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Abstract 

Obstructive lung disease, including asthma and chronic obstructive pulmonary disease 

(COPD), is characterized by heterogeneous ventilation. Unfortunately, the underlying 

structure-function relationships and the relationships between measurements of heterogeneity 

and patient quality-of-life in obstructive lung disease are not well understood.  Hyperpolarized 

noble gas MRI is used to visualize and quantify ventilation distribution and the forced 

oscillation technique (FOT) applies a multi-frequency pressure oscillation at the mouth to 

measure respiratory impedance to airflow (including resistance and reactance).  My objective 

was to use FOT, ventilation MRI and computational airway tree modeling to better understand 

ventilation heterogeneity in asthma and COPD.  FOT-measured respiratory system impedance 

was correlated with MRI ventilation heterogeneity and both were related to quality-of-life in 

asthma and COPD. FOT-measurements and model-predictions of reactance and small-airways 

resistance were correlated in asthma and COPD respectively.  This study is the first to 

demonstrate the relationships between FOT-measured impedance, MRI ventilation 

heterogeneity, and patient quality-of-life. 

Keywords 

Obstructive Lung Disease, Asthma, Chronic Obstructive Pulmonary Disease, Forced 

Oscillation Technique, Lung Biomechanics, Magnetic Resonance Imaging, Hyperpolarized 
3He, Pulmonary Imaging, Imaging Biomarkers 



 

ii 

 

Co-Authorship Statement 

The following thesis contains one manuscript that has been submitted for publication.  As the 

first author of this manuscript, I was a significant contributor to all aspects of the study as well 

as the manuscript preparation and submission.  Specific tasks included: organization and 

management of patient study visits, acquisition of pulmonary function test and noble gas MRI 

data.  Following data acquisition, tasks included: image analysis, statistical analysis and 

interpretation, clinical/physiological interpretation of the data, drafting and final approval of 

the manuscript.  Dr. Grace Parraga, as the Principal Investigator and Supervisor, provided 

ongoing guidance and was responsible for study conception and experimental design, data 

analysis and interpretation, drafting and approval of the manuscripts.  She was also the 

guarantor of integrity of the data and responsible for Good Clinical Practice.  Patient study 

visits and acquisition of pulmonary function data was performed under the supervision of 

Sandra Blamires and Lyndsey Reid-Jones.  Polarization of the 3He gas was performed by 

Andrew Wheatley, Dante PI Capaldi and me.  MRI acquisition was performed by Trevor 

Szekeres and David Reese.  Listed below are the specific contributions for all other co-authors 

for the manuscript contained in this thesis.  

Chapter 2 is an original research article entitled “Oscillometry and Pulmonary MRI of 

Ventilation Heterogeneity in Obstructive Lung Disease: Relationship to Quality of Life and 

Disease Control” and it was submitted to the Journal of Applied Physiology on November 15, 

2017.  The manuscript was co-authored by Heather M Young, Dr. Fumin Guo, Rachel L Eddy, 

Dr. Geoffrey Maksym, and Dr. Grace Parraga.  As first author I collected, analyzed and 

interpreted the data, and I prepared the written manuscript.  Dr. Fumin Guo assisted with data 

analysis and interpretation and Rachel L Eddy assisted with data collection and interpretation.  Dr. 

Geoffrey Maksym assisted with data interpretation and revisions to the manuscript.   



 

iii 

 

Acknowledgments 

I would like to first thank my supervisor, Dr. Grace Parraga.  You provided me with countless 

opportunities to conduct innovative research, to work directly with patients and to develop 

many new skills that will benefit me for years to come.  You pushed me to work hard, be 

assertive and to push myself to do my very best work. The experience you provided to me as 

a trainee has been invaluable.   

I would also like to thank the members of my advisory committee: Dr. Geoffrey Maksym, Dr. 

Maria Drangova, and Dr. Hanif Ladak.  Your support and advice made my research stronger, 

and I am grateful for the time you took to provide feedback and direction as I navigated my 

degree. 

To all the other members of the Parraga lab, you are an outstanding team and your support 

made this work possible.  After all, team work makes the dream work!  To Lyndsey Reid-

Jones, thank you for your clinical insight and for reminding me that everyone just wants to 

have a conversation like a human.  To Dave Reese, thank you for your help and co-operation 

with all of our imaging needs, and for your commitment to helping us acquire the best images 

we can.  To Dr. Alexei Ouriadov, thank you for teaching me about diffusion imaging and about 

MRI physics.  To Khadija, thank you for being such a strong role model and for teaching me 

so much when I joined the lab.  You provided endless patience and support, and it made a 

world of difference in tackling the steep learning curve I faced.  To Fumin, thank you for your 

help with image processing and for the evening chats at Robarts.  To Dante, thank you for 

teaching me about polarization, image processing and MRI.  Thank you for the many 

interesting conversations about MRI, research, careers and more.  To Rachel, thank you for 

teaching me about working with patients and collecting data, and for your critical eye for my 

writing.  To Eric, thank you for your encouragement, for teaching me about diffusion imaging 

and for your bad jokes- they still made me laugh.  To Andrew, thank you for the positive 

attitude you bring every day and for asking questions that make me think more deeply about 

my research.  Thank you to the other past and present members of the lab who help make our 

research possible: Anurag Bhalla, Sarah Svenningsen, Andrea Kassay, Robert DiCesare and 

Matthew Schweers. 



 

iv 

 

There are many other students and staff at Robarts who I want to thank for their support.  

Olivia, thank you for sharing in lots of good food and conversations about MRI, research, 

sanity, and your latest crazy book.  Megan, thanks for the great conversations over coffee and 

lunch.  Thanks also to Amanda, Amy, Dickson, Derek, Tomi, and my fellow Robarts trainees.  

The strong research community at Robarts is an important part of what made this experience 

so memorable. 

Finally, I want to express my gratitude to Brandon, my family and my friends.  Brandon, thank 

you for your partnership in facing new challenges, and for always providing a positive attitude 

and perspective.  To my parents, thank you for the constant support of my goals, and for 

checking in to make sure I am eating well.  To Sarah, thanks for the visits and all our laughs.  

The support of family and friends has made this possible. 



 

v 

 

Table of Contents 

Abstract ............................................................................................................................... i	

Co-Authorship Statement ................................................................................................ ii	

Acknowledgments ............................................................................................................ iii	

Table of Contents .............................................................................................................. v	

List of Tables .................................................................................................................. viii	

List of Figures ................................................................................................................... ix	

List of Appendices ............................................................................................................ xi	

List of Abbreviations ...................................................................................................... xii	

CHAPTER 1 ...................................................................................................................... 1	

1	 INTRODUCTION ........................................................................................................ 1	

1.1	 Motivation and Rationale ..................................................................................... 1	

1.2	 Lung Structure, Function, and Biomechanics .................................................... 4	

1.2.1	 The Conducting Airways ............................................................................ 4	

1.2.2	 The Peripheral Airways and Alveoli ........................................................... 5	

1.2.3	 Ventilation ................................................................................................... 7	

1.3	 Pathophysiology of Obstructive Lung Disease ................................................... 7	

1.3.1	 Asthma ........................................................................................................ 8	

1.3.2	 COPD .......................................................................................................... 8	

1.4	 Clinical Measurements of Lung Function .......................................................... 9	

1.4.1	 Spirometry ................................................................................................. 10	

1.4.2	 Plethysmography ....................................................................................... 11	

1.4.3	 Diffusing Capacity of the Lung ................................................................ 12	

1.4.4	 Disease Control and Quality of Life ......................................................... 12	

1.4.5	 Obstructive Lung Disease ......................................................................... 12	



 

vi 

 

1.5	 Emerging Clinical Measurements of Lung Function ...................................... 13	

1.5.1	 Mechanical Properties of the Lung ........................................................... 13	

1.5.2	 The Forced Oscillation Technique ............................................................ 14	

1.6	 Imaging Measurements of Lung Structure and Function .............................. 16	

1.6.1	 Structural and Anatomical Imaging .......................................................... 17	

1.6.2	 Functional Imaging ................................................................................... 20	

1.6.3	 Inhaled Noble Gas Magnetic Resonance Imaging .................................... 21	

1.7	 Biomechanical Modeling of the Lung ............................................................... 24	

1.7.1	 Inverse Modeling ...................................................................................... 24	

1.7.2	 Forward Modeling .................................................................................... 26	

1.7.3	 Pulmonary Imaging and Biomechanical Modeling .................................. 27	

1.8	 Thesis Objectives and Hypotheses ..................................................................... 28	

1.9	 References ............................................................................................................ 29	

CHAPTER 2 .................................................................................................................... 36	

2	 OSCILLOMETRY AND PULMONARY MRI OF VENTILATION 
HETEROGENEITY IN OBSTRUCTIVE LUNG DISEASE: RELATIONSHIP 
TO QUALITY OF LIFE AND DISEASE CONTROL .......................................... 36	

2.1	 Introduction ......................................................................................................... 36	

2.2	 Materials and Methods ....................................................................................... 38	

2.2.1	 Study Design ............................................................................................. 38	

2.2.2	 Image Acquisition and Analysis ............................................................... 39	

2.2.3	 Computational Modeling .......................................................................... 40	

2.2.4	 Statistics .................................................................................................... 42	

2.3	 Results .................................................................................................................. 43	

2.3.1	 Participant Demographics ......................................................................... 43	

2.3.2	 FOT and 3He MRI VDP Relationships ..................................................... 46	

2.3.3	 Relationships with Disease Control and Quality of Life Scores ............... 48	



 

vii 

 

2.3.4	 Experimental and Model Impedance Measurements ................................ 52	

2.4	 Discussion ............................................................................................................ 52	

2.4.1	 FOT and 3He MRI Ventilation Heterogeneity .......................................... 53	

2.4.2	 FOT, Disease Control and Quality of Life ................................................ 54	

2.4.3	 Measured Impedance and Image Functional Modeling ............................ 55	

2.4.4	 Limitations ................................................................................................ 55	

2.4.5	 Conclusions ............................................................................................... 56	

2.5	 References ............................................................................................................ 57	

CHAPTER 3 .................................................................................................................... 64	

3	 CONCLUSIONS AND FUTURE DIRECTIONS ................................................... 64	

3.1	 Overview and Research Questions .................................................................... 64	

3.2	 Summary and Conclusions ................................................................................ 64	

3.3	 Limitations ........................................................................................................... 65	

3.4	 Future Directions ................................................................................................ 66	

3.4.1	 FOT Biomarkers in Severe Asthmatics Undergoing Bronchial 
Thermoplasty ............................................................................................ 66	

3.4.2	 FOT Biomarkers and Higher-Order Image Features in 3He MRI ............. 67	

3.4.3	 Image Functional Modeling Incorporating all MRI Ventilation ............... 68	

3.5	 Significance and Impact ..................................................................................... 68	

3.6	 References ............................................................................................................ 70	

4	 APPENDIX ................................................................................................................. 71	



 

viii 

 

List of Tables 

Table 1-1: GOLD COPD Severity Grade ................................................................................. 9	

Table 2-1: Participant Demographics ..................................................................................... 43	

Table 4-1. Pulmonary Imaging-Derived Biomechanical Measurements ................................ 88	

Table 4-2. Recent Pulmonary Imaging Studies of Biomechanics .......................................... 93	

 



 

ix 

 

List of Figures 

Figure 1-1 Global Deaths Due to Chronic Respiratory Disease ............................................... 1	

Figure 1-2 Schematic of the Human Airway Tree .................................................................... 6	

Figure 1-3: Small Airway Pathology in Asthma and COPD .................................................... 9	

Figure 1-4 Pulmonary Function Testing: Spirometry ............................................................. 10	

Figure 1-5 Pulmonary Function Testing: Plethysmography ................................................... 11	

Figure 1-6 Frequency Dependence of the Forced Oscillation Technique .............................. 16	

Figure 1-7 Computed Tomography of COPD and Asthma .................................................... 19	

Figure 1-8 3He Ventilation MRI of COPD and Asthma ......................................................... 23	

Figure 1-9: Linear Single Compartment Model of the Lung .................................................. 25	

Figure 2-1: Pipeline for Co-Registration of MRI Ventilation Defects with Computational 

Airway Tree Model. ................................................................................................................ 42	

Figure 2-2: VDP and FOT-measured Resistance and Reactance in Asthma, COPD and Ex-

Smoker Subgroups. ................................................................................................................. 45	

Figure 2-3: Relationships for VDP and FOT measurements .................................................. 47	

Figure 2-4: Differences in FEV1, VDP and FOT Impedance Stratified by Disease Control. . 49	

Figure 2-5: Relationships between FOT-measured Resistance and MRI VDP with Quality of 

Life. ......................................................................................................................................... 51	

Figure 2-6. Relationships for Model-predicted and FOT-measured Respiratory System 

Impedance. .............................................................................................................................. 52	

Figure 4-1. Respiratory System Mechanics and Function ...................................................... 86	

Figure 4-2. Pulmonary Imaging Biomarkers of Lung Biomechanics ..................................... 88	



 

x 

 

Figure 4-3. Mouse Lung Micro-CT ........................................................................................ 96	

Figure 4-4 Synchrotron Radiation X-ray Micro-CT of Mouse Lung Microstructure 

Deformation. ........................................................................................................................... 98	

Figure 4-5. Diffusion-Weighted 3He and 129Xe MRI Mean Linear Intercept and ADC Maps

............................................................................................................................................... 100	

Figure 4-6. Diffusion-weighted MRI Derived Regional Pressure-Volume Curves ............. 102	

Figure 4-7. Clinical CT Measurements of Pulmonary Structure and Function .................... 103	

Figure 4-8. Mapping the Distance between Healthy and Emphysematous Voxels .............. 105	

Figure 4-9. Static Breath-hold 3He and 129Xe Ventilation MRI ............................................ 107	

Figure 4-10. Ventilation MRI and CT of Obstructive Lung Disease ................................... 111	

Figure 4-11. MR and CT Imaging of Lung Structure and Function ..................................... 113	

 

 



 

xi 

 

List of Appendices 

Appendix A – Asthma Control Questionnaire ........................................................................ 71	

Appendix B – Asthma Quality of Life Questionnaire ............................................................ 73	

Appendix C – St. George’s Respiratory Questionnaire .......................................................... 79	

Appendix D – MRI and CT Lung Biomarkers: Towards an In Vivo Understanding of Lung 

Biomechanics .......................................................................................................................... 85	

Appendix E – Permission for Reproduction of Scientific Articles ....................................... 126	

Appendix F – Health Science Research Ethics Board Approval Notices ............................. 128	

Appendix G – Curriculum Vitae ........................................................................................... 131	

 



 

xii 

 

List of Abbreviations 
AATD Alpha-1 Antitrypsin Deficiency 
ACQ Asthma Control Questionnaire 
AQLQ Asthma Quality of Life Questionnaire 
BPD Bronchopulmonary Dysplasia 
COPD Chronic Obstructive Pulmonary Disease 
CT Computed Tomography 
DLCO Diffusing Capacity of the Lung for Carbon Monoxide 
ES Ex-Smoker 
FEV1 Forced Expiratory Volume in 1 Second 
FOT Forced Oscillation Technique 
FRC Functional Residual Capacity 
FVC Forced Vital Capacity 
1H Proton 
3He Helium-3 
HU Hounsfield Unit 
IC Inspiratory Capacity 
MRI Magnetic Resonance Imaging 
mSv Milisieverts 
RA950 Relative Area Under -950 HU 
Raw Airways Resistance 
PFT Pulmonary Function Test 
Rb Rubidium 
Rrs Respiratory System Resistance 
RV Residual Volume 
SGRQ St. George’s Respiratory Questionnaire 
TCV Thoracic Cavity Volume 
TLC Total Lung Capacity 
TV Tidal Volume 
UTE Ultra-short Echo Time 
VC Vital Capacity 
VDP Ventilation Defect Percent 
129Xe Xenon-129 
Xrs Respiratory System Reactance 
Zrs Respiratory System Impedance 
  

 

 



 

1 

 

CHAPTER 1 

1 INTRODUCTION 
Ventilation heterogeneity is a hallmark characteristic of obstructive lung diseases such as 
asthma and chronic obstructive pulmonary disease (COPD), and is related to airflow 
obstruction.  In this thesis, the nature of ventilation heterogeneity is studied using 
measurements of biomechanical properties of the lung, pulmonary imaging and 
computational modeling of lung mechanics to better understand how these measures are 
related to patient outcomes. 

1.1 Motivation and Rationale 

Obstructive lung disease creates a tremendous global burden; chronic obstructive 

pulmonary disease (COPD) affects 175 million people worldwide and was responsible for 

3.2 million deaths in 2015.1  Asthma is the most prevalent chronic respiratory disease 

worldwide, affecting 358 million people, and was responsible for 0.4 million deaths in 

2015.1  Among all chronic respiratory diseases, obstructive lung disease is a leading cause 

of global death, as shown in Figure 1-1.  

 
Figure 1-1 Global Deaths Due to Chronic Respiratory Disease 
This graph shows the number of deaths globally from chronic lung disease in 2015 using 
a logarithmic scale.  On the left, COPD (n=3.2 million) and asthma (n=0.4 million) are the 
leading causes of death among all chronic respiratory diseases. Adapted from GBD 2015 
Chronic Respiratory Disease Collaborators, Lancet (2017).1 
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Obstructive lung disease also presents a significant health care burden in Ontario and across 

Canada.  In 2011, the total provincial healthcare costs of COPD and asthma were $1.8 

billion and $3.9 billion respectively.2  A significant portion of the health care costs from 

obstructive lung disease are related to exacerbations, or acute worsening of symptoms in 

asthma or in COPD patients.  Exacerbations may lead to patients seeking emergency room 

care, or being admitted to the hospital.  The health care cost of an exacerbation is variable, 

but hospitalization is known to contribute the most to exacerbation costs.3  As such, 

hospitalization is a very important metric to monitor when assessing management of COPD 

in the Canadian health care system.  Across Canada, COPD was the leading cause of 

hospitalization (except for childbirth) in 2015 and admitted patients remained in hospital 

for over a week on average.4  A 2008 study found that the average cost of a hospital stay 

for a COPD exacerbation was nearly $10 000 per patient, with the total cost of COPD 

hospitalizations estimated to be $1.5 billion per year.5  Poorly controlled asthma also leads 

to high healthcare costs, in particular through emergency department (ED) visits.  A recent 

survey showed that 93% of Canadians do not have their asthma under control,6 and asthma 

attacks were the cause of over 70,000 ED visits in 2015.7  These ED visits and admissions 

to hospital are large contributors to the economic burden of obstructive lung disease.  This 

overwhelming economic and health care burden reflect limitations in the treatment and 

management of obstructive lung disease.   In part, this is due to our limited understanding 

of the mechanisms leading to ventilation heterogeneity in these patients, and how these 

mechanisms are related to patient outcomes.   

Obstructive lung disease is characterized by airflow obstruction that is clinically evaluated 

using measures of airflow taken at the mouth.8  Unfortunately, these airflow measurements 

are known to correlate weakly with patient outcomes9 in part because they are global 

measures of a heterogeneous disease, and in part because they are not sensitive to changes 

in the periphery of the lung.  The forced oscillation technique (FOT) evaluates the 

biomechanical properties of the lung by applying a multi-frequency pressure wave at the 

mouth during passive breathing.10  This technique is easily and inexpensively applied in a 

clinical setting and can provide information about obstruction in the lung periphery, 
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making it a very promising tool to improve clinical evaluation and, hopefully, management 

of disease.   

Pulmonary imaging tools are used clinically and in research to image lung structure and 

function in obstructive lung disease.  Using inhaled hyperpolarized 3He MRI, researchers 

capture spatial ventilation information and quantify ventilation abnormalities that are 

known to be related to disease severity11, 12 and control.13  However, the structural 

determinants of these abnormalities are not yet fully understood.14  Imaging measurements 

of ventilation can be combined with measurements using other techniques (such as FOT) 

to study structure-function relationships more deeply.   

Computational models are used to study biomechanical properties of the lung and the 

relationships between lung structure and function.15-17  Modeling studies are advantageous 

in that they allow the researcher to specify the parameters of the system, and predict the 

function of the system based on these known parameters.  Researchers are then able to 

study with high precision how the model responds to a known input.  Computational 

modeling has been used to study the effects of the number, severity and spatial distribution 

of airway closure on respiratory system impedance.  Recent studies have used functional 

imaging data to guide the spatial distribution of ventilation abnormalities, and studied how 

this is reflected by structural changes to the model.18, 19  If biomechanical measurements 

are acquired using FOT in these same patients, the measured impedance can be compared 

to model predictions.  Unfortunately, only one small study to date has combined functional 

pulmonary imaging, FOT, and biomechanical modeling in asthma.20  Accordingly, there is 

a need for larger studies that combine these three modalities to more deeply study structure-

function relationships in obstructive lung disease.21, 22 

This thesis focuses on the application of FOT, pulmonary MRI and computational lung 

modeling in asthma and COPD.  This chapter provides the background knowledge relevant 

the original research presented in Chapter 2.  It begins with an overview of the respiratory 

system’s structure and function and the biomechanical processes behind normal respiration 

(1.2), followed by the pathophysiology of obstructive lung disease (1.3).  The established 

clinical measurements of lung function are addressed next (1.4) followed by a discussion 
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of FOT as an emerging clinical tool (1.5) and current structural and functional pulmonary 

imaging techniques used in clinic and research (1.6).  The final tool to be introduced is 

biomechanical modeling (1.7).  Finally, the specific hypotheses and objectives of this thesis 

are introduced (1.8). 

1.2 Lung Structure, Function, and Biomechanics 

The respiratory system is a complex biomechanical system that serves primarily to deliver 

oxygenated gas to the bloodstream and to remove carbon dioxide.  The system is composed 

of the oral and nasal cavities, the lungs (bronchi, bronchioles, alveolar ducts and alveoli), 

the diaphragm and the chest wall.  The lungs themselves are composed of many soft tissue 

components including the airways, parenchymal tissue and vasculature.23  These structures 

function together to bring oxygenated gas through the airways into the alveoli to participate 

in gas exchange and then expel the carbon-dioxide rich gas to the surroundings. This 

section will outline in detail the structures involved in this process, and how they function 

as part of this system.    

1.2.1 The Conducting Airways 

From the oral and nasal cavities, gas travels through a series of branching airways as it is 

carried into the lungs.  The entire branching structure is shown in Figure 1-2.  From the 

mouth gas first reaches the trachea, a large hollow tube with cartilage rings for structural 

support. The trachea branches to form the two main bronchi, which are also supported by 

cartilage and feed the left and right lungs.  Once in the lungs, these main bronchi continue 

an asymmetrical dichotomous branching pattern.  The bronchi, which transport gas 

throughout the lung, decrease in diameter as they branch while growing geometrically in 

number.  After approximately four branching generations, these bronchi branch into 

bronchioles.  Bronchioles are structurally different from bronchi in that they are no longer 

structurally supported by cartilage.  Instead, these small airways are tethered to the 

surrounding parenchymal tissue for support.  The airway walls of the bronchi are made of 

soft tissue, blood vessels and smooth muscle fibres which are wrapped circumferentially 

around the airway to control airway diameter.23  Bronchioles continue the same branching 

pattern as the bronchi for approximately 16 branching generations.  The airways from the 
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trachea to the terminal bronchioles are collectively called the conducting zone of the lung 

as their primary function is to conduct gas from the environment to the alveoli for gas 

exchange.  In these airways, airflow is restricted by the airway diameter and is well 

described by Womersley flow as described in Section 1.7.2.  It should be noted that the 

conducting airways are larger in diameter, but there are far fewer of them than small 

peripheral airways.  As a result, the total cross-sectional diameter is smaller and the 

resistance to airflow is much larger in the conducting airways than in the peripheral 

airways.  The terminal airway resistance is negligible in comparison, and therefore does 

not contribute to traditional measurements of airflow at the mouth which are discussed in 

Section 1.4.1.   

1.2.2 The Peripheral Airways and Alveoli 

The peripheral airways begin at the bronchioles and after approximately 16 branching 

generations, the terminal bronchioles branch into the respiratory bronchioles.  This marks 

the start of the respiratory zone, so called because this is the generation at which alveoli 

are present and gas exchange starts to occur.23  The respiratory zone makes up the final 7 

generations of the airway tree.  As shown in Figure 1-2, the respiratory bronchioles branch 

into the alveolar ducts, which are smaller in diameter and are surrounded by more alveoli.  

The ducts then branch into the terminal airways, called the alveolar sacs.  The alveolar sacs 

are approximately 0.2mm in diameter, and are surrounded completely by alveoli to 

maximize the surface area available for gas exchange.  The airways in the respiratory zone 

have a very small diameter, but there are many more of them than in earlier branching 

generations.  As a result, they have a very large cross-sectional area and gas travels through 

them by diffusion rather than flow.   

Alveoli are small sac structures, approximately 300µm in diameter.23  They line the 

terminal airways in clusters, maximizing the surface area that is available for gas exchange.  

While these structures are very small, there are approximately 480 million alveoli in the 

average adult lung,24 creating a very large functional surface area of approximately 85 

square metres.23  Alveoli do not have any supporting muscle tissue, but are also tethered to 

the surrounding parenchymal tissue for structural support.  They are extremely thin (0.2-
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0.3µm)23 in order to maximize diffusion of oxygen and carbon dioxide between the alveoli 

and the surrounding capillaries.   

Due to the dichotomous branching structure of the airway tree, 50% of the total lung 

resistance originates from the large, central airways and only 10% of the resistance from 

the small airways (i.e., <2 mm in diameter). In passive breathing, the remaining 40% of the 

resistance derives from the mechanical properties of the lung tissue.25  For this reason, the 

peripheral airways are referred to as the ‘quiet’26 or ‘silent’27 zone, referring to the fact that 

COPD is known to originate in the small airways and terminal airspaces28 but these early 

stages are not reflected in clinical measurements such as spirometry.  As a bulk airflow 

measurement, spirometry is largely sensitive to the central airways that contribute the most 

resistance and relatively insensitive to changes in the small airways.   

 

Figure 1-2 Schematic of the Human Airway Tree 
The conducting airways are made up of the first 16 generations of branching airways, and 
are responsible for conducting gas to the alveoli for gas exchange.  The final 7 branching 
generations make up the respiratory zone, and are lined with alveoli for gas exchange.   
Adapted from West, JB, Respiratory Physiology: The Essentials, Ninth Edition.23 and 
Lumb, AB, Nunn’s Applied Respiratory Physiology.29 
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1.2.3 Ventilation 

Ventilation is the flow of gas into (or out of) the lungs, achieved by the biomechanical 

process of breathing.  This complex process occurs by action of the intercostal muscles, 

abdominal muscles and the diaphragm.  To inhale, these muscles all contract, bringing the 

diaphragm down and the ribs outward.  This motion decreases the pressure in the thoracic 

cavity, causing gas to flow inward through the airways.23  As previously mentioned, the 

motion of the gas is best described by flow in the conducting airways, and by diffusion in 

the respiratory bronchioles and alveolar ducts where the combined cross-sectional area is 

very large.  Airflow mechanics in the airways will be discussed in detail in Section 1.7.2.  

Once the oxygenated gas reaches the alveoli, gas exchange occurs; oxygen diffuses into 

the capillaries through the thin membrane of the airway wall and carbon dioxide 

simultaneously diffuses out of the blood and into the alveoli.  Expiration is a passive 

manoeuvre, during which the intercostal muscles, abdominal muscles and diaphragm relax.  

Recoil forces in the lung cause the diaphragm to rise and the ribs contract, causing the 

pressure in the thoracic cavity to increase and gas to flow back out of the lungs through the 

airways, carrying with it the carbon dioxide to be removed from the body.23  It is important 

to note that ventilation and gas exchange are dependent on both the central and peripheral 

airways.  If any obstruction causes resistance in the airways to increase, the same pressure 

differential will produce a lower rate of airflow, impeding the lung in performing its 

functional task. 

1.3 Pathophysiology of Obstructive Lung Disease 

Obstructive lung disease is characterized by persistent airflow limitation measured at the 

mouth.  Importantly, the obstruction to airflow is not uniformly distributed throughout the 

lungs but rather, it is heterogeneous.  Airflow obstruction can be caused by changes in the 

airway lumen, the airway wall or the peribronchial region, leading to the ventilation 

heterogeneity that is characteristic of obstructive lung disease.  This thesis will focus on 

the two dominant forms of obstructive lung disease: asthma and COPD. 
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1.3.1 Asthma 
Asthma is a chronic respiratory condition characterized by variable airflow limitation 

accompanied by shortness of breath, wheeze and a feeling of tightness in the chest;30 these 

symptoms are usually reversible using an inhaled bronchodilator.  Asthma can begin in 

childhood or adulthood, and affects many people throughout their adult lives.  Airflow 

limitation in asthma is caused by narrowing of the airway lumen due to increased smooth 

muscle responsiveness, inflammation, and abnormal mucus production as illustrated in 

Figure 3.31  This narrowing has been observed in both the central and peripheral airways 

in histopathological studies.32  Airway inflammation is a multi-cellular process, but is 

characterized by eosinophils in asthma. The increased presence eosinophils in the airway 

walls promotes airway constriction, increasing the effect of smooth muscle constriction 

and decreasing the tethering forces of the parenchyma.33  Increased smooth muscle mass 

in the airways is common in asthma and also contributes to thickening of the airway wall 

and narrowing of the lumen.  Often the airway smooth muscle is hyperresponsive, meaning 

it excessively constricts in response to stimuli, causing severe airway narrowing and 

increased resistance to airflow.  These cases of sudden acute airway obstruction are referred 

to as an asthma attack.   

1.3.2 COPD 
Chronic obstructive pulmonary disease (COPD) is characterized by chronic airflow 

obstruction that cannot be reversed using a bronchodilator.  COPD develops over a 

patient’s life as a result of exposure to cigarette smoke (the primary risk factor for COPD),34 

environmental irritants, or due to genetic conditions such as alpha-1 antitrypsin 

deficiency.35  Exposure to these factors causes an inflammatory response in the small 

airways and alveoli that is associated with the destruction of alveolar tissue over time.  This 

process leads to airflow limitations due to a loss of elastic recoil in the lung tissue,36, 37 

small airway collapse due to loss of parenchymal tethering31 and inflammation in the small 

airways.  Obstruction can also occur in the small airways as a result of excessive mucous 

production, as illustrated in Figure 3.  
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Figure 1-3: Small Airway Pathology in Asthma and COPD 

Small airway changes from a healthy lung (left) to asthma (middle) and COPD (right). In 
asthma, thickening and contraction of the smooth muscle (A), as well as inflammation and 
thickening of the airway wall (B) contribute to airway narrowing (C).  In COPD, there is 
inflammation and thickening of the airway wall (B), as well as an accumulation of excess 
mucus in the lumen (D).  Adapted from Hogg JC, Lancet (2004)38 and Saetta M et al. Eur 
Respir J (2001).33 
 
The severity of airflow obstruction as measured by spirometry (described in detail in 

Section 1.4.1) has been standardized and is used to classify COPD subjects into four 

severity grades39 as shown in Table 1-1. 

Table 1-1: GOLD COPD Severity Grade 

If FEV1/FVC < 70%: 

GOLD I  Mild FEV1 > 80%pred 

GOLD II  Moderate 50% ≤ FEV1 > 80%pred 

GOLD III  Severe 30% ≤ FEV1 > 50%pred 

GOLD IV  Very Severe FEV1 < 30%pred 
FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity 

1.4 Clinical Measurements of Lung Function 

Clinically, there are several tests used to evaluate a patient’s lung function for diagnosis or 

monitoring of obstructive lung disease.  Physicians primarily rely on pulmonary function 

tests (PFTs) to evaluate lung function in the clinic.  These tests involve a variety of 

breathing manoeuvers and measurements made at the mouth that provide information about 
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how the lungs are functioning as a whole. This section introduces spirometry, 

plethysmography, diffusing capacity of the lung for carbon monoxide and clinical 

questionnaires used to measure disease control and quality of life.  Measurements of 

volume and airflow are often presented as a percent of the predicted value (%pred) based on 

the patient’s age, sex, height, and ethnicity.40  

1.4.1 Spirometry 

Spirometry can be performed using a handheld spirometer like the one shown on the left 

in Figure 1-4.  To perform spirometry, the patient wears nose plugs and begins by breathing 

normally into the mouthpiece.  After approximately 4 normal breaths, the patient is asked 

to fully inhale until they reach total lung capacity.  Then, they sharply and forcefully exhale 

using maximum effort, and continue to exhale until they cannot expel any more air.8  Gas 

volume and flow are measured using the spirometer throughout this test, and a 

representative volume-time curve is shown on the right in Figure 1-4.  Two measurements 

are derived from this manoeuver: the forced expiratory volume in 1 second (FEV1), which 

is the maximum volume of gas that can be expired in the first second of expiration; and the 

forced vital capacity (FVC), which is the total volume of gas that the patient can expire 

from full inspiration.8   

 
Figure 1-4 Pulmonary Function Testing: Spirometry 
Above is a handheld spirometer used to conduct spirometry (left) and the resulting volume-
time curve that is used to determine FEV1 and FVC (right).  
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1.4.2 Plethysmography 

Plethysmography is a technique used to measure lung volumes using Boyle’s law.41  In a 

seated position inside a sealed chamber, the patient is asked to perform a series of breathing 

manoeuvres including tidal breathing, full inspiration, and full expiration.  Pressure is 

measured in the chamber throughout this test, while the volume of the sealed chamber is 

constant.  The lung volumes are calculated from these measurements using Boyle’s law.  

The volume-time curve from this test and the measured lung volumes are illustrated in 

Figure 1-5. The volumes of interest that are calculated from this test are: functional residual 

capacity (FRC), inspiratory capacity (IC), tidal volume (TV), residual volume (RV), vital 

capacity (VC) and total lung capacity (TLC).41  FRC is the remaining volume in the lungs 

after a normal exhalation, IC is the maximum volume of gas that can be inhaled from FRC, 

TV is the volume of gas inhaled/exhaled during tidal breathing, RV is the volume of gas 

remaining in the lungs after maximum exhalation, VC is the volume of gas between total 

inspiration and total expiration and TLC is the maximum volume of the lungs at full 

inspiration.41   

 

 
Figure 1-5 Pulmonary Function Testing: Plethysmography 
Above is a whole body plethysmograph (left) and a sample volume-time curve used to 
determine lung volumes (right). 
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1.4.3 Diffusing Capacity of the Lung 

The diffusing capacity of the lung for carbon monoxide (DLCO) is used to evaluate 

pulmonary function for patients with emphysema.42  The test is used to determine the extent 

to which the destruction of alveolar tissue has reduced the capacity for oxygen to diffuse 

into the bloodstream.  To perform this test, the patient exhales to RV and inhales a 

specialized test gas containing a low concentration of CO (0.3%) to TLC.  The patient then 

holds their breath for 8 seconds, allowing the CO to diffuse into the bloodstream, and 

exhales through the mouthpiece.  The concentration of CO in the exhaled gas is measured, 

and compared to the known concentration in the inhaled gas to determine how much 

diffused into the blood.42   

1.4.4 Disease Control and Quality of Life 

Asthma control is measured using the Asthma Control Questionnaire (ACQ),43 and quality 

of life is measured using the Asthma Quality of Life Questionnaire (AQLQ).44  The ACQ 

is designed to collect information about how patients perceive their symptoms, how their 

symptoms limit their activities and how often they rely on a bronchodilator.  It is designed 

to determine if a patient is achieving the primary goal of asthma treatment- control of the 

disease.  The AQLQ asks more specific questions regarding symptoms and how a patient 

feels about them.  It evaluates how specific symptoms may affect the activities in the 

patient’s day to day life in order to quantify patient health-related quality of life. 

In COPD, quality of life is measured using the St. George’s Respiratory Questionnaire 

(SGRQ).45  This single questionnaire collects information about patient symptoms, 

activity, and impacts on daily life.  From the complete questionnaire, scores are calculated 

for each component, as well as an overall score.  The ACQ, AQLQ and SGRQ were 

developed as sensitive standardized methods to quantify quality of life for patients with 

asthma or COPD for use in scientific studies or clinical care. 

1.4.5 Obstructive Lung Disease 

The tests described above are all sensitive to the pathology of obstructive lung disease 

described in Section 1.3.  Spirometry measurements such as FEV1 and FVC are reduced in 
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obstructive lung disease due to airway obstruction and early airway closure in expiration.  

This leads to an increase in RV and TLC due to premature airway closure and, in COPD, 

loss of elastic recoil.  COPD patients also have decreased DLCO as a result of alveolar 

destruction.   

1.5 Emerging Clinical Measurements of Lung Function 

1.5.1 Mechanical Properties of the Lung 

As previously described, the respiratory system functions through the mechanical 

expansion and contraction of the thoracic cavity which causes oscillations in the pressure 

inside, resulting in flow through the airways, or ventilation.  In order to better understand 

the process of ventilation, one must understand the relationships between oscillations of 

pressure and airflow in the lung.  

The respiratory system can be modeled as a linear dynamic system, which means that it is 

described by linear differential equations and it evolves in time.  This is explained in greater 

detail in Section 1.7.  Pressure (P) and flow (the time-derivative of volume, V) are related 

by a quantity called respiratory system impedance (Zrs).46  Impedance is a complex value, 

as it describes the relationship for both amplitude and phase between P and V as shown in 

the linear differential equation below (Equation 1.1). 

	 𝑃(𝑓) = 	𝑍)*(𝑓)𝑉(𝑓)	 (1.1)	

The real and imaginary components of impedance are called the respiratory system 

resistance (Rrs) and reactance (Xrs), respectively, as expressed in Equation 1.2.   

	 𝑍)*(𝑓) = 	𝑅)*(𝑓) + 𝑖𝑋)*(𝑓)	 (1.2)	

Rrs and Xrs are intrinsic properties of the system that affect how the system responds to 

input.  Rrs is related to airway lumen calibre; as airways narrow their resistance to airflow 

increases.46  This can occur in obstructive lung disease as a result of inflammation, smooth 

muscle constriction, or excessive mucus production as explained in Section 1.3.  Xrs is 

related to elastic properties of the tissue, although the exact property being measured is 
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dependent on the frequency at which the measurement is made.  At low frequencies, Xrs 

has a negative value and reflects elastic reactance.  At the resonant frequency, where Xrs is 

equal to zero, (fres < 10Hz for a healthy adult) the elastic and inertial forces are equal and 

opposite, and pressure and airflow are perfectly in phase.  For f > fres, Xrs is positive and 

reflects the inertial reactance of the tissue.10, 47  Inflammatory processes that occur in both 

asthma and COPD can decrease the elasticity of lung tissue, and this change is measured 

by Xrs.   

In obstructive lung disease, both resistance and reactance of the respiratory system are 

increased.  Resistance increases as a result of airway obstruction, and the frequency 

dependence of resistance increases with heterogeneous obstruction.  Reactance is increased 

due to inflammation in the airways and surrounding tissue, which decreases tissue 

elasticity.  In order to measure these changes in the mechanical properties of the lung in 

obstructive lung disease, one must measure the pressure and flow of gas in the lungs at 

some known frequency.  One way to do this is to apply a pressure wave (at one or many 

frequencies) at the mouth, and measure pressure and airflow in response to this input.  This 

method is known as the forced oscillation technique (FOT).   

1.5.2 The Forced Oscillation Technique 

The application of pressure oscillations to probe the mechanical properties of the lung 

originated with Dubois et al. over sixty years ago.48  Since this study, forced oscillations 

have been used widely in research, and clinical technology has been developed for the use 

of FOT.  Typically for this technique, a multi-frequency pressure waveform is applied at 

the mouth.  In this thesis, I will focus on the use of frequencies from 5Hz to 37Hz.  In 

Figure 1-6, a commercialized FOT device is shown that operates in this frequency range 

(Tremoflow, Thorasys, Montreal CA).  To acquire a measurement, the patient supports the 

soft tissue of their cheeks and chin with their hands to minimize the contribution of the 

upper airways.  The patient breathes normally into the mouthpiece while a multi-frequency 

pressure oscillation is applied by the device for approximately 10 seconds.  The FOT device 

measures the pressure and airflow in response to this stimulation to calculate Rrs and Xrs at 

each frequency.   
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Previous studies have investigated the frequency dependence of this signal and found that 

low-frequency oscillations probe the entire airway tree, while the higher frequency 

oscillations are damped out in the mid-range airways and are therefore not able to probe 

the small airways.47, 49  Based on these studies, specific frequencies have been identified 

for clinically relevant measurements; 5Hz is a low frequency known to probe the entire 

airway tree (including the small airways) and 19Hz is a high frequency oscillation that is 

known to probe the large airways, and is dampened out before reaching the small airways.  

This means that FOT can be used to measure the impedance related to the small airways in 

particular as shown in Equation 1.3, an important feature not present in many other PFTs.   

	 𝑅*0122 = 	𝑅)* 5 − 19𝐻𝑧 = 𝑅)* 5𝐻𝑧 − 𝑅)*(19𝐻𝑧)	 (1.3)	

As described in Equation 1.3, the frequency dependence of the FOT impedance signal can 

be used to identify the region in which resistance is elevated, in the central or peripheral 

airways as illustrated in Figure 1-6.  FOT has been used extensively to study various forms 

of lung disease including both obstructive and restrictive diseases, and while it is not able 

to distinguish between obstructive and restrictive disease,10 it is able to determine severity 

within obstructive lung disease.50, 51  

 



 

16 

 

 
Figure 1-6 Frequency Dependence of the Forced Oscillation Technique 
A multi-frequency pressure wave is produced and travels through the airways during 
passive breathing. The low-frequency component (5Hz) is able to travel through the entire 
airway tree, while the high-frequency component (19Hz) is damped out before reaching 
the peripheral airways. 

1.6 Imaging Measurements of Lung Structure and Function 

While PFTs provide measurements of lung function that are easily integrated into clinical 

workflows, they are limited by their global nature.  As discussed in Section 1.2.2, global 

measures such as spirometry are not sensitive to changes in the small airways because they 

contribute little to the overall resistance of the respiratory system.  While FOT is sensitive 

to the differences between central and peripheral airways, it is still not able to provide 

specific spatial information.  Pulmonary imaging has been developed to provide structural 

and functional information with high spatial and temporal resolution, providing a wealth 

of additional information about the regions of the lung that are affected by disease.  

Pulmonary imaging is also used in a variety of ways to study lung biomechanics, as is 

discussed in depth in Appendix D.  The anatomical and functional imaging methods 

discussed in this thesis include planar x-ray, computed tomography (CT), single photon 
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emission computed tomography (SPECT), positron emission tomography (PET) and 

magnetic resonance imaging (MRI).    

1.6.1 Structural and Anatomical Imaging 

Anatomical imaging is used to generate high-resolution structural images of the respiratory 

system in order to identify anatomical changes that occur in lung disease.  These changes 

may include changes to the airway structure, or changes to the density of the parenchymal 

tissue.  These changes are primarily measured using planar or CT x-ray imaging, but can 

also be measured using MRI.   

X-ray Imaging 

Planar x-ray imaging is the earliest developed and most common type of imaging acquired 

in lung disease.  X-rays were discovered by Wilhelm Röntgen in 1895, when he famously 

captured an x-ray image of his wife’s hand.  It is still widely used for chest and lung 

imaging because it is inexpensive, and requires a low radiation dose to acquire (0.01 

mSv).52  To generate these images, a cone-shaped beam of x-rays is directed at the patient’s 

chest.  Some of these x-rays will be absorbed by the body, and some will travel through 

the body and reach a detector on the other side which absorbs and measures them.  The 

number of absorbed (or attenuated) x-rays is dependent on the electron density of the tissue.  

For example, bones have high density and appear bright in an x-ray image, while gas inside 

the lungs has very low density and appears very dark in an x-ray image.  X-ray images can 

be used to detect changes in the shape of the lungs (indicative of gas trapping or 

emphysema)53 or structural changes to the airways.  In severe emphysema, the decreased 

density of the parenchymal tissue is also visible as a darker region in the image.54  Planar 

x-ray imaging is limited because it is a 2D projection of all the structures in the thoracic 

cavity, making it difficult to localize abnormalities.  This limitation was addressed by the 

development of 3-dimensional x-ray computed tomography (CT) imaging.   

Computed Tomography 

CT imaging was developed in the 1970s to generate 3-dimensional medical images.  The 

3D volume is computed from many x-ray images collected at different angles around the 
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patient.  The patient is positioned supine on the CT scanner bed, and passes through a 

donut-shaped scanner containing an x-ray source and a detector array positioned opposite 

to it.  The source and detector rotate around the patient, collecting multiple planar x-ray 

images.  Using computational reconstruction techniques including filtered back projection 

and iterative reconstruction, these images can be reconstructed into a 3-dimensional 

volume image.55  Each voxel in the image is a measurement of the tissue density normalized 

to the density of water using Hounsfield units (HU)56 as shown below in Equation 1.4.   

	 𝐻𝑜𝑢𝑛𝑠𝑓𝑖𝑒𝑙𝑑	𝑈𝑛𝑖𝑡 =
𝜇CD**EF − 𝜇G1CF)

𝜇G1CF)
1000	[𝐻𝑈]	 (1.4)	

Using CT imaging, much higher resolution and contrast images can be acquired than with 

planar x-ray alone.  CT can be used to visualize and measure various structural components 

of the lungs, and the structural changes that occur in lung disease.  Some of these structural 

features are shown in Figure 1-7.  For example, the voxel-wise density measured in the 

lung parenchyma can be used to identify healthy tissue and emphysematous tissue in 

COPD.  The value of -950 HU has been established to identify the threshold below which 

tissue has been subjected to destruction and is considered emphysematous (in an inspiration 

image).57  Using simple threshold methods, emphysematous tissue can be easily defined in 

an inspiration CT image in COPD.  This is quantified using the relative area of the density 

histogram below -950 HU (RA950).  Similarly, the -856 HU has been used as a threshold to 

identify trapped gas in an expiration image in either asthma or COPD and quantify it by 

the relative area below the density histogram below -856 HU (RA856).58  Emphysema, or 

airspace enlargement, are shown in representative CT images in Figure 1-7.   

Using specialized software (Pulmonary Workstation V.2.0. VIDA Diagnostics, Coralville, 

Iowa, USA) the airway tree can be segmented from a CT image, up to the 2mm airways.  

Representative airway trees for COPD and asthma are shown in Figure 1-7.  Using the 

segmented airway tree, the airway lumen and the airway wall thickness can be measured 

and compared to measurements derived from a healthy lung to determine the extent of 

airway narrowing.  For example, a recent study shown that there is increased heterogeneity 

in airway tone in asthma as compared to healthy subjects.59   
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Figure 1-7 Computed Tomography of COPD and Asthma 
Above are computed tomography (CT) images for COPD (top) and Asthma (bottom) with 
RA950 maps shown in yellow in the center and 3D renderings of the airway tree on the right.   

The radiation dose from a thoracic CT scan is approximately 7mSv, or approximately 2-3 

years of background radiation exposure.60  Recently, advancements in imaging technology 

have led to the development of low-dose and ultra-low dose acquisition procedures so that 

patients may one day have access to CT imaging with much lower radiation exposure.  

However, these techniques have not yet been clinically implemented and concerns remain 

about repeated CT imaging for patients with lung disease, especially for longitudinal 

monitoring.  In response to these concerns, there has been recent interest in advanced MRI 

acquisition methods to acquire structural images of the lung using MRI.    

Ultra-short Echo Time MRI 

Very low signal intensity is measured in the lung parenchyma with traditional MR methods 

in part because of the many air-tissue interfaces, which cause the transverse signal to decay 

very quickly (0.4-0.9ms).61, 62  In order to overcome this, the echo time (TE, the time 

between the RF excitation pulse and data acquisition) must be extremely short to acquire 
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signal from the parenchymal tissue before it decays.63, 64  Due to recent technological 

developments, TE of 0.03ms is now achievable and due to advanced image sampling and 

reconstruction techniques, UTE images of the entire lung volume can be acquired in a 

single breath-hold with minimal motion artifacts.65  UTE MR signal intensity is correlated 

with tissue density in COPD65 and asthma,66 and may be related to structural changes such 

as emphysema. 

1.6.2 Functional Imaging 

The primary function of the lung is ventilation; the delivery of oxygenated gas to the alveoli 

throughout the lung and the removal of carbon dioxide.23  In order to generate functional 

images of the lung, one must be able to image the distribution of inhaled gas.  In the last 

three decades, several techniques have been developed to acquire functional images of the 

lung using both contrast-enhanced and non-contrast enhanced methods.   

Non-Contrast Enhanced Functional Imaging 

Indirect measurements of lung function can be gathered from the changes in tissue density 

or tissue deformation measured using structural imaging.  This can be done by acquiring 

structural CT or MR images at multiple lung volumes, including full inspiration and full 

expiration.  Using deformable registration techniques, these images can be co-registered 

and by using the deformation field,67 or the voxel-wise changes in tissue density,68 the 

voxel-wise change in gas volume can be calculated as a surrogate measure of ventilation.69  

Using this technique, researchers are also able to use the deformation of the lung tissue to 

study its biomechanical properties.  This technique is the earliest application of medical 

imaging to study breathing and lung mechanics70, 71  and is discussed in further detail in 

Appendix D.  

Another non-contrast enhanced method for functional imaging is Fourier Decomposition 

(FD) MRI.  This technique, which has been developed over the past decade, is implemented 

by acquiring a time series of 1H MR images during tidal breathing.  These images are non-

rigidly co-registered, and represented as a voxel-wise time series of signal intensity values.  

The Fourier Transform is applied to each time series, and by measuring the amplitude of 
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the Fourier signal at the breathing frequency, one obtains the amplitude of the change in 

tissue density due to breathing.72  Similar to multi-volume CT methods, this method 

provides a surrogate measure of ventilation but does not subject patients to any ionizing 

radiation exposure.  This has been applied in COPD73 and asthma74 and is correlated with 

hyperpolarized gas MRI ventilation, which will be described in Section 1.6.3.  

Contrast-Enhanced Functional Imaging 

Ventilation can also be directly imaged using inhaled contrast agents.  This technique has 

been applied using many modalities, including MRI and nuclear imaging techniques such 

as single photon emission computed tomography (SPECT) and positron emission 

tomography (PET). In SPECT, patients inhale a radioactive tracer gas that emits a high 

energy photon (gamma ray) when it decays.  The emitted photons are collected at multiple 

angles around the patient and used to reconstruct the spatial distribution of the gas; this has 

been applied to study ventilation in obstructive lung disease.75-78  In PET, the tracer 

produces two simultaneous photons travelling antiparallel to each other that can also be 

used to reconstruct the spatial distribution of the inhaled tracer.17, 79  These methods are 

limited by the patient exposure to ionizing radiation, low spatial resolution and dependence 

on a cyclotron for isotope production.  This renders them inappropriate for some 

applications in obstructive lung disease, such as longitudinal monitoring.   

1.6.3 Inhaled Noble Gas Magnetic Resonance Imaging 

MRI is a promising technique for imaging lung function as it does not involve any exposure 

to ionizing radiation, and is therefore suitable for longitudinal studies.  However, MR 

imaging techniques are limited by the low proton density and many tissue-air interfaces in 

the lung that lead to extremely low MR signal in the parenchyma.  Inhaled noble gas MRI 

addresses this limitation by directly imaging the gas that is inhaled by the patient, rather 

than imaging the lung tissue.  To acquire these images, the patient inhales a known volume 

of hyperpolarized noble gas (approximately 5mL/kg body weight) and holds their breath 

for approximately 10-16 seconds while the image of the gas distribution is acquired.  These 

images are co-registered to anatomical MR images in order to identify the regions of the 
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patient’s lungs that are ventilated and, more importantly, the regions that are poorly 

ventilated.   

Hyperpolarization 

Hyperpolarized noble gas imaging is currently performed using one of two gases, helium-

3 (3He) and xenon-129 (129Xe). The first hyperpolarized gas image of the lung was 

generated in 1994 using 129Xe,80 and was shortly followed by images using 3He.81  3He was 

initially preferred for imaging due to the high signal-to-noise ratio that could be achieved.  

However, due to the limited supply and increasing price of 3He,82 there has been renewed 

interest in 129Xe for ventilation imaging in the future.   

An optical spin-exchange system is used to achieve hyperpolarization of a noble gas.  A 

circularly polarized laser at the wavelength corresponding to the electronic orbital 

transition energy of rubidium (Rb) is used to excite electrons of vaporized Rb (or another 

alkali metal).  The excited Rb vapor is contained in an optical cell that is also filled with 
3He/129Xe.  The Rb and 3He/129Xe atoms collide and by a process called the spin-spin 

interaction, angular momentum is transferred into the 3He/129Xe atom.  This increases the 

nuclear polarization of the unpaired nuclear proton.  The optical cell is maintained in a 

constant magnetic field so the polarized atoms will decay much more slowly to their ground 

state.  As collisions continue to occur, up to 45% of the gas can be polarized; at this point 

it is considered hyperpolarized.  This hyperpolarized gas has four orders of magnitude 

greater polarization than at thermal equilibrium (thermal polarization in a 3.0 Tesla 

magnetic field ≈ 10-5).83, 84   

Ventilation Imaging 

For the acquisition of ventilation images, the patient inhales a 1.0L volume of gas 

(approximately 25% hyperpolarized noble gas, 75% ultra-high purity nitrogen gas) while 

lying supine, and holds their breath for approximately 10-16 seconds as the image is 

acquired.85  The inhaled gas travels to all ventilated regions of the lung within this single 

breath hold, so in a healthy subject the ventilation is uniformly distributed throughout the 

lungs.  However, in poorly ventilated regions of the lung there are dark voids in the 



 

23 

 

ventilation image because very little hyperpolarized gas was able to enter.85, 86  These 

regions are called ventilation defects, and are shown in Figure 1-8 below. 

 

Figure 1-8 3He Ventilation MRI of COPD and Asthma 
Ventilation MRI of a healthy volunteer, a subject with COPD and an asthmatic subject.  
Hyperpolarized 3He MRI gas distribution (in cyan) is co-registered to 1H MRI of the thorax 
(in grey-scale). Dark regions in the image indicate ventilation defects. 

As shown by the ventilation defects in Figure 1-8, the distribution of hyperpolarized gas is 

heterogeneous in patients with obstructive lung disease.  In order to quantify these defects, 

the ventilation images are segmented and co-registered with the anatomical proton image.  

A k-means clustering algorithm is used to bin the ventilation into five clusters87 such that 

the lowest ventilation cluster corresponds to the background signal intensity, and is used 

to identify ventilation defects.  In order to quantify the defects in the whole lung, the 

ventilation defect volume (VDV) is normalized to the thoracic cavity volume (TCV); this 

measurement is called the ventilation defect percent (VDP) and is shown in Equation 1.5 

below.  

	 𝑉𝐷𝑃 =
𝑉𝐷𝑉
𝑇𝐶𝑉 ×100%	 (1.5)	

This measurement has been used to quantify ventilation heterogeneity in a variety of lung 

diseases, including asthma14 and COPD.88  The structural determinants of ventilation 

defects and their clinical consequences are still not fully understood,14 and studies of these 

are ongoing.  In asthma, recent work has shown that ventilation defects are related asthma 

control,13 and are spatially related to remodeled airways.14  In COPD, defects have been 
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shown to be related to exacerbations,89 and represent a mixed airways disease-emphysema 

phenotype.90  Hyperpolarized gas MRI has also been used to show treatment response in 

obstructive lung disease.91, 92  Together, these studies strongly suggest that ventilation 

heterogeneity measured by MRI is related to disease of the airways and airspaces.  In order 

to gain a deeper understanding of the small-scale structural changes associated with MRI 

ventilation defects, multi-modality studies are needed to probe ventilation heterogeneity 

and changes to the small airways, such as combining FOT measurements of small-airways 

resistance and MRI.   

1.7 Biomechanical Modeling of the Lung 

“A mathematical model is a set of equations that serve both as a precise statement of our 

assumptions about how the lung works mechanically and as a means of exploring the 

consequences of those assumptions.” Bates 2009.46 

As detailed in the previous sections, we can acquire a variety of functional and structural 

measurements that reflect changes to the lung tissue occurring in obstructive lung disease.  

However, because the functional unit of the lung is so small (≈300µm),23 current techniques 

lack the spatial resolution to image and study them directly.  Therefore, the relationships 

between structural and functional changes occurring in the small airways and alveoli are 

unclear.  Biomechanical modeling of the lung is used to probe these relationships, and can 

be divided into two categories, inverse modeling and forward modeling.   

1.7.1 Inverse Modeling 

Inverse modeling refers to the process of constructing a model of a system from 

measurements of inputs and outputs of the system.  In the case of the lungs, this refers to 

using measurements of respiratory system pressure and airflow (function) to model the 

mechanical properties of the lung tissue (structure).  Due to the limited number of distinct 

functional measurements available, inverse models are simplified models that specify only 

a few parameters of the system’s structure.  However, a good inverse model is able to 

effectively describe the overall behaviour of the system.  The simplest model of the lungs 

is the linear single compartment model.  While many higher-order models have been 
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developed, the linear single compartment model provides a surprisingly robust model of 

lung mechanics.  Rather than two lungs composed of millions of airways and alveoli, this 

model is composed of a single elastic compartment supplied by a single conduit as shown 

in Figure 1-9. The compartment has some variable pressure (P) and volume (V), and there 

is some flow of gas (V) resulting from a pressure differential across the conduit (ΔP).  These 

variables are dependent on the elastic properties of the compartment (E), and the resistance 

of the conduit (R).   

 

Figure 1-9: Linear Single Compartment Model of the Lung 
The mechanical properties of the lung can be estimated by a single elastic compartment 
with elastance E, supplied by a tube with resistance R.  Pel is the pressure in the elastic 
compartment, and ΔP is the pressure difference across the tube.  V is the volume of gas in 
the compartment, and V is the airflow into the tube. Adapted from Bates et al. 2009.46 

A linear system is one in which the dependent variable varies linearly with the independent 

variable when all other parameters are held constant; in this case the two variables (pressure 

and volume) are related through a linear differential equation by a quantity called 

impedance.  This impedance is complex, and is composed of resistance and reactance 

(which is related to elastance, as shown in Equation 1.7 below) as discussed in Section 1.5.  
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In deriving the relationship between pressure and volume, we assume that when elastance 

(E) is constant, Pel and V vary linearly (ie. Pel = EV). Similarly, we assume that when 

resistance is constant, the relationship between ΔP and 𝑉 is linear (ie ΔP = R𝑉).  ΔP and 

Pel must be combined in order to calculate pressure for the entire system (Equation 1.6). 

	 𝑃CP(𝑡) = 	𝐸𝑉(𝑡) + 𝑅𝑉(𝑡) + 𝑃R(𝑡)	 (1.6)	

Where P0 is the offset pressure, to account for the fact that the transpulmonary pressure 

(Ptp) is non-zero when V and V are zero due to the pressure of the pleural space.93  This 

equation is sometimes referred to as ‘the equation of motion of the lung’, as it is the 

fundamental equation describing the relationship between pressure and volume in the linear 

single-compartment model of the lung.46  While this is not an exact description of the 

behaviour of the lung, it forms a good approximation that is used widely in studies of lung 

mechanics, including in this thesis.  To show this, we apply the Fourier Transform to 

Equation 1.6, giving Equation 1.7.   

	 𝑃 𝑓 = 𝑅 −
𝑖𝐸
2𝜋𝑓 𝑉(𝑓)	 (1.7)	

The relationship between reactance and elastance is given in Equation 1.8. 

	 𝑋)* 𝑓 =
𝑖𝐸(𝑓)
2𝜋𝑓 	 (1.8)	

Using Equations 1.1, 1.7, and 1.8 we recover the equation for respiratory system impedance 

defined in Equation 1.2 that used in FOT to calculate Rrs and Xrs. 

1.7.2 Forward Modeling 

Forward modeling, otherwise known as simulation, involves devising a model with set 

parameters, and using this model to predict the output of the system.  In other words, this 

approach requires making a set of assumptions about the parameters of the system 

(structure), and using these parameters to predict the system’s behaviour (function). In 

mechanical modeling of the lungs, computational airway tree models with many branching 
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generations and alveolar compartments are used to predict the pressure or airflow response 

to a known stimulus.94  These models often also account for the mechanical properties of 

the upper airways and the chest wall.  In most studies, airflow is described by Womersley 

flow95 as shown in Equation 1.7.   

	 𝑍1 𝑓 = 	
𝑖2𝑓𝜌1D)𝑙1

𝑟1W
1 −

2𝐽Y 𝛼1 −𝑖
𝛼1 −𝑖𝐽R 𝛼1 −𝑖

[Y

	 (1.9)	

Where i is the unit imaginary number, f is the oscillation frequency in Hz, ρair is the density 

of air (1.16 kg/m3), la is the length and ra is the radius of the airway, J0 and J1 are the 

complex Bessel functions of order 0 and 1 respectively and αa is the Womersley number 

for the airway given by Equation 1.8: 

	 𝛼1 = 𝑟1
2𝜋𝜌1D)𝑓
𝜇1D)

		 (1.10)	

Where µair is the dynamic viscosity of humid air at 37 degrees C (1.85 x 10-5 Pa.s).  Elastic 

properties of the parenchymal tissue are also accounted for in many modeling studies.  

Using these properties of elasticity and airflow, as well as many other parameters including 

chest wall compliance and upper airway shunt,96 the impedance of the computational 

system can be estimated.   

1.7.3 Pulmonary Imaging and Biomechanical Modeling 

Forward models have been well developed and widely used to study lung mechanics in the 

past two decades.  Anatomically accurate computational models with up to 26 branching 

airway generations94 are used to study lung mechanics under a variety of conditions.  There 

has recently been increasing interest in incorporating spatial functional information from 

pulmonary imaging into computational modeling in order to more deeply understand the 

relationships between ventilation defects observed in obstructive lung disease and 

structural changes in the lung.  By incorporating imaging functional data into modeling 

studies, researchers can evaluate the effects of various known distributions of mechanical 
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changes throughout the lung in order to probe these relationships.  This has previously been 

applied in asthma, in an effort to understand the distribution of large and small airway 

closures that are involved in generating ventilation defects.18, 97  The combination of 

functional imaging and computational modeling presents many opportunities to explore 

more deeply the relationships between structure and function in obstructive lung disease.   

1.8 Thesis Objectives and Hypotheses 

In this thesis, I assessed MRI-measured ventilation defect percent, respiratory system 

impedance measured by the forced oscillation technique (FOT), patient quality of life and 

model-predicted respiratory system impedance in 100 obstructive lung disease patients.  

My objective was to evaluate the relationships between FOT-measured impedance and 

MRI-measured ventilation heterogeneity, as well as clinical measurements of patient 

quality of life.  I also compared FOT-measured impedance and the values predicted using 

patient-specific airway tree models.  I hypothesized that FOT-measured respiratory system 

impedance would be related to MRI ventilation heterogeneity and patient quality of life in 

asthma and COPD. Additionally, I hypothesized that measured and predicted impedance 

would be significantly correlated in all subjects.   

In Chapter 3, an overview and summary of the important findings and conclusions of 

Chapter 2 is provided.  The study specific and general limitations of this study will be 

discussed and some potential solutions.  The thesis concludes with an outline of future 

studies that can build on the work presented in this thesis.  
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CHAPTER 2 

2 OSCILLOMETRY AND PULMONARY MRI OF 
VENTILATION HETEROGENEITY IN 
OBSTRUCTIVE LUNG DISEASE: RELATIONSHIP TO 
QUALITY OF LIFE AND DISEASE CONTROL 

To better understand the relationships between FOT-measured respiratory system 
impedance, MRI ventilation defects and patient quality of life, we evaluated 100 patients 
with obstructive lung disease using 3He MRI, FOT, and quality of life and control 
questionnaires.  

The contents of this chapter were submitted to the Journal of Applied Physiology.  HM 
Young, F Guo, RL Eddy, GN Maksym, G Parraga. Oscillometry and Pulmonary MRI of 
Ventilation Heterogeneity in Obstructive Lung Disease: Relationship to Quality of Life and 
Disease Control. J Appl Physiol (Submitted November 15 2017). 

2.1 Introduction 

Ventilation heterogeneity is a hallmark characteristic of obstructive lung diseases such as 

asthma1-4 and chronic obstructive pulmonary disease (COPD)5, 6 and is related to disease 

symptoms and control.3, 6-8  Ventilation heterogeneity can be measured using a variety of 

techniques including multiple breath gas washout methods9-11 and pulmonary imaging.12-

16  Despite decades of research that focused on the quantification and development of our 

understanding of causes and clinical implications of ventilation abnormalities, many 

patients with obstructive lung disease and ventilation heterogeneity still have poor disease 

control and quality of life.17-20  This may be due in part, to the fact that the complex 

structural and biomechanical changes underlying ventilation heterogeneity are still not 

fully understood,21-23 including those contributed by airway abnormalities. 

The forced oscillation technique (FOT), first developed over 50 years ago,24 non-invasively 

probes the mechanical properties of the respiratory system (respiratory system impedance, 

Zrs) during quiet breathing by applying multi-frequency pressure oscillations at the mouth. 

The measured impedance reflects both resistance (Rrs) and reactance (Xrs) and is acquired 

at multiple frequencies to ascertain the frequency dependence of Rrs, which is believed to 

be related to small airway dysfunction.25  FOT has been extensively used to study patients 
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with COPD26-28 and asthma27-31 including the measurement of responses to 

bronchoconstriction in asthma30 and to bronchodilation.27, 28, 31  Previous studies have 

shown that both Rrs and Xrs are sensitive to heterogeneous airway narrowing in asthma32, 

33 but the exact location of this airway narrowing could not be identified.  On the other 

hand, hyperpolarized 3He MRI ventilation imaging has been used to identify the spatial 

location of ventilation abnormalities (or heterogeneity) in patients with asthma16, 21, 34-36 

and COPD.37-40  MRI ventilation defects reflect the severity of airflow obstruction34, 41  and 

respond to provocation (in asthma)15, 36, 42 and treatment.16, 43-45  In addition, MRI-derived 

ventilation heterogeneity was recently shown to be uniquely predictive of asthma control12 

and COPD exacerbations46.   

Computational airway modelling has also been used to study the relationship between 

airway caliber and ventilation heterogeneity.  Using an anatomical computational airway 

tree model,47 the caliber of the airway lumen can be manipulated to study the effects on 

respiratory impedance or ventilation distribution.  In some of these studies, the results 

suggested that airway narrowing must occur throughout the entire airway tree and in a 

heterogeneous fashion in order to replicate the respiratory impedance observed in 

asthma.25, 48, 49  In particular, modeling studies that incorporated ventilation data derived 

from positron emission tomography (PET) in asthmatics showed that airway narrowing 

near ventilation defects was not sufficient to replicate the impedance measured in 

participants.25, 48  Moreover, narrowing of the small airways was required to simulate 

impedance values observed in patients, as narrowing of large airways alone was not 

sufficient.49  Other modelling studies showed that ventilation abnormalities were positively 

correlated with increased Rrs
50 and that a large proportion of the small airways (over 75% 

in severe asthma) had to be narrowed in order for the model-predicted resistance and 

reactance to agree with measured values.51  A follow-up study used functional information 

derived from hyperpolarized 3He MRI in a model whereby airways that were spatially 

related to ventilation defects were narrowed to generate patient-specific predictions of 

impedance.52  Numerous studies have probed structure-function relationships in asthma 

using biomechanical models informed by 3He MRI,49, 52 PET25, 48 and single photon 

emission computed tomography (SPECT),14 but few have compared impedance predictions 
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to experimental FOT measurements in patients.  Some studies have acquired impedance 

measurements for incorporation in models48, 49, 53  and a single study in a small group of 

asthmatic patients combined image functional modelling for comparison with 

experimentally-measured impedance.14   

There is a clear need for multi-scale studies that combine functional lung imaging, 

computational airway models and experimental oscillometry measurements to provide a 

deeper understanding of the relationships between structure and function in obstructive 

lung disease. Ultimately, this should lead to an understanding of how disease control and 

quality of life can be improved in patients.54-57  Therefore, the objective of this work was 

to evaluate the relationships between ventilation heterogeneity measured using 

hyperpolarized 3He MRI and FOT, and to ascertain how these measures are related to 

disease control and quality of life in obstructive lung disease.  Our second objective was to 

use ventilation MRI to modify a computational airway tree model to generate patient-

specific predictions of respiratory impedance, and compare these predictions to FOT-

measured impedance.  We hypothesized that MRI ventilation defect percent (VDP) would 

be significantly related to FOT-measured respiratory impedance in patients with asthma 

and ex-smokers, and that both measurements would be related to quality of life and disease 

control in these patients. 

2.2 Materials and Methods 

2.2.1 Study Design 

All participants provided written informed consent to study protocols (NCT# 

NCT02351141, NCT02263794, NCT02279329) approved by the local research ethics 

board.  Participants between ages 18 to 70 years with a current diagnosis of asthma, and 

patients between ages 50 to 90 years with a history of smoking were recruited from a 

tertiary care center and evaluated using spirometry, plethysmography, FOT and pulmonary 

MRI in a single visit.  Ex-smokers with COPD were identified using the Global initiative 

for chronic Obstructive Lung Disease (GOLD) criteria.58  Disease control was evaluated in 

asthmatics using the Asthma Control Questionnaire (ACQ59 with permission) and in ex-
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smokers by monitoring exacerbation events requiring hospitalization.  The number of 

exacerbations requiring hospitalization was determined using patient hospital records 

during the 2.5 year period following the visit to the research center.  Patient quality of life 

was evaluated using the Asthma Quality of Life Questionnaire (AQLQ60 with permission) 

for asthma, and the St. George’s Respiratory Questionnaire (SGRQ61 with permission) for 

ex-smokers.  For participants with asthma, all imaging and pulmonary function tests (PFTs) 

were acquired at baseline and within 1.5 hours after administration of four 100µg doses of 

Novo-Salbutamol HFA (Teva Novopharm Ltd., Toronto, Canada) using a metered dose 

inhaler with an AeroChamber Plus spacer (Trudell Medical International; London, 

Canada).  In this work, only baseline measurements were investigated.  For ex-smokers, 

all data were acquired within 1.5 hours after administration of four 100µg doses of 

salbutamol as described for asthmatic patients.  Spirometry and body plethysmography 

were performed according to the American Thoracic Society (ATS) guidelines62 using a 

whole-body system (MedGraphics Corporation, Saint Paul USA).  FOT measurements 

were acquired using the TremoFlo C-100 Airwave Oscillometry System (Thorasys, 

Montreal CA). 

2.2.2 Image Acquisition and Analysis 

MRI was performed on a whole body 3T system (MR750 Discovery, GEHC, Milwaukee, 

WI) with broadband imaging capability.  3He MRI was acquired using a single-channel, 

rigid elliptical transmit/receive chest coil (RAPID Biomedical GmbH, Wuerzburg, 

Germany).  The 3He gas was polarized to 30-40% polarization using a spin-exchange 

optical polarizer (Polarean Inc, Durham, NC).  Subjects were positioned supine in the 

scanner with their arms raised above their head and inhaled a 1L gas mixture of 3He/N2 

(25% 3He by volume) from functional residual capacity (FRC).  Image acquisition was 

performed under breath-hold conditions.37  The hyperpolarized 3He MR images were 

analyzed using custom software as previously described.63  Briefly, a single user (HMY) 

placed seeds on the 1H and 3He MR images to label the lung and the surrounding tissue and 

image segmentation was completed using a convex optimization technique.  3He 

ventilation defects were identified using a k-means clustering approach,64 and ventilation 

defect percent (VDP) was calculated as the total ventilation defect volume normalized to 
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the thoracic cavity volume.  The ventilation cluster map for each subject was then non-

rigidly registered to the computational airway tree as previously described.52 

2.2.3 Computational Modeling 

We adapted a three-dimensional airway tree consisting of 64,895 airways (M. Tawhai, U. 

Auckland), to generate a computational airway tree model. A full description of the model 

was previously provided.47  To summarize, the airway tree was derived from a thoracic x-

ray computed tomography (CT) image including up to the eighth-generation airways and 

the remaining generations were constructed using a volume filling algorithm that preserved 

the anatomical branching geometry.47 

Airways located within two voxels (6.25mm) of an MRI ventilation defect or distal to a 

ventilation defect were labelled as related to the defect.  These airways were identified 

using custom software designed in MATLB and narrowed to 10% of their initial diameter, 

effectively increasing their resistance by a factor of 104 according to Poiseulle’s law.52  

Airways larger than the 14th generation in the airway tree were excluded to ensure that we 

evaluated only small airways < 2mm in diameter.  We evaluated the impact of small airway 

constriction, which has been shown to play a critical role in increased airway impedance 

and ventilation defects.49  Figure 2-1 shows a schematic outlining MR image processing 

steps, and the integration of MRI data into the computational model to generate patient-

specific predictions.  Airway impedance predictions were generated as previously 

described from these individually modified airway trees.51, 52  First, the airway lengths and 

diameters were reduced to 80% of their original TLC volume.  The flow in the non-terminal 

airways was described using Womersley flow65 using the following equation: 

	 𝑍1 𝑓 = 	
𝑖2𝑓𝜌1D)𝑙1

𝑟1W
1 −

2𝐽Y 𝛼1 −𝑖
𝛼1 −𝑖𝐽R 𝛼1 −𝑖

[Y

	 (2.1)	

Where i is the unit imaginary number, f is the oscillation frequency in Hz, ρair is the density 

of air (1.16 kg/m3), la is the length and ra is the radius of the airway, J0 and J1 are the 

complex Bessel functions of order 0 and 1 respectively and αa is the Womersley number 

for the airway given by: 
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	 𝛼1 = 𝑟1
2𝜋𝜌1D)𝑓
𝜇1D)

		 (2.2)	

Where µair is the dynamic viscosity of humid air at 37 degrees C (1.85 x 10-5 Pa.s). 

To model the compliance of the lung parenchyma, each terminal airway was modeled as 

an alveolar compartment with a known elastance.  Then, the impedance of a terminal 

airway is given by: 

	 𝑍C = 	𝑍1 − 𝑖
𝐸𝑡
𝜔 	 (2.3)	

Where E is the elastance of the terminal airway unit, set to 53 cmH2O/L as was done 

previously.52  The resistance of the upper airways and the chest wall were each assigned a 

value of 0.5 cmH2O·s/L,66-68 and the elastance of the chest wall as assigned a value of 10.6 

cmH2O·s/L.69  Finally, the effects of upper airway shunt were included using previously 

published values.70  These values were added to the lung resistance and reactance to 

calculate the final values for Rrs and Xrs. 
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Figure 2-1: Pipeline for Co-Registration of MRI Ventilation Defects with 
Computational Airway Tree Model. 
(A) Hyperpolarized 3He MRI shown in cyan co-registered with anatomical 1H MRI in 
greyscale.  (B) The thoracic cavity, including the lungs, was automatically segmented using 
a manually-seeded algorithm and ventilation defects identified, shown in black.  (C) An 
asymmetric branching computational airway tree model used to calculated respiratory 
system impedance.  (D) The ventilation defect map was co-registered to the airway tree 
model.  The small airways that were within or distal to a ventilation defect were identified, 
and narrowed to 10% of their original diameter.  Ventilation defects are in grey and the 
airways related to defects are in yellow.   

2.2.4 Statistics 

The Shapiro-Wilk test was used to test data normality and non-parametric tests were used 

when the data were not normally distributed.  Independent samples t tests and Mann-

Whitney U tests were used to evaluate differences between asthma and COPD patients.  

Levene’s test for equality of variances was used to test if the variance in the data was equal 

between two groups and when the variance was not equal, Welch’s correction was applied 

to independent samples t tests.  The Holm-Bonferroni correction was used to adjust for 

multiple comparisons.  Univariate relationships were evaluated using Spearman 

correlations (ρ) because the data were not normally distributed.  Significant relationships 
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identified using Spearman correlation were evaluated using linear regression.  Results were 

considered statistically significant when the probability of making a Type I error was less 

than 5% (p < 0.05).  All statistical tests were performed using SPSS 24.0 (IBM).   

2.3 Results 

2.3.1 Participant Demographics 

As shown in Table 2-1, 100 participants were evaluated including 50 subjects with asthma 

(17 mild-moderate and 33 severe), and 50 ex-smokers.  Within the ex-smoker group, 28 

subjects had COPD (12 mild (GOLD I), 11 moderate (GOLD II) and 5 severe (GOLD III)).  

The ex-smokers were significantly older than the asthma subjects (p < 0.001).  FEV1 was 

significantly higher in the ex-smokers as compared to the asthmatic (p < 0.001) and the 

COPD subjects (p < 0.001), and plethysmography-measured airways resistance (Raw) was 

significantly greater  in the asthma group as compared to the COPD group (p < 0.001) and 

the ex-smokers (p < 0.001).   

Table 2-1: Participant Demographics 

Mean (±SD) All 
(n=100) 

Asthma 
(n=50) 

COPD 
(n=28) 

Ex-
Smokers 
(n=22) 

Asthma 
- COPD 

(p) 

Asthma - Ex-
Smokers (p) 

COPD - Ex-
Smokers (p) 

Male n 54 21 19 14 - - - 
Age years  61 (16) 49 (12) 75 (8) 70 (10) <0.001 <0.001 0.2 
BMI kg·m-2 28 (4) 28 (4) 26 (4) 30 (4) 0.5 0.03 0.003 
FEV1 %pred  78 (26) 70 (23) 74 (25) 102 (20) 1.0 <0.001 <0.001 
FVC %pred 89 (20) 83 (20) 94 (19) 95 (20) 0.06 0.1 1.0 
FEV1/FVC % 65 (15) 64 (15) 56 (10) 80 (15) 0.02 <0.001 <0.001 
TLC %pred 102 (15) 103 (15) 107 (16) 95 (13) 0.8 0.1 0.02 
RV/TLC % 43 (9) 41 (9) 47 (9) 40 (8) 0.04 1.0 0.04 
DLCO %pred - - 60 (21) 83 (15) - - <0.001 
Raw %pred  127 (80) 171 (83) 95 (43) 65 (25) <0.001 <0.001 0.6 

Sig Dif: significance of difference between groups determined with a one-way ANOVA with 
Bonferroni post-hoc test.  SD: standard deviation; %pred: percent of predicted value; BMI: body 
mass index; FEV1: forced expiratory volume in one second; FVC: forced vital capacity; TLC: total 
lung capacity; RV: residual volume; DLCO: diffusing capacity of the lung for carbon monoxide; 
Raw: airways resistance. 
 
As shown in Figure 2-2, subjects with COPD had significantly higher VDP than ex-

smokers (p < 0.001) and asthmatic subjects (p < 0.001), but there was not a significant 

difference in VDP between asthmatics and ex-smokers (p = 0.4).  FOT-measured reactance 
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(Xrs 5Hz) was significantly more negative in asthma as compared to COPD subjects (p = 

0.04) and ex-smokers (p = 0.02) and FOT-measured Rrs 5Hz and Rrs 5-19Hz, related to the 

obstruction of all airways and of the small airways respectively, were significantly greater 

in asthma as compared to COPD (Rrs 5Hz: p < 0.001, Rrs 5-19Hz: p < 0.001) and ex-

smokers (Rrs 5Hz: p < 0.001, Rrs 5-19Hz: p < 0.001).  There was no significant difference 

in FOT-measured Rre (Rrs 5Hz: p = 1.0, Rrs 5-19Hz: p = 0.8) or Xrs (p = 1.0) between ex-

smokers and COPD patients. 
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Figure 2-2: VDP and FOT-measured Resistance and Reactance in Asthma, COPD 
and Ex-Smoker Subgroups. 
(A) VDP for asthma and COPD (p < 0.001) and COPD and ex-smoker (p < 0.001) 
subgroups were significantly different, but VDP was not different between asthmatic and 
ex-smoker groups (p = 0.4). (B) FOT-measured Xrs 5Hz was significantly greater in the 
asthmatic as compared to the COPD subgroup (p = 0.04) and the ex-smoker group (p = 
0.02).  Xrs was not different between COPD and ex-smoker subgroups (p = 1.0). (C) FOT-
measured Rrs 5Hz was significantly greater in the asthmatic as compared to the COPD (p 
< 0.001) and ex-smoker (p < 0.001) subgroups, but it was not different between COPD and 
ex-smoker subgroups (p = 1.0). (D) FOT-measured Rrs 5-19Hz was significantly greater in 
the asthmatic as compared to the COPD (p < 0.001) and ex-smoker (p < 0.001) subgroups, 
but was not different between COPD and ex-smokers (p = 0.8).   
* The two non-COPD ex-smokers who experienced exacerbations are indicated by the 
symbol (�) ES4: FEV1=102%pred, FVC= 97%pred, FEV1/FVC=80%, Rrs 5Hz=4.0 
cmH2O·s/L, Xrs5Hz=-1.7cmH2O·s/L, Rrx5-19Hz=0.0cmH2O·s/L, VDP=2%.  ES14: 
FEV1=81%pred, FVC=70%pred, FEV1/FVC=88%, Rrs 5Hz=4.0cmH2O·s/L, Xrs 5Hz=-
2.4cmH2O·s/L, Rrx 5-19Hz= 0.3cmH2O·s/L, VDP=1%. 
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2.3.2 FOT and 3He MRI VDP Relationships 

As shown in Figure 2-3, MRI VDP was significantly correlated with FOT-measured 

respiratory system resistance (Rrs 5Hz: ρ = 0.3, p = 0.02) and reactance (Xrs 5Hz: ρ = -0.5, 

p < .001) in asthmatics, while these measurements were not correlated in COPD patients 

(Rrs 5Hz: ρ = -0.04, p = 0.8; Xrs 5Hz: ρ = -0.2, p = 0.4) or ex-smokers (Rrs 5Hz: ρ = -0.3, p 

= 0.2; Xrs 5Hz: ρ = 0.3, p = 0.2).  In both asthmatics (ρ = 0.5, p < 0.001) and COPD patients 

(ρ = 0.5, p = 0.01), small airways resistance (Rrs 5-19Hz) was significantly correlated with 

VDP, but these measurements were not correlated in ex-smokers (ρ = -0.2, p = 0.4).  
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Figure 2-3: Relationships for VDP and FOT measurements 
Top: FOT-measured Rrs 5Hz was significantly correlated with VDP in asthmatics (slope 
= 0.05±0.03, ρ = 0.3, p = 0.02) but not in COPD patients (ρ = -0.04, p = 0.8) or ex-smokers 
(ρ = -0.3, p = 0.2).  FOT-measured Xrs 5Hz was significantly correlated with VDP in 
asthmatics (slope = -0.12±0.04, ρ = -0.5, p < 0.001) but not in COPD patients (ρ= -0.2, p= 
0.4) or ex-smokers (ρ = 0.3, p = 0.2).  FOT-measured Rrs 5-19Hz was significantly 
correlated with VDP in both asthmatic (slope = 0.07±0.02, ρ = 0.5, p < 0.001) and COPD 
patients (slope = 0.02±0.007, ρ = 0.5, p = 0.01) but not in ex-smokers (ρ = -0.2, p = 0.4).  
Centre: Three representative asthmatic subjects with worsening VDP and FOT-measured 
impedance from left to right.  Bottom: Three representative COPD subjects with worsening 
VDP and FOT-measured impedance from left to right. 
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2.3.3 Relationships with Disease Control and Quality of Life Scores 

All participants with asthma were stratified using the ACQ (well controlled = ACQ ≤ 2, 

poorly controlled = ACQ > 2) as previously described.12  Ex-smokers (including subjects 

with and without COPD) were classified based on the presence of an exacerbation requiring 

hospitalization within 2.5 years, such that patients who had been hospitalized at least once 

due to COPD or pneumonia were classified as poorly controlled. Nine out of fifty ex-

smokers were poorly controlled, including 7 COPD patients and 2 subjects from the non-

COPD group.  As shown in Figure 2-4, FEV1 was significantly different in poorly-

controlled asthmatic patients (p = 0.04) but not ex-smokers (p = 0.08).  Plethysmography-

measured Raw was significantly greater in poorly- controlled asthma (p = 0.03) and ex-

smokers (p = 0.04), while VDP was significantly greater in patients with poorly-controlled 

asthma (p = 0.03) but not in ex-smokers with exacerbations (p= 0.1).  In poorly-controlled 

asthmatics, FOT-measured respiratory system reactance (Xrs 5Hz, p=0.03) and resistance 

of all airways (Rrs 5Hz, p = 0.01) and the small airways resistance (Rrs 5-19Hz, p = 0.006) 

were significantly different than in well-controlled asthmatics.  None of the FOT measures 

of airway impedance (Xrs 5Hz, p=0.2; Rrs 5Hz, p=0.6; Rrs 5-19Hz, p=0.3) were 

significantly different in ex-smokers with exacerbations. 
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Figure 2-4: Differences in FEV1, VDP and FOT Impedance Stratified by Disease 
Control. 
Subjects were stratified based on disease control using the asthma control questionnaire 
(ACQ) for asthmatics or the presence of at least a single exacerbation requiring 
hospitalization in ex-smokers (including those with and without COPD).  (A) FEV1 was 
significantly different in asthma patients with poor control (p = 0.04) but not in ex-smokers 
(p = 0.08).  (B) Plethysmography-measured Raw was significantly decreased in poorly-
controlled asthmatic patients (p = 0.03) and ex-smokers (p = 0.04).  (C) VDP was 
significantly increased in poorly-controlled asthmatics (p =0.03) but not in ex-smokers 
experiencing an exacerbation (p = 0.1).  (D) FOT-measured Xrs 5Hz was significantly 
different in poorly-controlled asthmatics (p= 0.03) but not in ex-smokers experiencing an 
exacerbation (p = 0.2).  (E) FOT-measured Rrs 5Hz was significantly increased in poorly-
controlled asthmatics (p = 0.01) but not in ex-smokers (p = 0.6).  (F) FOT-measured Rrs 5-
19Hz was significantly different in poorly-controlled asthmatics (p = 0.006) but not in ex-
smokers (p = 0.3).  * The two non-COPD ex-smokers who experienced exacerbations are 
indicated by the symbol (�)  
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In asthmatics, as shown in Figure 2-5, AQLQ score was correlated only with FOT-

measured small airways resistance (Rrs 5-19Hz; ρ = -0.3, p = 0.04) and VDP (ρ = -0.3, p = 

0.04) and not with any other measurement acquired.  Quality of life in COPD patients 

measured using the SGRQ score was significantly correlated with FEV1 (ρ = -0.5, p = 

0.006), Raw (ρ = 0.4, p = 0.03), FOT-measured resistance of the small airways Rrs 5-19Hz 

(ρ = 0.4, p = 0.04) and VDP (ρ = 0.6, p = 0.003).  SGRQ scores were not significantly 

related to FOT-measured resistance Rrs 5Hz (ρ = 0.1, p = 0.5) or reactance, Xrs 5Hz (ρ =- 

0.2, p = 0.3).  In the non-COPD ex-smoker group, SGRQ scores were only significantly 

related to plethysmography-measured Raw (ρ = 0.5, p = 0.01).   
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Figure 2-5: Relationships between FOT-measured Resistance and MRI VDP with 
Quality of Life.  
Quality of life was measured using the Asthma Quality of Life Questionnaire (AQLQ) and 
the St. George’s Respiratory Questionnaire (SGRQ).  In asthmatics, AQLQ relationships 
with (A) FOT-measured Rrs 5Hz (ρ = -0.2, p =0 .2), (B) FOT-measured Rrs 5-19Hz (slope 
= -0.4±0.2, ρ = -0.3, p = 0.04), and (C) MRI-measured VDP (slope = -2.2±0.9, ρ = -0.3, p 
= 0.04).  In COPD patients and ex-smokers, SGRQ relationships with (D) FOT-measured 
Rrs 5Hz (COPD: ρ = 0.1, p =0.5; ES: ρ = 0.4, p =0.07), (E) FOT-measured Rrs 5-19Hz 
(COPD: slope = 0.01±0.006, ρ = 0.4, p = 0.04; ES: ρ = 0.2, p =0.3), and (F) MRI-measured 
VDP (COPD: slope = 0.3±0.1, ρ = 0.6, p = 0.003; ES: ρ = -0.3, p =0.2).   
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2.3.4 Experimental and Model Impedance Measurements 

As shown in Figure 2-6, FOT-measured resistance of all airways (Rrs 5Hzmeas) was not 

significantly related to model-predicted resistance (Rrs 5Hzpred) in asthmatics (ρ = 0.2, p = 

0.2) nor in ex-smokers (ρ = -0.3, p = 0.2) and COPD patients (ρ = 0.001, p = 1.0). However, 

FOT-measured respiratory system reactance (Xrs 5Hzmeas) was significantly related to 

model-predicted reactance (Xrs 5Hzpred) in asthmatics (slope = 1.4±0.6, ρ = 0.5, p = 0.001) 

but not in COPD patients (ρ = 0.2, p = 0.4) or ex-smokers (ρ = -0.3, p = 0.2).  In contrast, 

FOT-measured small airway resistance (Rrs 5-19Hzmeas) was significantly correlated with 

model-predictions (Rrs 5-19Hzpred) in COPD patients (slope = 2.6±0.7, ρ = 0.5, p = 0.004) 

but not in ex-smokers (ρ = -0.1, p = 0.6) or asthmatics (ρ = 0.2, p = 0.1).   

 
Figure 2-6. Relationships for Model-predicted and FOT-measured Respiratory 
System Impedance.  
(A) FOT-measured Rrs 5Hzmeas was not significantly related to model-predicted Rrs 5Hzpred 
in asthma (ρ = 0.2, p = 0.2), COPD patients (ρ = 0.001, p = 1.0) or ex-smokers (ρ = -0.3, p 
= 0.2).  (B) FOT-measured Xrs 5Hzmeas was significantly related to model-predicted Xrs 
5Hzpred in asthmatic patients (slope = 1.4±0.6, ρ = 0.5, p = 0.001) but not in COPD patients 
(ρ = 0.2, p = 0.4) or ex-smokers (ρ = -0.3, p = 0.2).  (C) FOT-measured Rrs 5-19Hzmeas was 
significantly correlated with model-predicted Rrs 5-19Hzpred in COPD (slope = 2.6±0.7, ρ 
= 0.5, p = 0.004) but not in asthmatics (ρ = 0.2, p = 0.1) or ex-smokers (ρ = -0.1, p = 0.6).    
 

2.4 Discussion 

In ex-smokers and patients with asthma, 3He MRI ventilation heterogeneity and 

oscillometry measurements were evaluated as was their relationship with one another, with 

quality of life scores and with disease control/exacerbations. We also generated respiratory 
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impedance predictions using an airway tree model modified based on patient-specific MRI 

ventilation maps and evaluated model-based and experimental impedance measurements.  

We made a number of important observations including: 1) in asthmatics, MRI VDP was 

related to FOT-measured Xrs 5Hz, Rrs 5Hz  and Rrs 5-19Hz, but in COPD patients, only 

VDP and Rrs 5-19Hz were related and in ex-smokers MRI VDP was not related to FOT-

measured impedance, 2) VDP and FOT-measured Xrs and Rrs were independently 

correlated with AQLQ (in asthmatics) and SGRQ (in COPD patients) but were not 

correlated with SGRQ in ex-smokers without COPD, 3) FOT-measured impedance and 

MRI VDP were independently related to disease control in asthmatic patients but not in 

ex-smokers or COPD patients, and finally, 4) in patients with asthma, measured and 

predicted respiratory impedance (Xrs 5Hz) were significantly correlated, whereas in 

patients with COPD, only measured and predicted small airways resistance (Rrs 5-19Hz) 

were related.   

2.4.1 FOT and 3He MRI Ventilation Heterogeneity 

First, we observed that FOT-measured Rrs and Xrs were correlated with MRI VDP, 

providing direct evidence that the biomechanical properties of the respiratory system are 

related to ventilation heterogeneity in both asthma and COPD patients.  In particular, in 

asthmatics, Rrs, Xrs and Rrs 5-19Hz were all related to VDP, but in COPD, only Rrs 5-19Hz 

was related.  This suggests that there are differences in the etiology of ventilation defects 

in asthmatic and COPD patients, and that in the COPD patients studied here, VDP was 

dominated by small airway resistance.  Interestingly, non-COPD ex-smokers had similar 

small airway resistance to the subjects with COPD, but had significantly lower VDP.  This 

suggests that similar biomechanical changes are present in ex-smokers, but they are not 

severe enough to cause ventilation defects.  These findings certainly support the ongoing 

conversation about the important role of small airways disease in COPD patients71 and 

provide new impetus for the development of small airway treatments of COPD.  Previously 

described computational modelling49 and ventilation heterogeneity studies72 have focused 

on asthma but to our knowledge, our observations in COPD patients are novel.  A recent 

SPECT study14 evaluated the impact of bronchoconstriction in asthmatics and suggested 

that respiratory impedance may be too complex to be directly evaluated using ventilation 
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imaging.  However, here we showed that MRI ventilation abnormalities may be explained 

by oscillometry measurements and surprisingly, MRI ventilation abnormalities measured 

during a static breath-hold may be explained by impedance measurements made during 

tidal breathing. 

2.4.2 FOT, Disease Control and Quality of Life 

Second, we observed that FOT-measured small airways resistance and VDP were related 

to quality of life scores in patients with asthma and COPD, but not in ex-smokers.  This is 

important because for FEV1, which is the most commonly used measurement of obstructive 

lung disease, relationships with important outcomes like quality of life are generally weak 

to insignificant.73-75  As patient-centered care becomes a priority in clinical settings, the 

ability to relate physiological measurements to patient quality of life is increasingly 

important.  This has motivated the development of tools that are more sensitive to these 

important patient outcomes so that they may be predicted in individual patients.  Our results 

suggest that FOT and MRI provide clinically-useful measurements, for this purpose, in 

asthmatics and COPD patients. 

Perhaps more importantly for clinical decision makers, while we observed that 

plethysmography-measured Raw was significantly worse in asthmatics, ex-smokers and 

COPD patients with poorly controlled disease, FOT-measured Rrs and Xrs as well as VDP 

were all significantly worse in poorly-controlled asthmatics. While we did not observe 

significant relationships in COPD patients or ex-smokers, some of these relationships were 

certainly trending towards significance and this result may stem from the small number of 

exacerbations in these patients – which was used as a surrogate endpoint for disease 

control.  It is understood that Raw and Rrs are significantly correlated, although these 

correlations are not always strong.76  A power analysis assuming unequal sample size using 

hospitalizations as a conservative measure of disease control revealed that 104 ex-smokers 

(including COPD patients) would be required for Rrs 5-19Hz as a predictor of 

hospitalizations, while only 40 patients would be needed for Raw.  Larger studies to 

investigate the power of both FOT and MRI to predict and prevent COPD hospitalization 
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will be important because COPD exacerbations comprises a very large health utilization 

burden in Canada77, 78 and around the world.79, 80   

2.4.3 Measured Impedance and Image Functional Modeling 

Finally, we generated impedance predictions using an airway tree model adapted using 

ventilation MRI measurements.  We were not surprised to find that the experimental and 

model-predicted values of Rrs 5Hz were not significantly correlated, because it is likely 

that some airway narrowing may not directly lead to ventilation defects in patients.  We 

also observed that FOT-measured and model-predicted reactance (Xrs) were significantly 

related in asthmatics, which was in agreement with previous findings.32, 51, 81  Finally, the 

measured and predicted resistance reflecting the small airways (Rrs 5-19Hz) were 

significantly correlated in COPD patients, but not asthmatics and this is consistent with our 

understanding of the dominant role of small airways disease in COPD.71  It is important to 

note that while there were moderately strong correlations between the measured and 

predicted impedance values, the predicted values were significantly smaller (based on the 

slopes of the linear regression).  This was expected because previous work51 showed that 

up to 75% of the small airways need to be constricted to achieve model and experimental 

measurement agreement.  Impedance predictions were systematically underestimated51 

when only airways within a defect were considered, supporting previous demonstrations48 

that showed constriction of airways beyond those proximal to ventilation defects is 

required to simulate impedance measurements in asthmatics.   

2.4.4 Limitations 

We acknowledge and recognize a number of study limitations, including the fact that we 

considered ventilation defects only and not regions of decreased or partial ventilation.  

Based on previous modeling studies48 and MRI evidence of patchy ventilation sometimes 

observed in asthmatics and ex-smokers, it would be relevant to consider hyper-intense 

ventilation regions as well as hypo-intense regions that are not captured by VDP. We note 

as well that the airway tree47  used in the modelling studies was not patient-specific, nor 

were the impedance values of the upper airway and chest wall.  However, we expect these 
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factors to contribute much less to Rrs and Xrs than the changes occurring within the lung 

itself in obstructive lung disease.  Despite these limitations, we observed significant 

correlations between measured and model-predicted impedance for the small airways 

which is important for further model development.  Another limitation of this work is the 

use of hospitalizations as a surrogate measure of disease control in ex-smokers.  While 

hospitalizations have the highest impact on patients and the health-care system,77 only nine 

of fifty ex-smokers studied here experienced an exacerbation which certainly diminished 

statistical power.  A retrospective power analysis showed that 104 ex-smokers would be 

required to determine the role of FOT impedance measurements as predictors of COPD 

hospitalizations; larger studies will be needed to explore these relationships.  Finally, while 

we observed significant relationships between FOT measurements of resistance and 

reactance with MRI VDP and patient quality of life, these relationships were of moderate 

to weak strength.  This means that there are other variables that have not yet been fully 

accounted for, and further work must be done to fully understand how respiratory 

impedance and ventilation heterogeneity are related to patient outcomes.   

2.4.5 Conclusions 

In conclusion, we made oscillometry and MRI measurements in ex-smokers and patients 

with asthma and directly compared these measurements with disease control and patient 

quality of life scores.  We observed significant relationships for FOT-measured impedance 

and VDP with quality of life, providing strong evidence that airway resistance and 

reactance are reflective of MRI ventilation defects, and importantly they both explain 

quality of life in patients.  We also used MRI ventilation defects to generate patient-specific 

computational airway model predictions of respiratory system impedance and, for the first 

time, compared these predictions with experimental measurements.  Taken together, these 

results provide strong motivation for multiscale studies that explore how small airways 

disease and ventilation abnormalities may explain and help improve disease control and 

quality of life in patients.    
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CHAPTER 3 

3 CONCLUSIONS AND FUTURE DIRECTIONS 

3.1 Overview and Research Questions 

Obstructive lung disease represents a huge health care burden in Ontario1 and worldwide,2 

reflecting the need for a better understanding of the mechanisms of disease and how they 

can be treated.  While obstructive lung disease is known to be spatially heterogeneous and 

to involve small airway dysfunction, the structure-function relationships related to 

ventilation defects are not fully understood.  The objective of this thesis was to apply the 

forced oscillation technique (FOT), hyperpolarized 3He magnetic resonance imaging 

(MRI), and computational airway tree modelling to study obstructive lung disease.  The 

specific research questions were: 1) How are structural and mechanical changes measured 

by FOT related to MRI ventilation defects?  2) How do these measures of ventilation 

heterogeneity relate to disease control and patient quality of life in obstructive lung 

disease?   

3.2 Summary and Conclusions 

In this thesis, I evaluated 100 subjects (50 asthma, 28 COPD, 22 ex-smokers) using quality 

of life questionnaires, FOT, and hyperpolarized 3He MRI.  I sought to measure the 

relationships between respiratory system impedance, MRI ventilation heterogeneity, and 

patient quality of life.  I also developed upon previous work using MRI ventilation defects 

to modify a computational airway tree model to generate patient-specific predictions of 

airway impedance and compared them to FOT-measured impedance in all 100 patients.3  

FOT-measured small airways resistance was significantly correlated with VDP in both 

asthma (ρ=0.5, p<0.001) and COPD (ρ=0.5, p=0.01) but not in ex-smokers (ρ=-0.2, p=0.4), 

and only in asthma was respiratory system impedance (Xrs 5Hz: ρ=-0.5, p<0.001; Rrs 5Hz: 

ρ=0.3, p=0.02; Rrs 5-19Hz: ρ=0.5, p<0.001) related to VDP.  FOT-measured small airways 

resistance (COPD: ρ=0.4, p=0.04; asthma: ρ=-0.3, p=0.04) and MRI-measured VDP 

(COPD: ρ=0.6, p=0.003; asthma: ρ=-0.3, p=0.04) were the only metrics that were 

significantly related to patient quality of life in these two groups.  In ex-smokers without 
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COPD, only plethysmography-measured Raw was significantly related to quality of life 

(ρ=0.5, p=0.01).  Asthmatic patients with poor asthma control had significantly increased 

respiratory system impedance (Rrs 5Hz, p=0.01; Xrs 5Hz, p=0.03), and increased small 

airways resistance (Rrs 5-19Hz p=0.006).  Predicted reactance (Xrs 5Hz) was correlated 

with FOT-measured reactance in asthma (ρ=0.5, p=0.001), and predicted resistance 

reflecting small airways dysfunction (Rrs 5-19Hz) was correlated with measured values in 

COPD (ρ=0.5, p=0.004).  Predicted and FOT-measured resistance and reactance were not 

correlated in ex-smokers without COPD (Rrs 5Hz ρ=-0.3, p=0.2; Xrs 5Hz ρ-0.3, p=0.2; Rrs 

5-19Hz ρ=-0.1, p=0.6).  This study provided strong evidence that heterogeneous small 

airway obstruction is related to ventilation defects, and importantly, both are related to 

quality of life in obstructive lung disease.   

3.3 Limitations 

In this section the most significant limitations from Chapter 2 will be discussed.  It should 

be noted that these limitations are also presented in the Discussion section of Chapter 2.  

In Chapter 2 I evaluated 100 patients with obstructive lung disease with severity ranging 

from mild to severe using hyperpolarized 3He MRI and FOT to study the relationships 

between structure and function in obstructive lung disease.  However, I did not evaluate 

any COPD patients with GOLD stage IV (very severe) disease and only 5 patients with 

GOLD stage III (severe) disease.  This study could therefore be improved by the inclusion 

of more patients in these severe and very severe categories, in order to study the changes 

in structure and function together as disease worsens.   

It should be noted that while there were moderately strong correlations between the FOT-

measured and model-predicted impedance values, the predicted values were consistently 

less than those measured by FOT.  This is consistent with previous work4 using the same 

computational model (scaled so that the predicted impedance with no constriction 

corresponded with measured impedance in healthy volunteers).  The authors showed that 

up to 75% of the small airways had to be constricted in asthma in order for the predicted 

impedance values to correspond with FOT measurements, suggesting that when only 

airways within a defect are considered, impedance is systematically underestimated in this 
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model.  This supports another previous study5 suggesting that constriction of airways 

outside ventilation defects is necessary to generate accurate impedance predictions in 

asthma.  Therefore, a limitation of the present work is that I implemented a binary approach 

where airways either remained at 100% of their original diameter, or were reduced to 10% 

of their original diameter.  In reality, there is likely a distribution of narrowed airways 

throughout the lung, with the most severe narrowing occurring in ventilation defects.  

Future work will expand on this model by using MRI ventilation data to incorporate 

moderate airway narrowing outside ventilation defects as explained in Section 3.4.3.   

The airway tree modelling calculations are also subject to several limitations.  First, while 

the model was modified to reflect the unique distribution of ventilation defects for each 

patient, this model did not exactly represent each patient’s airway tree geometry.  Rather, 

it was generated from a representative healthy female subject6 and modified to reflect some 

of the functional changes measured in these subjects.  I also used representative values for 

the impedance of the upper airway and chest wall for all impedance predictions, so the 

variation of these parameters between patients was not accounted for.  However, these 

factors are expected to contribute much less to Rrs and Xrs than the changes occurring within 

the lung in obstructive lung disease.  Despite these limitations, I demonstrated significant 

correlations between FOT-measured and model-predicted impedance from small airway 

obstruction in ventilation defects alone.  This emphasizes the importance of small airway 

dysfunction in ventilation defects and in respiratory system impedance. 

3.4 Future Directions 

3.4.1 FOT Biomarkers in Severe Asthmatics Undergoing Bronchial 
Thermoplasty 

While small airway dysfunction is hypothesized to play an important role in asthmatic 

ventilation heterogeneity, constriction of larger airways is also known to occur, especially 

in severe asthma.  Bronchial thermoplasty (BT) is an invasive treatment that targets the 

smooth muscle in these larger airways to prevent constriction, with the goal of improving 

symptoms and disease control.7  This treatment has shown promise for improving 

pulmonary function in early studies,8, 9 but there is debate over how widely applicable this 
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may be as it does not treat the small airways directly.  FOT is sensitive to obstruction in 

the central and peripheral airways independently, and can be easily integrated into clinical 

workflows.   

As part of a study that is currently underway, we have collected FOT impedance 

measurements and ventilation MRI in several severe asthmatics who are candidates for BT 

before and after treatment.  By comparing the FOT, MRI, and other functional data before 

and after BT, we may be able to better understand how ablation of smooth muscle in the 

large and mid-sized airways affects breathing mechanics and airflow through the rest of 

the lung.  This will provide a more complete understanding of the effects of BT on the lung 

beyond the specific ablated airways, and how these changes affect lung function and patient 

quality of life. 

3.4.2 FOT Biomarkers and Higher-Order Image Features in 3He MRI 

In this thesis, 3He MRI was used to quantify ventilation heterogeneity by calculating the 

VDP.  This was done by sorting the signal intensities into one of five clusters, and mapping 

the lowest-intensity cluster within the lung.10  However, there is a wealth of other 

ventilation information available in 3He MR images beyond this validated biomarker.  By 

investigating other intensity-based metrics and other spatial features available in each 

image, we may be able to account for other aspects of ventilation heterogeneity that may 

be reflected by oscillometry.   

For example, higher-order metrics have previously been proposed to evaluate 

heterogeneity in obstructive lung disease.11  While the clinical meaning of these metrics 

may not yet be fully understood, the combination of MRI heterogeneity analysis and FOT 

measurements of impedance may yield new insights into the clinical relevance of these 

higher-order ventilation measurements. 

In addition, pulmonary imaging may be able to differentiate between heterogeneous 

ventilation patterns related to the obstruction of small airways alone and obstruction with 

large airway involvement. This may be possible using functional information derived from 

MRI, and structural information derived from CT.  Using high-resolution CT imaging, 



 

68 

 

airway trees can be resolved and segmented until the airways are approximately 2mm in 

diameter (the typical threshold for identifying the ‘small airways’).  Using deformable co-

registration techniques, ventilation maps may be co-registered to the patient’s airway tree 

and ventilation abnormalities may be classified as related to a large airway, or only in the 

small airways.  This classification can then be compared to FOT measurements related to 

central and peripheral airway narrowing for validation.  The ability to identify which 

defects are related to large or small airway dysfunction is important in the development of 

novel treatments for asthma. 

3.4.3 Image Functional Modeling Incorporating all MRI Ventilation  

One of the limitations of this thesis, as discussed in Section 3.3, is the fact that when the 

computational airway tree was modified using patient ventilation MRI data, only airways 

that were within or distal to a ventilation defect were narrowed.  Using this method, airways 

within regions of the lung that are otherwise abnormally ventilated are not taken into 

account.  This may have been part of the reason that, while there was moderately strong 

correlation between measured and predicted impedance, predicted impedance was 

consistently lower than impedance measured by MRI.  However, it has been suggested in 

other modeling studies that in order to replicate experimental FOT measurements of 

impedance, moderate narrowing of many or all airways in the tree is necessary.4, 5  In my 

MRI analysis 3He MRI ventilation data was grouped into five clusters using a k-means 

approach, meaning that other levels of increased or decreased ventilation have been 

quantified, but not yet incorporated into the model.  By scaling the diameter of each airway 

in a manner that corresponds to the ventilation measured in that region, we may be able to 

produce more accurate patient-specific predictions of impedance.  

3.5 Significance and Impact 

Obstructive lung disease affects hundreds of millions of people globally, and is responsible 

for millions of deaths each year.2  Despite the prevalence and impact of this disease and 

decades of ongoing research, we are still developing our understanding of how obstructive 

lung disease affects structure and function, and how these changes are related to quality of 

life and exacerbations for these patients.  Many patients do not have well-controlled disease 
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with currently available therapies.  Hyperpolarized 3He MRI has advanced our 

understanding of the spatially heterogeneous nature of these diseases, but the structural 

changes related to the ventilation heterogeneity we observe are still not fully understood.  

In order to advance our understanding of structure-function relationships in asthma and 

COPD, there is a need for multi-modality studies that incorporate more structural and 

functional measurements.   

In this thesis I evaluated 100 patients with obstructive lung disease using hyperpolarized 
3He MRI, FOT, and quality of life questionnaires. I showed significant relationships 

between FOT-measured impedance and quality of life, as well as with MRI VDP.  This 

study provided strong evidence that heterogeneous small airway obstruction is implicated 

in ventilation defects observed with MRI, and importantly, is related to quality of life in 

obstructive lung disease.  I also used MRI ventilation defects to generate patient-specific 

computational model predictions of airway impedance and, for the first time, showed that 

predictions of reactance in asthma and resistance in COPD were significantly related to 

FOT-measured impedance.  These results provide strong support for the broader clinical 

implementation of FOT for evaluating obstructive pulmonary disease.  FOT is a clinically 

applicable method that I have shown to be significantly related to patient quality of life and 

to asthma control.  Wider use of this technology may help to improve disease control, 

reducing the burden of obstructive lung disease on patients and on the Canadian health care 

system. 
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4 APPENDIX 

Appendix A – Asthma Control Questionnaire 
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Appendix B – Asthma Quality of Life Questionnaire 
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Appendix C – St. George’s Respiratory Questionnaire 
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Appendix D – MRI and CT Lung Biomarkers: Towards an In Vivo Understanding 

of Lung Biomechanics 

This review paper presents the historical and current use of MRI and CT for in vivo studies 
of lung biomechanics. 
 
The contents of this chapter were previously published in Clinical Biomechanics: HM 
Young, RL Eddy and G Parraga. MRI and CT lung biomarkers: Towards an in vivo 
understanding of lung biomechanics. Invited Review, Clinical Biomechanics. In Press. doi: 
10.1016/j.clinbiomech.2017.09.016. Permission to reproduce this article was granted by 
Elsevier and is provided in Appendix E. 

1.  Introduction 

The respiratory system, dominated by the working of the lungs, is necessarily elastic, 

undergoing complex biomechanical changes to enable breathing for efficient gas exchange.  

The lungs are over-engineered for day-to-day tasks, making detection and deep 

understanding of lung diseases and their biomechanical mechanisms extremely 

challenging.  The lungs are composed of different tissues and compartments including the 

large and small airways, blood vessels and parenchymal tissue.  The biomechanical 

properties of the respiratory system are therefore interdependent and derive from these 

complex structures.   

 

As shown in Figure 1, the overarching function of the respiratory system and the lungs is 

to deliver oxygen to the bloodstream and to remove CO2; this functionality can be 

measured in part by evaluating ventilation.  Total lung ventilation is the rate of air 

expiration from the lungs (mL/min), while alveolar ventilation is the rate at which fresh air 

enters the respiratory zone and is made available for gas exchange.1 This is achieved 

through the biomechanical process of breathing whereby muscle contraction and relaxation 

and thoracic cavity pressure changes allow air to flow in and out of the lungs.1  The 

relationship between volume, pressure and flow can be described using the mechanical 

properties of the lung tissue, which include the parenchyma, airways and airspaces.  Many 

diseases of the lung are a result of inflammation, fibrosis, airway constriction and 

parenchymal destruction.  These processes change its mechanical properties and 

understanding the biomechanical properties of the lung is essential when evaluating its 

function in order to understand the disease.2   
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Figure 4-1. Respiratory System Mechanics and Function 

1. Through the contraction of the diaphragm (A) and the intercostal muscles (B), the 
thoracic cavity expands via the outward motion of the ribcage and the downward motion 
of the diaphragm, decreasing the air pressure within the thoracic cavity.  2. Fresh air flows 
into the lungs through the airways and reaches the alveoli, where oxygen diffuses into the 
bloodstream.  3. The diaphragm (D) and the intercostal muscles (E) relax causing the 
ribcage to move inward, increasing the pressure in the thoracic cavity.  4. Carbon dioxide 
has diffused from the bloodstream into the alveoli, and is removed as air flows back out of 
the lungs through the airways. 
 
1.1 Clinical Measurements of Lung Biomechanics: Strengths and Limitations 

In clinical evaluations, the biomechanics of the lung are quantified through measurements 

of volume, flow and pressure of air, usually taken at the mouth.  These measurements are 
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simple and inexpensive to acquire, and are therefore widely used.  The primary clinical 

biomarker of lung function is the spirometry measurement of forced expiratory volume in 

one second (FEV1). This measurement is highly variable,3 and in asthma and chronic 

obstructive lung disease, FEV1 correlates weakly with quality of life and other patient 

outcomes.4  It also provides little information about the biomechanical cause of airflow 

limitation, in part because FEV1 provides a global lung measure and cannot capture 

regional information.  Other tools for measuring lung biomechanics include multiple-

breath inert gas wash-in and wash-out5 for the lung clearance index (LCI),5 measuring 

ventilation heterogeneity,6, 7 and the forced oscillation technique (FOT).8  FOT measures 

resistance and elastance of the central and peripheral airways independently and has been 

validated using direct measures of impedance.9  While these tools provide important 

information related to lung biomechanics and are well understood, they cannot distinguish 

the regional contributions of different lung components.  For this information, novel lung 

imaging tools are required.    

 

1.2  Solutions Provided by Pulmonary Imaging 

Pulmonary imaging provides a way to visualize and quantify lung structure and function 

with high spatial and temporal resolution in order to better understand in vivo regional lung 

biomechanics.  Pulmonary disease is heterogeneously distributed throughout the lung and 

pulmonary imaging is uniquely able to quantify the severity and distribution of disease in 

a way that directly reflects lung function and pathophysiology.  As summarized in Table 

1, a number of pulmonary imaging techniques can be used to measure numerous 

biomechanical properties of the lung.  These imaging tools can be classified into three main 

categories: microstructural, anatomical and functional imaging.  In this review, we 

summarize and discuss imaging methods required to generate imaging biomarkers of lung 

biomechanics, and how these measurements may be used to provide a greater 

understanding of pulmonary function.  As summarized in the schematic in Figure 2, a wide 

variety of lung biomechanical measurements can be derived using both x-ray based and 

magnetic resonance imaging (MRI) methods.   
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Table 4-1. Pulmonary Imaging-Derived Biomechanical Measurements 

Method	 Imaging	Biomarker*	 Biomechanical	Property	
Microstructural		 Alveolar	diameter10-12	 Acinar	deformation	
Imaging	 Surface-to-volume	ratio13-15	 Microstructural	elasticity	
	 	 	
Anatomical		 Volume	change	 Tissue	expansion	
Imaging	 Jacobian	determinant16-21	 Tissue	deformation,	compliance	
	 4DCT	Jacobian	determinant22-24	 Deformation	hysteresis		
	 Deformation	anisotropy24,	25	 Forces	and	strain	in	tissue	
	 Lobar	deformation26	 Lobar	mechanics	
	 	 	
Functional		 Wash-in	and	washout	time	constants27,	28	 Airflow	distribution	
Imaging	 Ventilation29-33	 Ventilation	heterogeneity	
	 Specific	ventilation34-36	 Tissue	expansion	
	 Apparent	diffusion	coefficient,	airspace	

morphometry37	
Transpulmonary	pressure,	
elasticity	

*Citations are included in Reference section 
 
 

 

Figure 4-2. Pulmonary Imaging Biomarkers of Lung Biomechanics 
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1.2.1 Micro-CT and Synchrotron x-ray Microscopy 

The functional units of the lung, including the terminal airways and the alveoli, are too 

small (ranging from 100-600 µm in diameter)1 and too deeply positioned in the body to be 

resolved using clinical imaging methods.  However, they play a vital mechanical role, so 

it is very important to be able to measure and understand these structures.  Our 

understanding of the geometry and features of the acinar ducts was generated from lung 

tissue samples and ex vivo histology measurements, pioneered by pulmonary pathologists 

and stereologists over the past decades.38-40  These measurements and approaches have 

provided a deeper understanding of normal tissue39 and tissues from asthmatics and COPD 

patients,41 but such methods are dependent on lung tissue excision and ex vivo analyses.  

The potential for in vivo measurements in animal models and patients was first 

demonstrated using micro-computed tomography (micro-CT), and exploited by Hogg and 

collaborators.42, 43  The concept of micro-CT was reduced to practice and commercialized 

between 1994-200144 and was initially used for geological core sample evaluations45, 46 and 

small animal bone studies.47, 48  Micro-CT generates high-resolution 3D images of small 

samples, providing direct, non-invasive measurements of lung anatomy and 

microstructure.  This technique has been used to study the destruction and remodeling that 

occurs in the small airways in COPD,43 and confirmed the narrowing and loss of small 

conducting airways in COPD as compared to healthy controls.49  Current micro-CT 

methods have been used for hypothesis driven pulmonary research in ex vivo50 and in vivo14 

small animal studies and to image excised samples of human lung tissue.42  In these studies, 

the first in vivo visualization and quantification of the microstructure of the lung 

parenchyma were performed.14, 51   

 

Synchrotron x-ray tomographic microscopy (SRXTM) is another example of high-

resolution micro-CT imaging using synchrotron radiation x-rays as a monochromatic, 

coherent radiation source, providing even greater image resolution than can be achieved 

with conventional micro-CT (approximately 1µm) and the ability to perform phase contrast 

imaging52.  Recent advancements have enabled the use of this technique for serial imaging 

studies without adverse effects,53 and larger beamlines will enable application of SRTXM 

in larger animal studies.54  While SRXTM shows promise for in vivo studies of large 
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animals and humans in the future, these studies are currently performed using dedicated 

clinical imaging techniques. 

 

1.2.2 Clinical CT 

The discovery of x-ray Computed Tomography (CT)55 heralded a true paradigm shift in 

medicine and research.  Soon after its development in the 1970s, this groundbreaking 

technology was applied to pulmonary imaging.56  Early studies identified the utility of CT 

for studying structure, function, and biomechanics of the lungs through studies of 

ventilation in an animal model,57 and in imaging studies of breathing mechanics.58-60  

During this time, the first evaluations of lung biomechanics in humans were also made.61  

This marked the first use of pulmonary imaging for measurements and analysis of lung 

biomechanics, a field that has continued to develop as image acquisition and analysis 

techniques have evolved.  During this time, advancements in CT imaging provided the 

ability to image the anatomy, structure, and function of the lung with high spatial and 

temporal resolution.  Pulmonary CT has been used to study many pathologies, and is now 

the clinically accepted standard for the evaluation of severe emphysema in COPD62 and 

alpha-1 antitrypsin deficiency.63 CT provides regional lung tissue structural information 

and high-resolution methods that may be used to measure the airways and blood vessels, 

and to quantify emphysema or air trapping in the lung parenchyma with well-established 

radiodensity thresholds.63-65  The anatomical and structural information provided by CT 

can also be used to evaluate deformation and strain in the lung using CT images acquired 

at more than one lung volume.66  These measurements provide in vivo visualization and 

quantification of the kinematics of breathing, and how this may differ in some disease 

states.  From these measurements, information about structural and functional changes in 

the lung such as specific volume, which is correlated with specific ventilation, can be 

ascertained.67   

 

1.2.3 Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) provides soft tissue contrast that is not achievable 

using x-ray based methods like CT and does not carry the risk of ionizing radiation 

exposure.  However, its use was previously limited, as very little signal intensity is 
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measurable from lung parenchymal tissue due to very low proton density (and substantial 

gas density) and the millions of air-tissue interfaces in the lung parenchyma.68  In the early 

1990s, the application of ultra-short echo time (UTE) MRI  in lung imaging was 

investigated and used to increase the signal intensity measured in the lung tissue.69  UTE 

MRI enabled the acquisition of higher quality images of lung tissue and parenchyma, and 

represented the first application of advanced proton MRI techniques to anatomical lung 

imaging.  The other critical advancement in pulmonary MRI was the introduction of 

inhaled contrast agents for the assessment of lung function.  Using inhaled noble gases, 

such as hyperpolarized 3He and 129Xe, pulmonary ventilation may be visualized and 

quantified.  This was first demonstrated using hyperpolarized 129Xe,70 shortly followed by 

in vivo human lung imaging using both 3He71 and 129Xe72.  This functional imaging 

technique has since been widely applied in pulmonary imaging research. Inhaled 

hyperpolarized noble gas MRI can also be used to derive microstructural information from 

the diffusion of gas within the small airways and alveoli.73  

 

Since the first use of UTE MRI in lung imaging, other advanced proton MRI methods have 

been developed, including oxygen-enhanced MRI and Fourier decomposition (FD) MRI.  

Oxygen-enhanced MRI measures the effect of paramagnetic dissolved oxygen on the 1H 

signal74 and  has been acquired in both static (breath-hold) and dynamic (free-breathing) 

conditions to evaluate oxygenated air flow and the impact of this on signal relaxation in 

the lungs.  FDMRI, another free-breathing 1H MRI method, depends on the accurate co-

registration of images acquired throughout the breathing cycle.  The Fourier transform is 

used to transform the data in order to measure the 1H signal intensity changes in each voxel.  

These changes are due to the mechanics of breathing as the parenchyma expands and 

contracts with each breath.  Using the signal fluctuation at the respiratory rate, ventilation-

weighted images can be generated, whereas the signal fluctuations at the cardiac frequency 

(roughly 4 times greater than the respiratory rate) is used to generate perfusion maps.  

 

1.2.4 Overarching Rationale for Review 

Here we summarize recently developed pulmonary imaging tools and studies that were 

aimed at developing biomarkers and/or a deeper understanding of the biomechanics of 
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breathing and the respiratory system.  As shown in Table 2, where the key publications are 

summarized, numerous studies have been performed in large and small animal models, ex 

vivo in lung tissue samples as well as in vivo, in healthy volunteers and patients with 

respiratory disease.  Overall, this approach may be considered as an emerging field that 

will continue to evolve as imaging methods become less dependent upon physics expertise 

and image processing skills and more broadly used as standalone, turnkey systems for 

physiological investigations.  It is important to acknowledge that we focus necessarily on 

x-ray and MRI based methods in order to provide a review of the pulmonary imaging 

techniques that are applied most widely to studies of pulmonary structure, function and 

biomechanics, and are poised for application in physiological investigations outside of 

imaging research.   
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Table 4-2. Recent Pulmonary Imaging Studies of Biomechanics 
Method	 Investigation	

Model	
Imaging	Biomarker	 Biomechanics	

Measurement	
Citation*	

Micro-Computed	
Tomography	

	 	 	 	

Synchrotron	
radiation-based	x-ray	
tomographic	
microscopy	(SRXTM)	

Mouse	 Surface	area,	Volume,	
pressure	

Acinar	Deformation	 Sera	et	al.	J	Appl	
Physiol.	201313	

Synchrotron	
radiation-based	x-ray	
tomographic	
microscopy	(SRXTM)	

Mouse	 Airspace	morphometry	 Image-derived	flow	
simulation	

Sznitman	et	al.	J	
Vis	201011	

Synchrotron	
radiation-based	x-ray	
tomographic	
microscopy	(SRXTM)	

Mouse	 Airspace	morphometry	 Image-derived	flow	
simulation	

Sera	et	al.	
Comput	Methods	
Biomech	Biomed	
Engin	201512	

Micro	Computed	
Tomography	

Rat	 Airway	diameter,	
Volume	

Local	Compliance	 Sera	et	al.	J	Appl	
Physiol.	200410	

Micro	Computed	
Tomography	

Mouse	 Surface	area,	Volume	 Morphology	and	
Function	

Ford	et	al.	J	Appl	
Physiol	200714	

Micro-Computed	
Tomography	

Mouse	 Surface-to-volume	ratio	
at	different	pressures	

Acinar	Deformation	 Kumar	et	al.	J	
Appl	Physiol.	
201315	

X-Ray	Computed	
Tomography	

	 	 	 	

Xenon-enhanced	
Dual-energy	CT	

Human-	asthma	 Xenon	wash-in	and	
washout	

Airflow	 Kim	et	al.	Am	J	
Roentgenol.	
201227	

Xenon-enhanced	
Dual-energy	CT	

Human-	COPD	 Xenon	wash-in	(WI)	and	
washout	(WO)	

WI	and	WO	
relationship	to	
tissue	expansion	

Lee	et	al.	Eur	
Radiol	201728	

Inspiration-Expiration	
CT	

Canine	 Jacobian	determinant	 Compliance	 Kaczka	et	al.	Ann	
Biomed	Eng	
201120	

Inspiration-Expiration	
CT	

Human-	healthy		 Lobar	Deformation	 Lobar	mechanics	 Ding	et	al.	MICCAI	
200926	

Inspiration-Expiration	
CT	

Human-	healthy	
and	asthma	

Volume	change,	
Jacobian	determinant	

Deformation	 Choi	et	al.	J	Appl	
Physiol.	201316	

Inspiration-Expiration	
CT	

Human-	COPD	 Jacobian	determinant,	
Deformation	anisotropy	

Deformation,	strain	 Bodduluri		et	al.	
Acad	Radiol	
201317	

Multi-volume	CT	 Human-	healthy	 Volume	change,	
Jacobian	determinant	

Deformation,	strain	 Jahani	et	a.	J	
Biomech.	201423	

Inspiration-Expiration	
CT	

Human-	COPD	 Jacobian	determinant	 Deformation	 Bhatt	et	al.	Am	J	
Respir	Crit	Care	
Med.	201719	
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Inspiration-Expiration	
CT	

Human-	COPD	 Jacobian	determinant	 Deformation	 Bodduluri	et	al.	
Thorax.	201718	

4DCT	 Human-	healthy	 Jacobian	determinant,	
Deformation	anisotropy	

Deformation,	
hysteresis	

Jahani		et	al.	J	
Appl	Physiol	
201524	

4DCT	 Human-	healthy	
and	asthma	

Jacobian	determinant,	
Deformation	anisotropy	

Deformation,	
hysteresis	

Jahani		et	al.	J	
Biomech	201725	

Magnetic	Resonance	
Imaging	(MRI)	

	 	 	 	

Grid-tagged	
hyperpolarized	3He	
MRI	

Human-	
healthy,	
asthma,	and	
pulmonary	
fibrosis	

Deformation	 Deformation,	strain	 Tustison	et	al,	J	
Magn	Reson	
Imaging.	201021	

Static	Hyperpolarized		
3He	ventilation	

Human-	
healthy,	asthma	

Ventilation		 Airflow	and	its	
relationship	to	
mechanics	

Campana	et	al.	J	
Appl	Physiol	
200930	

Static	Hyperpolarized		
3He	ventilation	

Human-	
healthy,	asthma	

Ventilation		 Airflow	and	its	
relationship	to	
mechanics	

Lui	et	al.	PLoS	
One	201529	

Static	Hyperpolarized		
3He	ventilation	

Human-	
healthy,	asthma	

Ventilation		 Airflow	and	its	
relationship	to	
mechanics	

Leary	et	al.	
Physiol	Rep	
201631	

Hyperpolarized	noble	
gas	diffusion-
weighted	MRI	
	

Human-	COPD	 Apparent	diffusion	
coefficient,	surface	area,	
volume	

Transpulmonary	
pressure,	elasticity	

Choy	et	al.	J	Appl	
Physiol.	201737	

Dynamic	
Hyperpolarized	gas	
washout	

Human-	
healthy,	COPD	

Specific	Ventilation,	
alveolar	oxygen	tension	

Airflow	 Hamedani	et	al.	
Magn	Reson	Med	
201634	

Fourier	
Decomposition	
(FDMRI)	

Human-	COPD	 Ventilation	 Tissue	Expansion	 Capaldi	et	al.	
Acad	Radiol	
201532	

Fourier	
Decomposition	
(FDMRI)	

Human-	asthma	 Ventilation	 Tissue	Expansion	 Capaldi	et	al.	
Acad	Radiol	
210733	

Oxygen	enhanced	
(OEMRI)	

Human-	asthma	 Specific	Ventilation	 Airflow	 Ohno	et	al.	
Radiology	201436	

Oxygen	enhanced	
(OEMRI)	

Human-	healthy	 Specific	Ventilation	 Airflow	
distribution,	
gravitational	
dependence	

Sa	et	al.	J	Appl	
Physiol	201035	

*Citations are included in Reference section 

 

2.  Anatomical and Microstructural Imaging Biomarkers of Lung Biomechanics  

As shown in Table 1 and Figure 2, the structural/anatomical and fine details of the lung 

airways and parenchyma can be visualized and quantified using both x-ray based and MRI-

based imaging methods. Imaging provides the advantage of scalability from the laboratory 
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bench including ex vivo tissue samples and in vivo in small animal models to clinical 

research and investigations in vivo in individual patients.  Anatomical and microstructural 

lung biomarkers may be dynamically acquired during tidal breathing or in static breath-

hold to provide biomarkers of lung airways and parenchyma morphology.  Biomarkers 

related to the size, shape, and morphology of the airways and parenchyma may be used in 

combination with computational models75, 76 to generate biomechanical measurements of 

volume, pressure, and flow of air in the lung,37 and the forces generated in the process.37  

 

2.1  Biomarkers of Alveolar Morphology and Distension 

Figure 2 provides an overview of lung microstructural and micromechanical measurements 

and how these may be combined to better understand the relationship between larger-scale 

mechanical properties and the mechanics of the lung microstructure. For example, high 

resolution (up to 2µm/voxel) micro-computed tomography (micro-CT) of lung tissue can 

be acquired using either cone beam48, 77 or fan-beam micro-CT systems as well using 

synchrotron radiation x-ray tomographic microscopy (SRXTM), which uses a linear, 

monochromatic beam.  Using micro-CT, murine acinar ducts and alveoli may be visualized 

and directly measured, providing measurements acinar duct morphometry and 

deformation,15 as shown in Figure 3.  Early ex vivo studies,10, 78 which were used to probe 

local tissue compliance, preceded in vivo studies that required respiratory and cardiac 

gating techniques to overcome image artefacts and blurring due to the respiratory motion 

of tidal or ventilated breathing.14, 51  Retrospective and prospective respiratory gating 

techniques79 were later generated to systematically reduce motion blurring.  With the 

development of these methods, in vivo micro-CT in ventilated animals79 and small animal 

models of pulmonary disease14 have been performed to extend the findings revealed using 

ex vivo micro-CT of  excised samples of human lung tissue.42  In these in vivo studies, the 

morphology and function of the lung microstructure were further studied in ventilated 

mice.14  Micro-CT imaging has also been exploited to investigate animal models of 

emphysema,51 and using xenon gas contrast enhancement to measure ventilation80 as well 

as provide a detailed picture of lung microstructure81, 82 and mechanics in mouse models.15   
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Figure 4-3. Mouse Lung Micro-CT   
(A,B) Segmented micro-CT slices.  In the white text, A indicates a single alveolus 
highlighted in red, AW indicates the airway.  E indicates interalveolar septal edges. The 
boundary of the acinus is indicated in cyan.  (C) 3D reconstruction of the acinus, with 
substructures highlighted in pink, orange, and purple.  (D) Map of the Jacobian determinant 
with the acinus overlaid.  (Adapted with permission from Kumar et al. J Appl Physiol. 
2013;114(8):971-8.)15 
 
While SRXTM has not yet been demonstrated for in vivo patient studies, it provides greater 

spatial resolution (~1 µm) than micro-CT and has been used for small animal studies of 

lung morphometry.83, 84  In addition, the coherence of the synchrotron beam enables the 

acquisition of x-ray phase contrast imaging.  The use of phase contrast provides more 

sensitivity to airway structure, and increases the signal-to-noise ratio of the resulting 
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images.52  Phase contrast imaging also enables imaging measurements of ventilation, which 

have been validated with plethysmography.85  Rapid tomographic imaging has also been 

demonstrated which can has the potential to be used for 4D tomographic imaging.86  This 

has been applied to mammalian studies of ventilation in the airways and the parenchyma 

in vivo.87  As shown in Figure 4, high-resolution SRXTM images have been used in 

combination with computational fluid dynamics studies of aerosol deposition,11, 12  and in 

studies of lung mechanics.  For example, Figure 4 shows SRXTM and volume rendered 

images of a mouse lung at two inflation levels,13 where tissue deformation can clearly be 

visualized and quantified.  Moreover, morphometric SRXTM imaging of the mouse lung 

has been used to calculate the surface-to-volume ratio (S/V) at a known pressure, and 

deformable registration techniques were used to show that deformation of the acinus is 

anisotropic.15  SRXTM has also been used to image the kinematics of lung microstructure 

during breathing in a murine model, demonstrating directly that alveolar expansion is a 

heterogeneous process.13   
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Figure 4-4 Synchrotron Radiation X-ray Micro-CT of Mouse Lung Microstructure 
Deformation. 
Images of micro-CT (top) and volume rendering (center) of a mouse lung at FRC (A,C) 
and FRC+0.2L (B, D) showing deformation due to lung inflation.  Arrows indicate the 
alveolar ducts and septa in the right and left images. (E) A volume-rendering image of a 
mouse lung showing a conducting airway (star), bronchioles (triangle), and alveolar ducts 
(diamond).  (Adapted with permission from Sera et al. J Appl Physiol. 115, 219-28 
(2013).)13 
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Recently, a technique called dark-field imaging, in which absorption, phase and dark-field 

images can be acquired simultaneously, has been applied in lung imaging.  Dark-field 

image contrast is dependent on the scattering power of the sample, and it is therefore very 

sensitive to small structural changes in lung tissue.  It has been applied in emphysematous 

and healthy mice,88 and maps of emphysema generated with this technique have been 

verified with histology.89  It has also shown promise for the evaluation of pulmonary 

fibrosis in a murine model.90  Most recently, this technique has been applied in a living pig 

using clinically acceptable imaging parameters, showing the promise of dark-field imaging 

in human studies of lung disease.91  SRXTM and micro-CT are unique in their ability to 

provide non-invasive visualization and quantification of lung microstructure in small 

animals that would otherwise only be possible using histology.  This provides the ability 

to study the micromechanical processes involved in breathing in vivo, which are implicated 

in important processes such as particle deposition.11, 12   

 

2.2  Biomarkers from Regional Pressure-Volume Curves 

Inhaled hyperpolarized gas MRI can also be used to probe the microstructure of the lung 

by measuring the restricted Brownian motion of the inhaled gas in order to derive 

information about the size and shape of airspaces, which are abnormal in emphysema.73, 92, 

93  This is quantified by the apparent diffusion coefficient (ADC) of the inhaled gas.  This 

measurement has been shown to be strongly correlated with CT and histological measures 

of emphysema.94  Diffusion-weighted MRI has been used to measure local ADC gradients 

in healthy and diseased lung.  This measurement is sensitive to disease severity in COPD, 

providing additional insight to how COPD affects the mechanical properties of the tissue 

throughout the lung.95   

 

Using multiple b-values (related to specific gradients applied during MR imaging), other 

morphological values can be determined, such as the surface-to-volume ratio, airway 

radius, depth of the alveolar sleeve, and mean linear intercept.  MRI estimates of mean 

linear intercept have been verified using histological measurements of the same parameter 

in excised tissue,96, 97 which is a standard measure used to evaluate emphysema.98  

Therefore, diffusion-weighted pulmonary MRI provides a way to noninvasively quantify 
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airspace morphometry, and in vivo regional quantification of emphysema severity as has 

been accomplished using both 3He99 and 129Xe MRI.100  Figure 5 illustrates the 

quantification of ADC and mean linear intercept using both 3He and 129Xe imaging in an 

elderly never-smoker and ex-smokers with COPD, demonstrating that both ADC and mean 

linear intercept are elevated in COPD compared to elderly never-smokers.  

 
Figure 4-5. Diffusion-Weighted 3He and 129Xe MRI Mean Linear Intercept and ADC 
Maps 
Apparent diffusion coefficient (ADC) (top) and mean linear intercept (Lm) (bottom) maps 
generated using hyperpolarized 3He (upper) and 129Xe (lower) measurements in an elderly 
never-smoker (left), an ex-smoker with COPD (center), and subject with COPD caused by 
Alpha-1 antitrypsin deficiency (AATD) (right). 
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These measurements have been used to probe biomechanics of the lung, and were shown 

to be sensitive to COPD grade.95  As shown in Figure 6, diffusion-weighted MRI can probe 

the morphology of the airspaces to measure surface area (S) and volume (V).  Using 

micromechanical models, these measurements can be used to calculate transpulmonary 

pressure (Ptp) and pressure-volume curves using the following equation:37   

	 𝑃𝑡𝑝 𝑉 =
𝑁	𝐹 𝐿 𝐿
3𝑉 +

2	𝛾 𝑆 𝑆
3𝑉 +

𝑛	𝐹 𝑙 	𝑙
3𝑉 	 (4.1)	

where surface area (S) and volume (V) are derived from MRI, and the following parameters 

describe the model tissue network: F(L) is the force exerted by the stretching of N 

(computed using FRC+1L lung volume) distinct line elements of length L (estimated from 

ADC measurements) in the parenchymal tissue, γ(S) describes the alveolar surface tension 

and F(l) represents the force exerted by n alveolar ducts of circumference l75, 101.  The above 

parameters were calculated using data and relationships described by Ingenito et al.101  

These microstructural and micromechanical measurements are unique in their ability to 

provide insight into structures too small to be directly measured in vivo.  Using these 

model-derived pressure-volume curves, a ‘shape factor’ (k) can be calculated by fitting the 

following equation to the experimental data using an iterative least squares method:37   

	 𝑉 𝑃 = 𝑉01d − (𝑉01d −	𝑉0De)𝑒[fg	 (4.2)	

This ‘shape factor’ (k) is a volume-independent measure of pulmonary elasticity.76  The 

combination of pulmonary imaging and micromechanical modeling enables in vivo 

measurements of mechanical properties of parenchymal tissue.  The ability to combine 

these techniques provides the opportunity to further probe the relationships between 

pulmonary imaging biomarkers and lung biomechanics. 
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Figure 4-6. Diffusion-weighted MRI Derived Regional Pressure-Volume Curves 
3He MRI was acquired with two diffusion weightings and the change in the measured 
signal intensity was used to calculate the apparent diffusion coefficient (ADC) on a voxel 
by voxel basis.  ADC values were used to calculate geometric parameters of the airway, 
including surface area and volume, assuming the geometry shown below on the right.  
Using these parameters, the transpulmonary pressure (Ptp) was calculated using the 
equation shown on the bottom right, derived from micromechanical models.  In this way, 
pulmonary pressure-volume curves (bottom left) can be derived from imaging data to probe 
regional pulmonary elasticity. Choy et al. 2010.37 
 
2.3  Biomarkers of Pulmonary Deformation during Breathing 

In contrast to small animal studies, the microstructure of the human lung cannot be directly 

imaged in vivo, due to the ionizing radiation dose and size constraints associated with 

micro-CT.  Human studies and clinical evaluations rely on the imaging of large-scale 

anatomical features and advanced image processing techniques to evaluate the mechanics 

of the lungs.  CT has been used for over 30 years to evaluate the mechanics of the lung and 

during breathing, first in animals,58, 60 and later in humans.61  It was also used for early in 
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vivo evaluations of the geometry and kinematics of breathing motion.57, 61, 102  As image 

acquisition and processing techniques have advanced, so have the imaging-derived metrics 

used to study mechanics.  Figure 7 summarizes a number of CT-derived metrics that are 

currently used to evaluate lung mechanics.  These include measurements of airway 

structure and geometry, gas trapping, global lung structure, and registration-based 

mechanical measurements of volume change and tissue deformation.  These measurements 

can be used to identify imaging phenotypes, which are correlated with clinical 

characteristics.103  In addition, airway measurements such as total airway length and branch 

count made using CT have been correlated with pulmonary function tests of lung 

biomechanics.104, 105   

 
Figure 4-7. Clinical CT Measurements of Pulmonary Structure and Function 
(A) An airway tree identifying structural components such as airway length and branching 
diameter. (B) A map of low-attenuating clusters (LAC) in an expiration CT image. (C) A 
segmented image identifying the size and shape of each lobe. (D) Maps of CT-derived 
functional biomechanical measurements. From left to right, the ratio of air-volume change 
in the upper lobes (U) to the middle and lower lobes (M+L), the Jacobian determinant, and 
the anisotropic deformation index (ADI). (Adapted with permission from Choi et al. J 
Allergy Clin Immunol (2017).)103 
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By acquiring thoracic CT images at different phases in the breathing cycle (i.e. full 

inspiration and full expiration), anatomical biomarkers may be generated and used to 

quantify forces and strain within the lung.  Using non-rigid or deformable image 

registration methods,106-108 lung deformations during the breathing cycle can be 

evaluated.66 Biomarkers of lung deformation also include measures of local volume 

change, estimates of tissue compliance and deformation biomarkers during breathing.  For 

example, upon co-registration of images acquired at different phases in the breathing cycle, 

vector maps can be created to describe local tissue deformation related to the differences 

in the two original images.  A Jacobian matrix can be applied to this vector field (D) using 

the following: 

	 𝐽 𝑥, 𝑦, 𝑧 =

1 +
𝜕𝐷d
𝜕𝑥

𝜕𝐷d
𝜕𝑦

𝜕𝐷d
𝜕𝑧

𝜕𝐷l
𝜕𝑥 1 +

𝜕𝐷l
𝜕𝑦

𝜕𝐷l
𝜕𝑧

𝜕𝐷m
𝜕𝑥

𝜕𝐷m
𝜕𝑦 1 +

𝜕𝐷m
𝜕𝑧

	 (4.3)	

 

where Dx is the x component of the vector field D, and 𝜕Dx/	𝜕x is the partial derivative of 

D with respect to x.  The determinant of the Jacobian matrix (called the Jacobian 

determinant) is a measure related to the change in specific volume,67  which has been shown 

to reflect regional ventilation.22  Thus, the Jacobian determinant is a biomechanical 

measure that is directly related to lung function. 

 

Using multi-volume CT, Jacobian biomarkers of lung deformation have been evaluated in 

patients with obstructive lung disease including severe asthmatics16, 25 and COPD 

participants in the COPDgene study.17-19  Differences and abnormal lung biomechanical 

properties have been quantified in severe asthmatics including a diminished volume change 

during breathing, suggestive of gas-trapping.16  In COPD patients, CT-derived biomarkers 

of lung biomechanics are sensitive to GOLD stage,17 disease progression,19 and clinical 

outcomes.18  Figure 8 provides an example of deformable registration of multi-volume CT 

whereby the Jacobian determinant of voxels within 2mm of emphysema voxels were 
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shown to be related to disease progression.  This finding strongly suggests that 

biomechanical lung measurements made using CT provide a way to identify lung 

abnormalities that are not yet detected as emphysema.19  CT-derived deformation maps 

have also been used to evaluate the biomechanics of  the lung lobes independently in order 

to gain a deeper understanding of how the lobar surfaces slide against each other during 

breathing.26   While these techniques have been primarily applied to static images acquired 

at inspiration and expiration, they have recently been applied to images acquired under 

free-breathing conditions, as discussed further in section 3.2 

 
Figure 4-8. Mapping the Distance between Healthy and Emphysematous Voxels 
(A) Inspiration and expiration images are deformably co-registered. (B) Emphysematous 
regions in the inspiration image are identified (voxels with attenuation <-950 HU).  (C) 
Normal tissue voxels are clustered based on their Euclidean distance to the nearest 
emphysema voxel.  (D) Color map showing the distance of each normal voxel to the nearest 
emphysema voxel.  (Reproduced with permission from Bhatt et al. Am J Respir Crit Care 
Med. 2017.)19 
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3.  Functional Imaging Biomarkers of Pulmonary Biomechanics 

While the primary function of the lungs is to facilitate gas exchange, the biomechanical 

properties of the lungs are defined by the interdependent relationships between pressure 

and volume that drive lung ventilation.  This process can be studied using both static and 

dynamic imaging approaches.  Here, we summarize multiple ways in which pulmonary 

imaging can be used to visualize and quantify ventilation.  

 

3.1  Breath-hold Ventilation Imaging Biomarkers as Predictors of Airway Resistance 

Hyperpolarized noble gas MRI is used to capture a static image of ventilation.  To acquire 

this image, patients are instructed to inhale a known volume of hyperpolarized noble gas, 

and images are acquired during a 10-16 second breath-hold. Well-ventilated regions fill 

with hyperpolarized gas, and a bright signal is measured.  However, in regions where 

airflow is obstructed or filling constants are longer than the 10-16 seconds necessary for 

image acquisition, little signal is measured and these areas appear as a dark void in the 

image.  These dark voids are called ventilation defects, and correspond to regions of the 

lung that are poorly ventilated.109  In this way, inhaled hyperpolarized gas MRI can be used 

to visualize and quantify the distribution of inhaled gas within the lungs.  The normalized 

volume of ventilation defects in the lung is called the ventilation defect percent (VDP), and 

is a sensitive imaging biomarker used in research to evaluate diseases such as asthma and 

COPD.  Figure 9 shows 3He and 129Xe static ventilation maps for a healthy never-smoker, 

a subject with COPD, and a subject with asthma.  Pulmonary MRI can be used to identify 

the size, shape, and distribution of ventilation defects throughout the lung.  This 

measurement has been validated in many disease states, and is sensitive to changes due to 

provocation110, 111 or treatment.  Static ventilation measurements using hyperpolarized 3He 

MRI have been used to show response to bronchodilator treatment in asthma112, 113 and 

COPD,114 and MRI ventilation heterogeneity has been shown to be an independent 

predictor of asthma control.115  As shown in Figure 9, 3He and 129Xe provide very similar 

imaging information.  However, differences have been observed in both COPD116 and 

asthma.113  These differences are important for researchers to be aware of during the 

ongoing transition from 3He to 129Xe MRI due to restricted supply and rising costs of 
3He.117 
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Figure 4-9. Static Breath-hold 3He and 129Xe Ventilation MRI 
Hyperpolarized 3He (left) and 129Xe (right) static ventilation magnetic resonance images of 
a healthy never-smoker (top), an ex-smoker with COPD (center), and a subject with asthma 
(bottom).  Helium is shown in cyan and Xenon is shown in violet co-registered to a 
greyscale anatomical image. 
 
The information derived from ventilation MRI is complementary to the biomechanical 

information that is acquired using pulmonary function tests.  In order to understand the 

biomechanical measurements derived from the forced oscillation technique (FOT), recent 

studies have used combinations of measured and model-derived lung impedance estimates 

and measures of MRI-derived ventilation heterogeneity in order to probe the relationships 

between them.  Lui et al. demonstrated that the coefficient of variation of 3He MRI 
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ventilation is significantly correlated with respiratory impedance, as well as airway 

hyperresponsiveness in asthma.29  Hyperpolarized 3He MRI and image functional 

modeling have been used to study the relationship between airway closure and model-

predicted ventilation distributions; these results support the hypothesis that small airway 

dysfunction is a crucial component of airway narrowing in ventilation defects.30 In another 

recent study, model-predicted ventilation distributions were used to support the hypothesis 

that the heterogeneity of intrinsic properties of lung tissue likely contributes to 

heterogeneous ventilation.118  Patient-specific ventilation maps derived from 3He MRI 

have also been used with an asymmetric-branching airway tree model to generate estimates 

of airway impedance in asthma.31  The combination of ventilation MRI and computational 

modelling of airway mechanics provide complementary information that may provide a 

better understanding of the underlying biomechanical mechanisms that cause ventilation 

defects in obstructive lung disease. 

 

3.2  Dynamic Ventilation Imaging of Biomechanical Changes During the 

Respiratory Cycle 

Ventilation is a dynamic process, and this aspect of its nature can be captured in dynamic 

ventilation images using dual-energy xenon CT, multi-breath hyperpolarized gas MRI, 

oxygen-enhanced MRI, and Fourier Decomposition MRI.  Xenon-enhanced CT (Xe-CT) 

is a free-breathing technique used to measure the wash-in and washout of inhaled xenon.  

Animal studies performed using this technique have shown that the time for washout is 

greater than for wash-in.119  This technique has been applied in human studies to evaluate 

asthma,27 and has been shown to be feasible for the diagnosis of pulmonary embolism.120   

In a recent COPD study, wash-in and washout times were shown to be correlated with 

measures of lung tissue expansion derived from virtual, non-contrast CT images at 

inspiration and expiration.28 

 

Hyperpolarized noble gas MRI can also be used to acquire dynamic images of ventilation.  

In multi-breath wash-in MRI, the signal increase is measured as the subject inhales multiple 

doses of hyperpolarized 3He gas.121  In multi-breath inert gas washout imaging, the subject 

breathes normally after inhaling a single volume of hyperpolarized noble gas and the 
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decrease in signal intensity is measured as the gas is washed out of the subject’s lungs.122, 

123  Recently, both wash-in and washout imaging were combined in a single protocol, and 

used to evaluate healthy subjects, asymptomatic smokers, and subjects with COPD.34  

Using this protocol, COPD subjects and smokers were shown to have reduced mean 

specific ventilation as compared to healthy never-smokers.  Dynamic ventilation imaging 

may be able to differentiate between slow-filling regions of the lung and regions where 

absolutely no ventilation is present, which is unattainable with static breath-hold imaging.   

The techniques applied to multi-volume CT imaging in section 2.3 can also be applied to 

images at different points in the respiratory cycle, which enables measurements of lung 

deformation throughout the cycle rather than only at end inspiration and end expiration23.  

Using four-dimensional CT (4DCT), images are reconstructed at many points throughout 

the breathing cycle, and changes in volume can be measured throughout the entire process.  

This technique was used to show that deformation throughout the respiratory cycle is 

nonlinear, and demonstrates hysteresis.24  This non-linearity and hysteresis have been 

shown to be greater in asthmatics than in healthy subjects.25  4DCT images have also been 

used in the development of computational fluid dynamics models to study the mechanics 

and dynamics of the lungs in silico.124  

 

CT deformation techniques provide unique information that is complementary to 

measurements derived from the forced oscillation technique in an animal model of lung 

injury.20  In this animal study, transrespiratory pressure was also measured, and a Jacobian-

based estimate for total respiratory compliance (𝐶non
p1q ) was determined using the equation 

below.  

	 𝐶non
p1q =

𝑉e
∆𝑃1s

( 𝐽e − 1)
t

euY

	 (4.4)	

In the above equation, n denotes a single voxel, Vn is the volume of the voxel element, ΔPao 

is the overall transrespiratory pressure change, and Jn is the Jacobian. Using a combination 

of direct mechanical measurements and pulmonary imaging, voxel-wise measurements of 

mechanical properties of the tissue can be made.   
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Using MRI, lung deformations have been measured using hyperpolarized 3He71 and grid-

tagging methods adapted from cardiac imaging.125  First demonstrated at very low field 

strength (0.15T) in a healthy volunteer,126 this was later demonstrated at clinical field 

strengths in healthy volunteers.127, 128  This technique has been adapted for 3D image 

acquisition and analysis, and can be used to quantify kinematics and mechanics regionally 

in both healthy and diseased lung.21  This imaging tool has been used in the development 

of computational modeling of respiratory motion, providing the physiological information 

needed to advance computational models.129  

 

MRI methods may also be employed that rely on the change in pulmonary proton signal 

measured during breathing, including oxygen-enhanced MRI (OEMRI)74 and Fourier 

decomposition MRI (FDMRI).130  Static OE imaging can be used to identify ventilation 

defects, or areas of low signal enhancement.74  Recently, the feasibility of 3D isotropic 

OEMR imaging was demonstrated in healthy adults using an ultra-short echo time (UTE) 

pulse sequence.131  Dynamic OEMRI is used to measure the wash-in and washout of gas 

in a two-dimensional slice over time.  Dynamic OEMRI measures of wash-in and washout 

are correlated with diffusing capacity (DLCO) and FEV1,132 and demonstrate the 

gravitational dependence of specific ventilation in a supine subject.35  Oxygen enhanced 

MRI has been used to evaluate ventilation in cystic fibrosis,133 COPD,134 and asthma,36 and 

has comparable effectiveness to CT for clinical staging and evaluation of asthma.135  

FDMRI has been investigated in several diseases including COPD, bronchiectasis and 

severe asthma.32, 33  FDMRI ventilation measurements at 3T are correlated with 3He 

measurements of ventilation in COPD32 and asthma,32, 33  demonstrating the relationship 

between the signal observed in ventilation-weighted FDMRI and the ventilation 

distribution observed using 3He MRI.  Both of these techniques are able to probe functional 

changes that occur in asthma and COPD as a result of structural and mechanical changes 

such as tissue destruction and airway remodeling.   

 

Figure 10 shows FDMRI in subjects with asthma, bronchiectasis, and COPD.  

Hyperpolarized 3He ventilation  and CT images are shown for each subject, and it is clear 

that ventilation defects identified using FDMRI and hyperpolarized noble gas MRI are 
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spatially related.  This technique is particularly interesting for the study of ventilation and 

biomechanics because the measurements of ventilation are directly related to the 

mechanical expansion of the lungs.136  This highlights the fundamental relationship 

between ventilation and other biomechanical properties in the lung.   

 
Figure 4-10. Ventilation MRI and CT of Obstructive Lung Disease 
Hyperpolarized 3He MRI (left), Fourier decomposition (FD) MRI (center) and x-ray CT of 
subjects with asthma (top), bronchiectasis (center), and COPD (bottom).  Helium in cyan 
and FDMRI ventilation in magenta are co-registered to a greyscale anatomical image. 
 

4.  Discussion and Future Work  

Over the past five decades, pulmonary x-ray and MRI-based imaging tools and biomarkers 

have been developed and applied to the study of lung biomechanics.  As summarized in 
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Table 2, these methods have provided biomarkers and measurements stemming from ex 

vivo tissue and animal studies as well as in vivo investigations in small animal models and 

patients or healthy volunteers.  In combination, functional and structural lung imaging 

provides a wealth of information that can be used to generate a deeper understanding of 

lung biomechanics.  As shown in Figure 11 in 3D, co-registered functional MRI and 

anatomical CT images can be used to quantify abnormal airways and parenchymal tissue, 

identifying abnormal regions of the lung where either or both structure and function are 

impacted.  Together, with measurements of biomechanics made at the mouth and the 

imaging biomarkers themselves, there is the potential for regional insights that cannot be 

derived by any one measurement alone.  This is important because lung disease is spatially 

heterogeneous, and pulmonary imaging helps to identify and measure regional and local 

lung structure and function abnormalities.  These include microstructural techniques such 

as micro-CT and diffusion-weighted hyperpolarized MRI, and anatomical imaging 

techniques such as multi-volume CT and MRI.  There have also been several functional 

techniques developed, including static and dynamic ventilation CT and MRI techniques 

with or without inhaled contrast agents.  More work is required and future studies will 

likely include the development of advanced image acquisition and processing techniques 

in order to develop new biomarkers that may provide a deeper understanding of lung 

biomechanics in health and disease.  As pulmonary imaging technologies continue to 

improve, so should our ability to probe the relationships between the biomechanical 

properties of the lung tissue and structural and functional changes in vivo.  This is important 

as we embark on new cell and scaffold-based therapies of lung disease that require a deeper 

understanding of how lung biomechanics relates to lung structure-function. 
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Figure 4-11. MR and CT Imaging of Lung Structure and Function 
Function hyperpolarized 3He MRI (cyan) is shown co-registered to structural CT 
(greyscale) with a 3D rendering of the airway tree (yellow) for two asthmatic subjects. (S1) 
Subject 1: female, age=30yrs, FEV1=71%pred , R(5Hz)=10cmH2O*s/L, R(5-
19Hz)=4cmH2O*s/L. (S2) Subject 2: female, age=34yrs, FEV1=50%pred , 
R(5Hz)=6cmH2O*s/L, R(5-19Hz)=3cmH2O*s/L. 
 

5. Conclusions 

Recent advancements in thoracic imaging including x-ray based methods (micro-CT, 

clinical CT) as well as conventional and inhaled gas MRI provide a way to generate never-

before possible biomarkers of lung structure and function.  This imaging data may be 

acquired in tissue samples, animal models and patients and include high spatial and 

temporal resolution biomarkers and biomechanical information.  Beyond the 

measurements that pulmonary function tests, multiple breath washout studies and FOT 
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provide, lung imaging can localize lung biomechanical abnormalities.  As pulmonary 

imaging continues to develop and is translated into clinical use, it will continue to provide 

new and critically-needed insights into the relationships between lung structure, function 

and biomechanics. 
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