35 research outputs found

    AS-Path Prepending: There is no rose without a thorn

    Get PDF
    Inbound traffic engineering (ITE) - -the process of announcing routes to, e.g., maximize revenue or minimize congestion - -is an essential task for Autonomous Systems (ASes). AS Path Prepending (ASPP) is an easy to use and well-known ITE technique that routing manuals show as one of the first alternatives to influence other ASes' routing decisions. We observe that origin ASes currently prepend more than 25% of all IPv4 prefixes. ASPP consists of inflating the BGP AS path. Since the length of the AS path is the second tie-breaker in the BGP best path selection, ASPP can steer traffic to other routes. Despite being simple and easy to use, the appreciation of ASPP among operators and researchers is diverse. Some have questioned its need, effectiveness, and predictability, as well as voiced security concerns. Motivated by these mixed views, we revisit ASPP. Our longitudinal study shows that ASes widely deploy ASPP, and its utilization has slightly increased despite public statements against it. We surprisingly spot roughly 6k ASes originating at least one prefix with prepends that achieve no ITE goal. With active measurements, we show that ASPP effectiveness as an ITE tool depends on the AS location and the number of available upstreams; that ASPP security implications are practical; identify that more than 18% of the prepended prefixes contain unnecessary prepends that achieve no apparent goal other than amplifying existing routing security risks. We validate our findings in interviews with 20 network operators

    From the edge to the core : towards informed vantage point selection for internet measurement studies

    Get PDF
    Since the early days of the Internet, measurement scientists are trying to keep up with the fast-paced development of the Internet. As the Internet grew organically over time and without build-in measurability, this process requires many workarounds and due diligence. As a result, every measurement study is only as good as the data it relies on. Moreover, data quality is relative to the research question—a data set suitable to analyze one problem may be insufficient for another. This is entirely expected as the Internet is decentralized, i.e., there is no single observation point from which we can assess the complete state of the Internet. Because of that, every measurement study needs specifically selected vantage points, which fit the research question. In this thesis, we present three different vantage points across the Internet topology— from the edge to the Internet core. We discuss their specific features, suitability for different kinds of research questions, and how to work with the corresponding data. The data sets obtained at the presented vantage points allow us to conduct three different measurement studies and shed light on the following aspects: (a) The prevalence of IP source address spoofing at a large European Internet Exchange Point (IXP), (b) the propagation distance of BGP communities, an optional transitive BGP attribute used for traffic engineering, and (c) the impact of the global COVID-19 pandemic on Internet usage behavior at a large Internet Service Provider (ISP) and three IXPs.Seit den frühen Tagen des Internets versuchen Forscher im Bereich Internet Measu- rement, mit der rasanten Entwicklung des des Internets Schritt zu halten. Da das Internet im Laufe der Zeit organisch gewachsen ist und nicht mit Blick auf Messbar- keit entwickelt wurde, erfordert dieser Prozess eine Meg Workarounds und Sorgfalt. Jede Measurement Studie ist nur so gut wie die Daten, auf die sie sich stützt. Und Datenqualität ist relativ zur Forschungsfrage - ein Datensatz, der für die Analyse eines Problems geeiget ist, kann für ein anderes unzureichend sein. Dies ist durchaus zu erwarten, da das Internet dezentralisiert ist, d. h. es gibt keinen einzigen Be- obachtungspunkt, von dem aus wir den gesamten Zustand des Internets beurteilen können. Aus diesem Grund benötigt jede Measurement Studie gezielt ausgewählte Beobachtungspunkte, die zur Forschungsfrage passen. In dieser Arbeit stellen wir drei verschiedene Beobachtungspunkte vor, die sich über die gsamte Internet-Topologie erstrecken— vom Rand bis zum Kern des Internets. Wir diskutieren ihre spezifischen Eigenschaften, ihre Eignung für verschiedene Klas- sen von Forschungsfragen und den Umgang mit den entsprechenden Daten. Die an den vorgestellten Beobachtungspunkten gewonnenen Datensätze ermöglichen uns die Durchführung von drei verschiedenen Measurement Studien und damit die folgenden Aspekte zu beleuchten: (a) Die Prävalenz von IP Source Address Spoofing bei einem großen europäischen Internet Exchange Point (IXP), (b) die Ausbreitungsdistanz von BGP-Communities, ein optionales transitives BGP-Attribut, das Anwendung im Bereich Traffic-Enigneering findet sowie (c) die Auswirkungen der globalen COVID- 19-Pandemie auf das Internet-Nutzungsverhalten an einem großen Internet Service Provider (ISP) und drei IXPs

    DIAGNOSING AND IMPROVING THE PERFORMANCE OF INTERNET ANYCAST

    Get PDF
    IP anycast is widely used in Internet infrastructure, including many of the root and top-level DNS servers, major open DNS resolvers, and content delivery networks (CDNs). Increasing popularity of anycast in DNS resolvers involves it in most activities of Internet users. As a result, the performance of anycast deployments is critical to all the Internet users. What makes IP anycast such an attractive option for these globally replicated services are the desired properties that anycast would appear to achieve: reduced overall access latency for clients, improved scalability by distributing traffic across servers, and enhanced resilience to DDoS attacks. These desired properties, however, are not guaranteed. In anycast, a packet is directed to certain anycast site through inter-domain routing, which can fail to pick a route with better performance in terms of latency or load balance. Prior work has studied anycast deployments and painted a mixed picture of anycast performance: many clients of anycast are not served by their nearby anycast servers and experience large latency overheads; anycast sometimes does not balance load across sites effectively; the catchment of an anycast site is mostly stable, but it is very sensitive to routing changes. Although it was observed over a decade ago that anycast deployments can be inefficient, there exist surprisingly few explanations on the causes or solutions. In addition, most prior work evaluated only one or several deployments with measurement snapshots. I extended previous studies by large-scale and longitudinal measurements towards distinct anycast deployments, which can provide more complete insights on identifying performance bottlenecks and providing potential improvements. More importantly, I develop novel measurement techniques to identify the major causes for inefficiency in anycast, and propose a fix to it. In this dissertation, I defend the following thesis: Performance-unawareness of BGP routing leads to larger path inflation in anycast than in unicast; and with current topology and protocol support, a policy that selects routes based on geographic information could significantly reduce anycast inflation. In the first part of the dissertation, I use longitudinal measurements collected from a large Internet measurement platform towards distinct anycast deployments to quantitatively demonstrate the inefficiency in performance of anycast. I measured most root DNS servers, popular open DNS resolvers, and one of the major CDNs. With the passive and active measurements across multiple years, I illustrate that anycast performs poorly for most deployments that I measured: anycast is neither effective at directing queries to nearby sites, nor does it distribute traffic in a balanced manner. Furthermore, this longitudinal study over distinct anycast deployments shows that the performance has little correlation with number of sites. In the second part of the dissertation, I focus on identifying the root causes for the performance deficits in anycast. I develop novel measurement techniques to compare AS-level routes from client to multiple anycast sites. These techniques allow me to reaffirm that the major cause of the inefficiency in anycast is the performance- unawareness of inter-domain routing. With measurements from two anycast deployments, I illustrate how much latency inflation among clients can be attributed to the policy-based performance-unaware decisions made by BGP routing. In addition, I design BGP control plane experiments to directly reveal relative preference among routes, and how much such preference affects anycast performance. The newly discovered relative preferences shed light on improving state-of-art models of inter-domain routing for researchers. In the last part of the dissertation, I describe an incrementally deployable fix to the inefficiency of IP anycast. Prior work has proposed a particular deployment scheme for anycast to improve its performance: anycast servers should be deployed such that they all share the same upstream provider. However, this solution would require re-negotiating services that are not working under such a deployment. Moreover, to put the entire anycast service behind a single upstream provider introduces a single point of failure. In the last chapter, I show that a static hint with embedded geographic information in BGP announcements fixes most of the inefficiency in anycast. I evaluate the improvements from such static hints in BGP route selection mechanisms through simulation with real network traces. The simulation results show that the fix is promising: in the anycast deployments I evaluated, the fix reduces latency inflation for almost all clients, and reduces latency by 50ms for 23% to 33% of the clients. I further conduct control plane experiments to evaluate the effectiveness of the static hints in BGP announcements with real-world anycast deployments. This dissertation provides broad and longitudinal performance evaluation of distinct anycast deployments for different services, and identifies an at-fault weakness of BGP routing which is particularly amplified in anycast, i.e., route selection is based on policies and is unaware of performance. While applying the model of BGP routing to diagnose anycast, anycast itself serves as a magnifying glass to reveal new insights on the route selection process of the BGP in general. This work can help refine the model of route selection process that can be applied to various BGP- related studies. Finally, this dissertation provides suggestions to the community on improving anycast performance, which thus improves performance and reliability for many critical Internet infrastructure and ultimately benefits global Internet users

    Dovetail: Stronger Anonymity in Next-Generation Internet Routing

    Full text link
    Current low-latency anonymity systems use complex overlay networks to conceal a user's IP address, introducing significant latency and network efficiency penalties compared to normal Internet usage. Rather than obfuscating network identity through higher level protocols, we propose a more direct solution: a routing protocol that allows communication without exposing network identity, providing a strong foundation for Internet privacy, while allowing identity to be defined in those higher level protocols where it adds value. Given current research initiatives advocating "clean slate" Internet designs, an opportunity exists to design an internetwork layer routing protocol that decouples identity from network location and thereby simplifies the anonymity problem. Recently, Hsiao et al. proposed such a protocol (LAP), but it does not protect the user against a local eavesdropper or an untrusted ISP, which will not be acceptable for many users. Thus, we propose Dovetail, a next-generation Internet routing protocol that provides anonymity against an active attacker located at any single point within the network, including the user's ISP. A major design challenge is to provide this protection without including an application-layer proxy in data transmission. We address this challenge in path construction by using a matchmaker node (an end host) to overlap two path segments at a dovetail node (a router). The dovetail then trims away part of the path so that data transmission bypasses the matchmaker. Additional design features include the choice of many different paths through the network and the joining of path segments without requiring a trusted third party. We develop a systematic mechanism to measure the topological anonymity of our designs, and we demonstrate the privacy and efficiency of our proposal by simulation, using a model of the complete Internet at the AS-level

    Improving Anycast with Measurements

    Get PDF
    Since the first Distributed Denial-of-Service (DDoS) attacks were launched, the strength of such attacks has been steadily increasing, from a few megabits per second to well into the terabit/s range. The damage that these attacks cause, mostly in terms of financial cost, has prompted researchers and operators alike to investigate and implement mitigation strategies. Examples of such strategies include local filtering appliances, Border Gateway Protocol (BGP)-based blackholing and outsourced mitigation in the form of cloud-based DDoS protection providers. Some of these strategies are more suited towards high bandwidth DDoS attacks than others. For example, using a local filtering appliance means that all the attack traffic will still pass through the owner's network. This inherently limits the maximum capacity of such a device to the bandwidth that is available. BGP Blackholing does not have such limitations, but can, as a side-effect, cause service disruptions to end-users. A different strategy, that has not attracted much attention in academia, is based on anycast. Anycast is a technique that allows operators to replicate their service across different physical locations, while keeping that service addressable with just a single IP-address. It relies on the BGP to effectively load balance users. In practice, it is combined with other mitigation strategies to allow those to scale up. Operators can use anycast to scale their mitigation capacity horizontally. Because anycast relies on BGP, and therefore in essence on the Internet itself, it can be difficult for network engineers to fine tune this balancing behavior. In this thesis, we show that that is indeed the case through two different case studies. In the first, we focus on an anycast service during normal operations, namely the Google Public DNS, and show that the routing within this service is far from optimal, for example in terms of distance between the client and the server. In the second case study, we observe the root DNS, while it is under attack, and show that even though in aggregate the bandwidth available to this service exceeds the attack we observed, clients still experienced service degradation. This degradation was caused due to the fact that some sites of the anycast service received a much higher share of traffic than others. In order for operators to improve their anycast networks, and optimize it in terms of resilience against DDoS attacks, a method to assess the actual state of such a network is required. Existing methodologies typically rely on external vantage points, such as those provided by RIPE Atlas, and are therefore limited in scale, and inherently biased in terms of distribution. We propose a new measurement methodology, named Verfploeter, to assess the characteristics of anycast networks in terms of client to Point-of-Presence (PoP) mapping, i.e. the anycast catchment. This method does not rely on external vantage points, is free of bias and offers a much higher resolution than any previous method. We validated this methodology by deploying it on a testbed that was locally developed, as well as on the B root DNS. We showed that the increased \textit{resolution} of this methodology improved our ability to assess the impact of changes in the network configuration, when compared to previous methodologies. As final validation we implement Verfploeter on Cloudflare's global-scale anycast Content Delivery Network (CDN), which has almost 200 global Points-of-Presence and an aggregate bandwidth of 30 Tbit/s. Through three real-world use cases, we demonstrate the benefits of our methodology: Firstly, we show that changes that occur when withdrawing routes from certain PoPs can be accurately mapped, and that in certain cases the effect of taking down a combination of PoPs can be calculated from individual measurements. Secondly, we show that Verfploeter largely reinstates the ping to its former glory, showing how it can be used to troubleshoot network connectivity issues in an anycast context. Thirdly, we demonstrate how accurate anycast catchment maps offer operators a new and highly accurate tool to identify and filter spoofed traffic. Where possible, we make datasets collected over the course of the research in this thesis available as open access data. The two best (open) dataset awards that were awarded for these datasets confirm that they are a valued contribution. In summary, we have investigated two large anycast services and have shown that their deployments are not optimal. We developed a novel measurement methodology, that is free of bias and is able to obtain highly accurate anycast catchment mappings. By implementing this methodology and deploying it on a global-scale anycast network we show that our method adds significant value to the fast-growing anycast CDN industry and enables new ways of detecting, filtering and mitigating DDoS attacks

    On the Analysis of the Internet from a Geographic and Economic Perspective via BGP Raw Data

    Get PDF
    The Internet is nowadays an integral part of the everyone's life, and will become even more important for future generations. Proof of that is the exponential growth of the number of people who are introduced to the network through mobile phones and smartphones and are connected 24/7. Most of them rely on the Internet even for common services, such as online personal bank accounts, or even having a videoconference with a colleague living across the ocean. However, there are only a few people who are aware of what happens to their data once sent from their own devices towards the Internet, and an even smaller number -- represented by an elite of researchers -- have an overview of the infrastructure of the real Internet. Researchers have attempted during the last years to discover details about the characteristics of the Internet in order to create a model on which it would be possible to identify and address possible weaknesses of the real network. Despite several efforts in this direction, currently no model is known to represent the Internet effectively, especially due to the lack of data and the excessive coarse granularity applied by the studies done to date. This thesis addresses both issues considering Internet as a graph whose nodes are represented by Autonomous Systems (AS) and connections are represented by logical connections between ASes. In the first instance, this thesis has the objective to provide new algorithms and heuristics for studying the Internet at a level of granularity considerably more relevant to reality, by introducing economic and geographical elements that actually limit the number of possible paths between the various ASes that data can undertake. Based on these heuristics, this thesis also provides an innovative methodology suitable to quantify the completeness of the available data to identify which ASes should be involved in the BGP data collection process as feeders in order to get a complete and real view of the core of the Internet. Although the results of this methodology highlights that current BGP route collectors are not able to obtain data regarding the vast majority of the ASes part of the core of the Internet, the situation can still be improved by creating new services and incentives to attract the ASes identified by the previous methodology and introduce them as feeders of a BGP route collector

    BGP based Solution for International ISP Blocking

    Get PDF

    Strategies for internet route control: past, present and future

    Get PDF
    Uno de los problemas más complejos en redes de computadores es el de proporcionar garantías de calidad y confiabilidad a las comunicaciones de datos entre entidades que se encuentran en dominios distintos. Esto se debe a un amplio conjunto de razones -- las cuales serán analizadas en detalle en esta tesis -- pero de manera muy breve podemos destacar: i) la limitada flexibilidad que presenta el modelo actual de encaminamiento inter-dominio en materia de ingeniería de tráfico; ii) la naturaleza distribuida y potencialmente antagónica de las políticas de encaminamiento, las cuales son administradas individualmente y sin coordinación por cada dominio en Internet; y iii) las carencias del protocolo de encaminamiento inter-dominio utilizado en Internet, denominado BGP (Border Gateway Protocol).El objetivo de esta tesis, es precisamente el estudio y propuesta de soluciones que permitan mejorar drásticamente la calidad y confiabilidad de las comunicaciones de datos en redes conformadas por múltiples dominios.Una de las principales herramientas para lograr este fin, es tomar el control de las decisiones de encaminamiento y las posibles acciones de ingeniería de tráfico llevadas a cabo en cada dominio. Por este motivo, esta tesis explora distintas estrategias de como controlar en forma precisa y eficiente, tanto el encaminamiento como las decisiones de ingeniería de tráfico en Internet. En la actualidad este control reside principalmente en BGP, el cual como indicamos anteriormente, es uno de los principales responsables de las limitantes existentes. El paso natural sería reemplazar a BGP, pero su despliegue actual y su reconocida operatividad en muchos otros aspectos, resultan claros indicadores de que su sustitución (ó su posible evolución) será probablemente gradual. En este escenario, esta tesis propone analizar y contribuir con nuevas estrategias en materia de control de encaminamiento e ingeniería de tráfico inter-dominio en tres marcos temporales distintos: i) en la actualidad en redes IP; ii) en un futuro cercano en redes IP/MPLS (MultiProtocol Label Switching); y iii) a largo plazo en redes ópticas, modelando así una evolución progresiva y realista, facilitando el reemplazo gradual de BGP.Más concretamente, este trabajo analiza y contribuye mediante: - La propuesta de estrategias incrementales basadas en el Control Inteligente de Rutas (Intelligent Route Control, IRC) para redes IP en la actualidad. Las estrategias propuestas en este caso son de carácter incremental en el sentido de que interaccionan con BGP, solucionando varias de las carencias que éste presenta sin llegar a proponer aún su reemplazo. - La propuesta de estrategias concurrentes basadas en extender el concepto del PCE (Path Computation Element) proveniente del IETF (Internet Engineering Task Force) para redes IP/MPLS en un futuro cercano. Las estrategias propuestas en este caso son de carácter concurrente en el sentido de que no interaccionan con BGP y pueden ser desplegadas en forma paralela. En este caso, BGP continúa controlando el encaminamiento y las acciones de ingeniería de tráfico inter-dominio del tráfico IP, pero el control del tráfico IP/MPLS se efectúa en forma independiente de BGP mediante los PCEs.- La propuesta de estrategias que reemplazan completamente a BGP basadas en la incorporación de un nuevo agente de control, al cual denominamos IDRA (Inter-Domain Routing Agent). Estos agentes proporcionan un plano de control dedicado, físicamente independiente del plano de datos, y con gran capacidad computacional para las futuras redes ópticas multi-dominio.Los resultados expuestos aquí validan la efectividad de las estrategias propuestas, las cuales mejoran significativamente tanto la concepción como la performance de las actuales soluciones en el área de Control Inteligente de Rutas, del esperado PCE en un futuro cercano, y de las propuestas existentes para extender BGP al área de redes ópticas.One of the most complex problems in computer networks is how to provide guaranteed performance and reliability to the communications carried out between nodes located in different domains. This is due to several reasons -- which will be analyzed in detail in this thesis -- but in brief, this is mostly due to: i) the limited capabilities of the current inter-domain routing model in terms of Traffic Engineering (TE); ii) the distributed and potentially conflicting nature of policy-based routing, where routing policies are managed independently and without coordination among domains; and iii) the clear limitations of the inter-domain routing protocol, namely, the Border Gateway Protocol (BGP). The goal of this thesis is precisely to study and propose solutions allowing to drastically improve the performance and reliability of inter-domain communications. One of the most important tools to achieve this goal, is to control the routing and TE decisions performed by routing domains. Therefore, this thesis explores different strategies on how to control such decisions in a highly efficient and accurate way. At present, this control mostly resides in BGP, but as mentioned above, BGP is in fact one of the main causes of the existing limitations. The natural next-step would be to replace BGP, but the large installed base at present together with its recognized effectiveness in other aspects, are clear indicators that its replacement (or its possible evolution) will probably be gradually put into practice.In this framework, this thesis proposes to to study and contribute with novel strategies to control the routing and TE decisions of domains in three different time frames: i) at present in IP multi-domain networks; ii) in the near-future in IP/MPLS (MultiProtocol Label Switching) multi- domain networks; and iii) in the future optical Internet, modeling in this way a realistic and progressive evolution, facilitating the gradual replacement of BGP.More specifically, the contributions in this thesis can be summarized as follows. - We start by proposing incremental strategies based on Intelligent Route Control (IRC) solutions for IP networks. The strategies proposed in this case are incremental in the sense that they interact with BGP, and tackle several of its well-known limitations. - Then, we propose a set of concurrent route control strategies for MPLS networks, based on broadening the concept of the Path Computation Element (PCE) coming from the IETF (Internet Engineering Task Force). Our strategies are concurrent in the sense that they do not interact directly with BGP, and they can be deployed in parallel. In this case, BGP still controlls the routing and TE actions concerning regular IP-based traffic, but not how IP/MPLS paths are routed and controlled. These are handled independently by the PCEs.- We end with the proposal of a set of route control strategies for multi-domain optical networks, where BGP has been completely replaced. These strategies are supported by the introduction of a new route control element, which we named Inter-Domain Routing Agent (IDRA). These IDRAs provide a dedicated control plane, i.e., physically independent from the data plane, and with high computational capacity for future optical networks.The results obtained validate the effectiveness of the strategies proposed here, and confirm that our proposals significantly improve both the conception and performance of the current IRC solutions, the expected PCE in the near-future, as well as the existing proposals about the optical extension of BGP.Postprint (published version

    Kirin: Hitting the Internet with Millions of Distributed IPv6 Announcements

    Full text link
    The Internet is a critical resource in the day-to-day life of billions of users. To support the growing number of users and their increasing demands, operators have to continuously scale their network footprint -- e.g., by joining Internet Exchange Points -- and adopt relevant technologies -- such as IPv6. IPv6, however, has a vastly larger address space compared to its predecessor, which allows for new kinds of attacks on the Internet routing infrastructure. In this paper, we revisit prefix de-aggregation attacks in the light of these two changes and introduce Kirin -- an advanced BGP prefix de-aggregation attack that sources millions of IPv6 routes and distributes them via thousands of sessions across various IXPs to overflow the memory of border routers within thousands of remote ASes. Kirin's highly distributed nature allows it to bypass traditional route-flooding defense mechanisms, such as per-session prefix limits or route flap damping. We analyze the theoretical feasibility of the attack by formulating it as a Integer Linear Programming problem, test for practical hurdles by deploying the infrastructure required to perform a small-scale Kirin attack using 4 IXPs, and validate our assumptions via BGP data analysis, real-world measurements, and router testbed experiments. Despite its low deployment cost, we find Kirin capable of injecting lethal amounts of IPv6 routes in the routers of thousands of ASes
    corecore