475 research outputs found

    All-Polymer Microfluidic Systems with integrated Nanostructures for Cell Handling

    Get PDF

    A Customer Programmable Microfluidic System

    Get PDF
    Microfluidics is both a science and a technology offering great and perhaps even revolutionary capabilities to impact the society in the future. However, due to the scaling effects there are unknown phenomena and technology barriers about fluidics in microchannel, material properties in microscale and interactions with fluids are still missing. A systematic investigation has been performed aiming to develop A Customer Programmable Microfluidic System . This innovative Polydimethylsiloxane (PDMS)-based microfluidic system provides a bio-compatible platform for bio-analysis systems such as Lab-on-a-chip, micro-total-analysis system and biosensors as well as the applications such as micromirrors. The system consists of an array of microfluidic devices and each device containing a multilayer microvalve. The microvalve uses a thermal pneumatic actuation method to switch and/or control the fluid flow in the integrated microchannels. It provides a means to isolate samples of interest and channel them from one location of the system to another based on needs of realizing the customers\u27 desired functions. Along with the fluid flow control properties, the system was developed and tested as an array of micromirrors. An aluminum layer is embedded into the PDMS membrane. The metal was patterned as a network to increase the reflectivity of the membrane, which inherits the deformation of the membrane as a mirror. The deformable mirror is a key element in the adaptive optics. The proposed system utilizes the extraordinary flexibility of PDMS and the addressable control to manipulate the phase of a propagating optical wave front, which in turn can increase the performance of the adaptive optics. Polydimethylsiloxane (PDMS) has been widely used in microfabrication for microfluidic systems. However, few attentions were paid in the past to mechanical properties of PDMS. Importantly there is no report on influences of microfabrication processes which normally involve chemical reactors and biologically reaction processes. A comprehensive study was made in this work to study fundamental issues such as scaling law effects on PDMS properties, chemical emersion and temperature effects on mechanical properties of PDMS, PDMS compositions and resultant properties, as well as bonding strength, etc. Results achieved from this work will provide foundation of future developments of microfluidics utilizing PDMS

    Micro-nanostructured polymer surfaces using injection molding : a review

    Get PDF
    Micro injection molding is in great demand due to its efficiency and applicability for industry. Polymer surfaces having micro-nanostructures can be produced using injection molding. However, it is not as straightforward as scaling-up of conventional injection molding. The paper is organized based on three main technical areas: mold inserts, processing parameters, and demolding. An accurate set of processing parameters is required to achieve precise micro injection molding. This review provides a comparative description of the influence of processing parameters on the quality of final parts and the precision of final product dimensions in both thermoplastic polymers and rubber materials. It also highlights the key parameters to attain a high quality micro-nanostructured polymer and addresses the contradictory effects of these parameters on the final result. Moreover, since the produced part should be properly demolded to possess a high quality textured polymer, various demolding techniques are assessed in this review as well

    Recent advances in 3D printing of biomaterials.

    Get PDF
    3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue engineering, diagnostic platforms, and drug delivery systems. Fueled by the recent explosion in public interest and access to affordable printers, there is renewed interest to combine stem cells with custom 3D scaffolds for personalized regenerative medicine. Before 3D Printing can be used routinely for the regeneration of complex tissues (e.g. bone, cartilage, muscles, vessels, nerves in the craniomaxillofacial complex), and complex organs with intricate 3D microarchitecture (e.g. liver, lymphoid organs), several technological limitations must be addressed. In this review, the major materials and technology advances within the last five years for each of the common 3D Printing technologies (Three Dimensional Printing, Fused Deposition Modeling, Selective Laser Sintering, Stereolithography, and 3D Plotting/Direct-Write/Bioprinting) are described. Examples are highlighted to illustrate progress of each technology in tissue engineering, and key limitations are identified to motivate future research and advance this fascinating field of advanced manufacturing

    Fabrication, bonding, assembly, and testing of metal-based microchannel devices

    Get PDF
    Microsystem technologies are believed to be an important part of the contemporary technological foundation and are becoming a commercially significant specialty area in manufacturing. The design and fabrication of microscale engineering structures has the potential of generating revolutionary changes in many products over a wide range of industrial sectors. Metal-based microchannel heat exchangers (MHEs) promise high heat transfer coefficients together with mechanical robustness, and are of interest for a wide range of applications. Fabrication technologies capable of creating high-aspect-ratio microscale structures (HARMSs) in metals such as Cu at low cost and high throughput are of particular interest. Likewise, simple and reliable bonding and assembly techniques are critical for building functional metal-based microfluidic devices. This dissertation focuses on various aspects of fabrication, bonding, assembly, and testing of metal-based microdevices. In chapter 1, existing techniques for fabricating metal-based HARMSs are reviewed briefly and compared with each other. A new technique for fabricating metal-based HARMSs, high temperature compression molding, is introduced. Two related issues, bonding and assembly of metal-based HARMSs and testing of assembled metal-based microdevices are discussed respectively. In chapters 2-6, Cu- and Al- based HARMSs were successfully bonded using Al or Sn thin foil intermediate layers and co-deposited Al-Ge thin film intermediate layers, respectively. Quantitative evaluation of bond strengths was carried out as a function of various bonding parameters. Tensile bond strengths are shown to be ~30MPa for bonded Cu pieces and to exceed 75MPa, reaching as high as 165MPa, for boned Al pieces. Detailed characterizations of the micro-/nano- scale structure of buried bonding interfaces were conducted to rationalize results of mechanical testing. Chapters 7&8 talk about systematic experimentation of fabrication, bonding, and testing of Cu- and Al- based MHEs, and detailed results and discussion on flow and heat transfer performance of these MHEs under two different testing configurations, constant heat flux and constant wall temperature. The results show the increase of surface roughness in the replicated microchannels can cause significant improvements to microchannel heat exchanger performance. Finally, chapter 9 summarizes this dissertation research with main results and achievements. Future work is also discussed in this chapter

    Shear Induced Fiber Alignment and Acoustic Nanoparticle Micropatterning during Stereolithography

    Get PDF
    The stereolithograpy method, which consists of a light source to polymerize the liquid photocurable resin, can produce structures with complex shapes. Most of the produced structures are unreinforced neat pieces. The addition of reinforcement, such as fibers and particles are regularly utilized to improve mechanical properties and electrical conductivity of the printed parts. Added fibers might be chosen as short or continuous fibers and the properties of the reinforced composite materials can be significantly improved by aligning the fibers in preferred directions. The first aim of this dissertation is to enhance the tensile and flexural strengths of the 3d printed composites by using shear induced alignment of short fibers. The second aim is to print parts with conductive embedded microstructures by utilizing acoustic patterning of conductive particles. Both aims are utilized during the stereolithography process.A lateral oscillation mechanism, which is inspired by large amplitude oscillatory shear test, was designed to generate shear flow. The alignment method, which combines the lateral oscillation mechanism with 3d printed wall patterns, is developed to utilized shear flow to align the fibers in the patterned wall direction. Shear rate amplitude, fiber concentration, and patterned wall angle were considered as parameters during this study.The stereolithography device incorporated with oscillation mechanism was utilized to produce short fiber reinforced ceramic composites and short nanofiber reinforced polymer composites. Nickel coated short carbon fibers, alumina and silica short fibers were used to reinforce the ceramic matrix with different fiber contents. The printed walls were demonstrated to align the short fibers parallel to the wall which was different from the oscillation direction up to 45°. The flexural strength of the ceramic matrix was improved with the addition and alignment of the short fibers. The alumina nanofibers were used as reinforcement in the photocurable polymer resin. The alumina nanofibers were treated with a silane coupling agent to improve interfacial bond between alumina fibers and polymer resin matrix. The aligned specimen demonstrated improvement in tensile strength with increasing nanowire content and their alignment.A hexagon shaped acoustic tweezer was incorporated into the stereolithography device to pattern conductive micro- and nanoparticles. This new approach for particle microstructuring via acoustic aligning during the stereolithography was used to produce embedded conductive microstructures in 3d printed parts. The acoustic tweezer was used to pattern the conductive particles into horizontal, 60°, and 120° parallel striped lines. The influence of the particle percentage content onto the electrical resistivity and thickness of the patterned lines were also investigated for different materials such as copper, magnetite, and carbon fiber. The copper patterns show less resistance to electrical currents compare to magnetite and carbon nanofiber patterns. Additionally, the influence of the particle concentration to the height of the pattern was studied and the data was utilized to achieve conductivity along z-axis. Later, this approach was used to fabricate examples of embedded conductive complex 3D microstructures

    Advances in Unconventional Lithography

    Get PDF
    The term Lithography encompasses a range of contemporary technologies for micro and nano scale fabrication. Originally driven by the evolution of the semiconductor industry, lithography has grown from its optical origins to demonstrate increasingly fine resolution and to permeate fields as diverse as photonics and biology. Today, greater flexibility and affordability are demanded from lithography more than ever before. Diverse needs across many disciplines have produced a multitude of innovative new lithography techniques. This book, which is the final instalment in a series of three, provides a compelling overview of some of the recent advances in lithography, as recounted by the researchers themselves. Topics discussed include nanoimprinting for plasmonic biosensing, soft lithography for neurobiology and stem cell differentiation, colloidal substrates for two-tier self-assembled nanostructures, tuneable diffractive elements using photochromic polymers, and extreme-UV lithography
    • …
    corecore