208 research outputs found

    X-ray computed tomography

    Get PDF
    X-ray computed tomography (CT) can reveal the internal details of objects in three dimensions non-destructively. In this Primer, we outline the basic principles of CT and describe the ways in which a CT scan can be acquired using X-ray tubes and synchrotron sources, including the different possible contrast modes that can be exploited. We explain the process of computationally reconstructing three-dimensional (3D) images from 2D radiographs and how to segment the 3D images for subsequent visualization and quantification. Whereas CT is widely used in medical and heavy industrial contexts at relatively low resolutions, here we focus on the application of higher resolution X-ray CT across science and engineering. We consider the application of X-ray CT to study subjects across the materials, metrology and manufacturing, engineering, food, biological, geological and palaeontological sciences. We examine how CT can be used to follow the structural evolution of materials in three dimensions in real time or in a time-lapse manner, for example to follow materials manufacturing or the in-service behaviour and degradation of manufactured components. Finally, we consider the potential for radiation damage and common sources of imaging artefacts, discuss reproducibility issues and consider future advances and opportunities

    Quantitative interior x-ray nanotomography by a hybrid imaging technique

    Full text link
    Hierarchical structures appear often in life and materials sciences, and their characterization profits greatly from imaging methods that allow seamless probing of various length scales without sacrificing image quality. X-ray tomography is particularly adept at probing 3D structures; however, zooming in on a region of interest results in a loss of quantitativeness of image contrast and suffers from artifacts unless a priori knowledge or assumptions about the sample are used. Here, we demonstrate a hybrid technique that exploits a micrometer-resolution overview to realize ab initio nanoscale interior tomography with quantitative contrast. In a study of avian eggshell, a model for bionanoporous materials, our approach reveals a complex arrangement of vesicles with sizes ranging from hundred nanometers to a few micrometers. We anticipate that such an approach can be widely adopted and benefited from at synchrotron and laboratory sources, for instance, where such zooming capabilities are already present or can be readily realized

    New Dimensions in Catalysis Research with Hard X‐Ray Tomography

    Get PDF
    The structure and function of solid catalysts are inseparably linked at length scales from nm to cm and beyond. Hard X-ray tomography offers unique potential for spatially-resolved characterization by combining flexible spatial resolution with a range of chemical contrasts. However, the full capabilities of hard X-ray tomography have not been widely explored in the catalysis community. This review highlights modern advances in hard X-ray tomography using synchrotron radiation. Case studies from model to technical scale illustrate the bright future of X-ray tomography in catalysis research

    Three-dimensional magnetization structures revealed with X-ray vector nanotomography

    Get PDF
    In soft ferromagnetic materials, the smoothly varying magnetization leads to the formation of fundamental patterns such as domains, vortices and domain walls<sup>1</sup>. These have been studied extensively in thin films of thicknesses up to around 200 nanometres, in which the magnetization is accessible with current transmission imaging methods that make use of electrons or soft X-rays. In thicker samples, however, in which the magnetization structure varies throughout the thickness and is intrinsically three dimensional, determining the complex magnetic structure directly still represents a challenge<sup>1, 3</sup>. We have developed hard-X-ray vector nanotomography with which to determine the three-dimensional magnetic configuration at the nanoscale within micrometre-sized samples. We imaged the structure of the magnetization within a soft magnetic pillar of diameter 5 micrometres with a spatial resolution of 100 nanometres and, within the bulk, observed a complex magnetic configuration that consists of vortices and antivortices that form cross-tie walls and vortex walls along intersecting planes. At the intersections of these structures, magnetic singularities—Bloch points—occur. These were predicted more than fifty years ago<sup>4</sup> but have so far not been directly observed. Here we image the three-dimensional magnetic structure in the vicinity of the Bloch points, which until now has been accessible only through micromagnetic simulations, and identify two possible magnetization configurations: a circulating magnetization structure<sup>5</sup> and a twisted state that appears to correspond to an ‘anti-Bloch point’. Our imaging method enables the nanoscale study of topological magnetic structures<sup>6</sup> in systems with sizes of the order of tens of micrometres. Knowledge of internal nanomagnetic textures is critical for understanding macroscopic magnetic properties and for designing bulk magnets for technological applications<sup>7</sup>

    ANALIZA PROCESÓW DEGRADACJI I PRZEPŁYWU GRANULATU Z WYKORZYSTANIEM OBRAZOWANIA METODĄ PROMIENI X

    Get PDF
    This paper reviews the work that has been done in the past 10 years at the Lodz University of technology about the visualization and the quantification of phenomena related to degradation processes (i.e. stress corrosion cracking in stainless steel, fatigue crack in titanium alloys) in engineering materials as well as granular flow in silos using X-ray imaging (i.e. radiography and (micro)tomography). Besides presenting the experimental protocols, the paper also presents the image processing strategies that have been applied to enable the extraction of characteristic parameters from the volumetric images.Artykuł przedstawia przegląd prac badawczych przeprowadzonych w ostatnich 10 latach w Politechnice Łódzkiej, dotyczących wizualizacji oraz analizy ilościowej zjawisk mających miejsce w procesie degradacji materiałów (tj. korozji naprężeniowej stali nierdzewnej, pęknięcia stopów tytanu) oraz przepływu materiałów sypkich w silosach z wykorzystaniem obrazowania metodami opartymi na promieniowaniu X (tzn. radiografii oraz (micro)tomografii). Oprócz przedstawienia metodologii pomiaru, zostały również opisane metody przetwarzania obrazów, pozwalające na wyznaczenie charakterystycznych parametrów badanych procesów z obrazów wolumetrycznych.&nbsp

    Morphological characterisation of unstained and intact tissue microarchitecture by x-ray computed micro- and nano-tomography

    Get PDF
    Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons

    4D nanoimaging of early age cement hydration.

    Get PDF
    Despite a century of research, our understanding of cement dissolution and precipitation processes at early ages is very limited. This is due to the lack of methods that can image these processes with enough spatial resolution, contrast and field of view. Here, we adapt near-field ptychographic nanotomography to in situ visualise the hydration of commercial Portland cement in a record-thick capillary. At 19 h, porous C-S-H gel shell, thickness of 500 nm, covers every alite grain enclosing a water gap. The spatial dissolution rate of small alite grains in the acceleration period, ∼100 nm/h, is approximately four times faster than that of large alite grains in the deceleration stage, ∼25 nm/h. Etch-pit development has also been mapped out. This work is complemented by laboratory and synchrotron microtomographies, allowing to measure the particle size distributionswith time. 4D nanoimagingwill allow mechanistically study dissolution-precipitation processes including the roles of accelerators and superplasticizers.Financial support from PID2019-104378RJ-I00 research grant, which is co-funded by FEDER, is gratefully acknowledged. ToScA (United Kingdom) is gratefully acknowledged for awarding Jim Elliott Award to Shiva Shirani, I.R.S. is thankful for funding from PTA2019-017513–I

    3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy

    Get PDF
    AbstractMechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems

    Correlative multi-scale imaging of shales: A review and future perspectives

    Get PDF
    As the fastest growing energy sector globally, shale and shale reservoirs have attracted the attention of both industry and scholars. However, the strong heterogeneity at different scales and the extremely fine-grained nature of shales makes macroscopic and microscopic characterization highly challenging. Recent advances in imaging techniques have provided many novel characterization opportunities of shale components and microstructures at multiple scales. Correlative imaging, where multiple techniques are combined, is playing an increasingly important role in the imaging and quantification of shale microstructures (e.g. one can combine optical microscopy, scanning electron microscopy/transmission electron microscopy and X-ray radiography in 2D, or X-ray computed tomography and electron microscopy in 3D). Combined utilization of these techniques can characterize the heterogeneity of shale microstructures over a large range of scales, from macroscale to nanoscale (c. 100-10-9 m). Other chemical and physical measurements can be correlated to imaging techniques to provide complementary information for minerals, organic matter and pores. These imaging techniques and subsequent quantification methods are critically reviewed to provide an overview of the correlative imaging workflow. Applications of the above techniques for imaging particular features in different shales are demonstrated, and key limitations and benefits summarized. Current challenges and future perspectives in shale imaging techniques and their applications are discussed

    Adorym: A multi-platform generic x-ray image reconstruction framework based on automatic differentiation

    Full text link
    We describe and demonstrate an optimization-based x-ray image reconstruction framework called Adorym. Our framework provides a generic forward model, allowing one code framework to be used for a wide range of imaging methods ranging from near-field holography to and fly-scan ptychographic tomography. By using automatic differentiation for optimization, Adorym has the flexibility to refine experimental parameters including probe positions, multiple hologram alignment, and object tilts. It is written with strong support for parallel processing, allowing large datasets to be processed on high-performance computing systems. We demonstrate its use on several experimental datasets to show improved image quality through parameter refinement
    corecore