , ∑

u,b∈Fn2

ζDbDuf(x) = 2n+s.

Furthermore, f is s-gplateaued if and only if∑
d∈Fn2

|Hf (d)|4 = 23n+s.
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Proof. Let x ∈ Fn2 be fixed. First observe that∑
u,b∈Fn2

ζDbDuf(x) = 2n+s is equivalent to

F1(x) :=
∑

u,b∈Fn2

ζf(x⊕u⊕b)−f(x⊕b)−f(x⊕u) = 2n+sζ−f(x) =: F2(x),

which is further equivalent to their Fourier transforms being equal at all u ∈ Fn2 ,
that is, ∑

x,u,b∈Fn2

ζf(x⊕u⊕b)−f(x⊕b)−f(x⊕u)(−1)u·x = 2n+s
∑
x∈Fn2

ζ−f(x)(−1)u·x. (6)

We compute the two expressions in (6), separately. Now considering, the left hand
side of (6), and setting u1 := x⊕ u,b1 := x⊕ b, we obtain∑

x,u,b∈Fn2

ζf(x⊕u⊕b)−f(x⊕b)−f(x⊕u)(−1)u·x

=
∑

x,u1,b1∈Fn2

ζf(x⊕u1⊕b1)−f(b1)−f(u1)(−1)u·x

=
∑

b1∈Fn2

ζ−f(b1)(−1)u·b1

∑
u1∈Fn2

ζ−f(u1)(−1)u·u1

·
∑
x∈Fn2

ζf(x⊕u1⊕b1)(−1)u·(x⊕b1⊕u1)

=Hf (u) Hf (u)Hf (u) = |Hf (u)|2Hf (u).

The right hand side of (6) can be written as

2n+s
∑
x∈Fn2

ζ−f(x)(−1)u·x =2n+sHf (u),

therefore (6) is equivalent to |Hf (u)|2Hf (u) = 2n+sHf (u), that is, |Hf (u)| ∈
{0, 2(n+s)/2}. Our first claim is shown.

Next, using [19, Theorem 1], we compute∑
u,b∈Fn2

ζDbDaf(x) =
∑

u,b∈Fn2

ζf(x⊕u⊕b)−f(x⊕b)−f(x⊕u)+f(x)

=
∑
u∈Fn2

ζf(x)−f(x⊕u)
∑
b∈Fn2

ζf(x⊕u⊕b)−f(x⊕b)

c:=x⊕b
↓
=

∑
u∈Fn2

ζf(x)−f(x⊕u)
∑
c∈Fn2

ζf(c⊕u)−f(c)

=
∑
u∈Fn2

ζf(x)−f(x⊕u)Cf (u), since Cf is always real

= 2−n
∑
u∈Fn2

ζf(x)−f(x⊕u)
∑
d∈Fn2

|Hf (d)|2(−1)u·d

= 2−n
∑
d∈Fn2

|Hf (d)|2
∑
u∈Fn2

ζf(x)−f(x⊕u)(−1)u·d
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= 2−n
∑
d∈Fn2

|Hf (d)|2ζf(x)(−1)x·d
∑
c∈Fn2

ζ−f(c)(−1)c·d

= 2−n
∑
d∈Fn2

|Hf (d)|2ζf(x)(−1)x·dHf (d).

Thus,

22n+s =
∑

x,u,b∈Fn2

ζDbDuf(x) = 2−n
∑

x,d∈Fn2

|Hf (d)|2Hf (d)ζf(x)(−1)x·d

= 2−n
∑
d∈Fn2

|Hf (d)|2Hf (d)
∑
x∈Fn2

ζf(x)(−1)x·d = 2−n
∑
d∈Fn2

|Hf (d)|4,

and the second claim is shown.

Our next corollary (see [1] for the classical counterpart) is immediate since a
generalized bent function corresponds to a 0-gplateaued function.

Corollary 2. A function f ∈ GBqn, q = 2k, is generalized bent if and only if∑
u,b∈Fn2

ζDbDuf(x) = 2n if and only if
∑

d∈Fn2
|Hf (d)|4 = 23n.
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