2,849 research outputs found

    Society for Cardiovascular Magnetic Resonance/European Society of Cardiovascular Imaging/American Society of Echocardiography/Society for Pediatric Radiology/North American Society for Cardiovascular Imaging Guidelines for the Use of Cardiac Magnetic Resonance in Pediatric Congenital and Acquired Heart Disease: Endorsed by The American Heart Association

    Get PDF
    Cardiovascular magnetic resonance has been utilized in the management and care of pediatric patients for nearly 40 years. It has evolved to become an invaluable tool in the assessment of the littlest of hearts for diagnosis, pre-interventional management and follow-up care. Although mentioned in a number of consensus and guidelines documents, an up-to-date, large, stand-alone guidance work for the use of cardiovascular magnetic resonance in pediatric congenital 36 and acquired 35 heart disease endorsed by numerous Societies involved in the care of these children is lacking. This guidelines document outlines the use of cardiovascular magnetic resonance in this patient population for a significant number of heart lesions in this age group and although admittedly, is not an exhaustive treatment, it does deal with an expansive list of many common clinical issues encountered in daily practice

    What can computed tomography and magnetic resonance imaging tell us about ventilation?

    Get PDF
    This review provides a summary of pulmonary functional imaging approaches for determining pulmonary ventilation, with a specific focus on multi-detector x-ray computed tomography and magnetic resonance imaging (MRI). We provide the important functional definitions of pulmonary ventilation typically used in medicine and physiology and discuss the fact that some of the imaging literature describes gas distribution abnormalities in pulmonary disease that may or may not be related to the physiological definition or clinical interpretation of ventilation. We also review the current state-of-the-field in terms of the key physiological questions yet unanswered related to ventilation and gas distribution in lung disease. Current and emerging imaging research methods are described, including their strengths and the challenges that remain to translate these methods to more wide-spread research and clinical use. We also examine how computed tomography and MRI might be used in the future to gain more insight into gas distribution and ventilation abnormalities in pulmonary disease

    Placental vascular alterations are associated with early neurodevelopmental and pulmonary impairment in the rabbit fetal growth restriction model

    Get PDF
    Fetal growth restriction is one of the leading causes of perinatal mortality and morbidity and has consequences that extend well beyond the neonatal period. Current management relies on timely delivery rather than improving placental function. Several prenatal strategies have failed to show benefit in clinical trials after promising results in animal models. Most of these animal models have important developmental and structural differences compared to the human and/or are insufficiently characterized. We aimed to describe placental function and structure in an FGR rabbit model, and to characterize the early brain and lung developmental morbidity using a multimodal approach. FGR was induced in time-mated rabbits at gestational day 25 by partial uteroplacental vessel ligation in one horn. Umbilical artery Doppler was measured before caesarean delivery at gestational day 30, and placentas were harvested for computed microtomography and histology. Neonates underwent neurobehavioral or pulmonary functional assessment the day after delivery, followed by brain or lung harvesting, respectively. Neuropathological assessment included multiregional quantification of neuron density, apoptosis, astrogliosis, cellular proliferation, and oligodendrocyte progenitors. Brain region volumes and diffusion metrics were obtained from ex-vivo brain magnetic resonance imaging. Lung assessment included biomechanical tests and pulmonary histology. Fetal growth restriction was associated with labyrinth alterations in the placenta, driven by fetal capillary reduction, and overall reduced vessels volume. FGR caused altered neurobehavior paralleled by regional neuropathological deficits and reduced fractional anisotropy in the cortex, white matter, and hippocampus. In addition, FGR kittens presented functional alterations in the peripheral lung and structurally underdeveloped alveoli. In conclusion, in a uteroplacental insufficiency FGR rabbit model, placental vascular alterations coincide with neurodevelopmental and pulmonary disruption

    The use of chest magnetic resonance imaging in interstitial lung disease: A systematic review

    Get PDF
    Thin-slices multi-detector computed tomography (MDCT) plays a key role in the differential diagnosis of interstitial lung disease (ILD). However, thin-slices MDCT has a limited ability to detect active inflammation, which is an important target of newly developed ILD drug therapy. Magnetic resonance imaging (MRI), thanks to its multi-parameter capability, provides better tissue characterisation than thin-slices MDCT. Our aim was to summarise the current status of MRI applications in ILD and to propose an ILD-MRI protocol. A systematic literature search was conducted for relevant studies on chest MRI in patients with ILD. We retrieved 1246 papers of which 55 original papers were selected for the review. We identified 24 studies comparing image quality of thin-slices MDCT and MRI using several MRI sequences. These studies described new MRI sequences to assess ILD parenchymal abnormalities, such as honeycombing, reticulation and ground-glass opacity. Thin-slices MDCT remains superior to MRI for morphological imaging. However, recent studies with ultra-short echo-time MRI showed image quality comparable to thin-slices MDCT. Several studies demonstrated the added value of chest MRI by using functional imaging, especially to detect and quantify inflammatory changes. We concluded that chest MRI could play a role in ILD patients to differentiate inflammatory and fibrotic changes and to assess efficacy of new ILD drugs

    Evaluating Small Airways Disease in Asthma and COPD using the Forced Oscillation Technique and Magnetic Resonance Imaging

    Get PDF
    Obstructive lung disease, including asthma and chronic obstructive pulmonary disease (COPD), is characterized by heterogeneous ventilation. Unfortunately, the underlying structure-function relationships and the relationships between measurements of heterogeneity and patient quality-of-life in obstructive lung disease are not well understood. Hyperpolarized noble gas MRI is used to visualize and quantify ventilation distribution and the forced oscillation technique (FOT) applies a multi-frequency pressure oscillation at the mouth to measure respiratory impedance to airflow (including resistance and reactance). My objective was to use FOT, ventilation MRI and computational airway tree modeling to better understand ventilation heterogeneity in asthma and COPD. FOT-measured respiratory system impedance was correlated with MRI ventilation heterogeneity and both were related to quality-of-life in asthma and COPD. FOT-measurements and model-predictions of reactance and small-airways resistance were correlated in asthma and COPD respectively. This study is the first to demonstrate the relationships between FOT-measured impedance, MRI ventilation heterogeneity, and patient quality-of-life

    Outcome late after repair of tetralogy of Fallot

    Get PDF

    Imaging the right heart: the use of integrated multimodality imaging

    Get PDF
    During recent years, right ventricular (RV) structure and function have been found to be an important determinant of outcome in different cardiovascular and also pulmonary diseases. Currently, echocardiography and cardiac magnetic resonance (CMR) imaging are the two imaging modalities most commonly used to visualize the RV. Most structural abnormalities of the RV can be reliably described by echocardiography but due its complex geometrical shape, echocardiographic assessment of RV function is more challenging. Newer promising echocardiographic techniques are emerging but lack of validation and limited normal reference data influence their routine clinical application. Cardiac magnetic resonance is generally considered the clinical reference technique due to its unlimited imaging planes, superior image resolution, and three-dimensional volumetric rendering. The accuracy and reliability of CMR measurements make it the ideal tool for serial examinations of RV function. Multidetector computed tomography (MDCT) plays an important role in the diagnosis of pulmonary emboli but can also be used for assessing RV ischaemic disease or as an alternative for CMR if contra-indicated. Radionuclide techniques have become more obsolete in the current era. The different imaging modalities should be considered complimentary and each plays a role for different indication

    Current and future role of echocardiography in arrhythmogenic right ventricular dysplasia/cardiomyopathy

    Get PDF
    Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited progressive cardiomyopathy, clinically characterized by ventricular arrhythmias and increased risk of sudden cardiac death. Echocardiography has a role in the diagnosis and prognosis of ARVD/C. However, in the current era of magnetic resonance imaging (MRI), the role of echocardiography in ARVD/C patients and family member screening is subject to debate. Relatively novel echocardiographic techniques, such as three-dimensional right ventricular (3D-RV) imaging and tissue deformation imaging, may improve the diagnostic and prognostic performance of echocardiography in these patients. 3D-RV imaging provides more insights on RV anatomy and global function compared to conventional echocardiography. Subtle RV regional wall motion abnormalities, and mechanical dyssynchrony, are accurately measured by tissue deformation imaging. Several studies suggest an incremental value of novel echocardiographic parameters in addition to conventional measurements. Moreover, new parameters indicating subtle RV dysfunction, and mechanical dyssynchrony, are of predictive value and could help in risk stratification of ARVD/C patients. New robust parameters, derived from 3D-RV echocardiography and RV tissue deformation imaging, in combination with established conventional parameters, suggest that there is a current and future role for echocardiography in ARVD/C supplementing MRI
    corecore