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Abstract 
Micro injection molding is in great demand due to its efficiency and applicability for industry. 

Polymer surfaces having micro-nanostructures can be produced using injection molding. 

However, it is not as straightforward as scaling-up of conventional injection molding. The paper 

is organized based on three main technical areas: mold inserts, processing parameters, and 

demolding. An accurate set of processing parameters is required to achieve precise micro 

injection molding. This review provides a comparative description of the influence of processing 

parameters on the quality of final parts and the precision of final product dimensions in both 

thermoplastic polymers and rubber materials. It also highlights the key parameters to attain a 

high quality micro-nanostructured polymer and addresses the contradictory effects of these 

parameters on the final result. Moreover, since the produced part should be properly demolded to 

possess a high quality textured polymer, various demolding techniques are assessed in this 

review as well.    
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1. Introduction 
Among the different polymer processing techniques used to produce materials having a 

specifically desired size and shape, injection molding is highly preferred for mass production 

systems, and has been used for many years in the polymer industry 
1-2

. This technology is highly 

sought after for industrial applications due to: the low cost in the fabrication of polymeric parts 

especially for large quantities; versatile shapes; short cycle times; simple automation; and the 

possibility of simultaneous shaping of bulk and surface structures 
3-5

. 

Surfaces with micro-nanostructures and an aspect ratio (ratio of height to width) of more than 1:1 

are used in a number of applications including antireflection coatings, antipollution and self-

cleaning surfaces, cell culturing and differentiation, microlenses, bioinspired non-reflective, dry 

adhesion surfaces, and superhydrophobic surfaces 
1-3, 6-11

. Potential applications of these 

nanostructured surfaces are rapidly expanding. This popularity has led to studies that aim to use 

injection molding processes to produce microfeatured surfaces and as economically as possible 
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12-13
. Micro injection molding (μIM) technology is comprised of three different subcategories 

with regards to micro-sized phenomena involved:  

I. Parts having a weight of milligrams or less; 

II. Parts with microstructures less than 100 µm, created by replication using a micro-

nanostructured mold; 

III. Parts having tolerance in the micrometer range but without dimension limits 
14-16

.  

A general definition of injection molding of surfaces with micro-nanostructure can be considered 

as the production of parts with micro and/or nanostructure on its surface 
17

. The critical aspect in 

the replication of micron or sub-micron features on the polymer surface is the necessary high 

precision involved 
5, 18

. Indeed, the precision of any replication depends on many parameters that 

may or may not be possible to control. Such parameters include feature size, shape and 

orientation relative to the filling flow direction, the distance of the features from the injection 

gate, and the aspect ratio. However, the most important parameters are the processing conditions 

of the selected injection molding process, e.g. mold temperature, melt temperature, holding 

pressure, injection velocity, holding time, and part thickness. There are many contradictions 

concerning the effect of these processing parameters, with mold temperature, holding pressure, 

and injection velocity being most important and having an inevitable influence on the quality of 

final replication. 

Micro injection molding consists of steps similar to those of a conventional injection molding: 

filling, packing, holding, cooling, and demolding phases. The filling of cavities in conventional 

injection molding is, however, not as complex as filling microfeatured cavities [12]. In the micro 

injection molding process, the microstructures not only contribute to harden the polymer melt 

filling into the microstructures, but also increase the cooling rate of the material in the mold due 

to the increase of the surface to volume ratio. Therefore, proper filling of the material into the 

micro-nanostructures becomes more difficult 
19

. Moreover, both a complete filling of a structure 

and its associated demolding are considered as the main factors for achieving a high quality 

replication 
3
. Consequently, proper demolding is as important as appropriate filling.  

It is very optimistic to assume that the melt materials may fill the microstructures, cool down, 

solidify, and are then ejected to produce a perfectly replicated structure on the surface 
3
. Given 

that replication quality is highly influenced by mold temperature, melt temperature, holding 

pressure, and injection velocity, any small change in one of these parameters could markedly 

affect the quality of the replicated surface. Therefore, the filling process could be enhanced by 

optimizing the process conditions and demolding would be improved by using a low surface 

energy coating on the mold surface.  

Various types of polymers are used to produce parts having microfeatured surfaces or micro 

components. As different polymers have various rheological, thermal, mechanical, electrical, and 

optical properties, polymers with the desired flow properties and a low viscosity at high 

temperatures are suitable as materials for microinjection molding 
20

. A wide range of polymer 

materials have been studied 
19, 21-26

 including thermoplastic polymers such as polystyrene (PS) 
18

, 

cyclic olefin copolymer (COC) 
3, 20, 27-28

, poly methyl methacrylate (PMMA) 
19, 27

, polypropylene 
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(PP) 
19

, polysulfone (PSU), polyoxymethylene (POM) 
29

, polyethylene (PE) 
19

, polyamide (PA) 
30-31

, poly ether ether ketone (PEEK) 
32-33

, polycarbonate (PC) 
34-35

, liquid crystal polymer (LCP) 
29

, polybutylene terephthalate (PBT) 
36

, acrylonitrile butadiene styrene (ABS) 
35

, polyphenyl 

ether (PPE) 
37

, and liquid silicone rubber (LSR) as a crosslinking polymer material 
38

. To the best 

of our knowledge, only a few studies have been carried out on rubber materials 
38

, a research 

area that our research group is actively investigating. 

In the present review paper, three steps of the micro-nano injection molding process have 

essentially been considered. The first step is insert-making, where different kinds of materials 

used as inserts, considering their advantages and disadvantages. As the processing parameters 

have the most important role in injection molding, the effects of each processing parameter are 

thoroughly investigated with regards to the replication quality of the molded part, and 

contradictions are scrutinized. It has been tried to organize the effects of these parameters based 

on their positive or negative influence on the replication quality. It is noteworthy that final 

decision to set a series of processing parameters would depend on type of polymer material, 

geometry and dimensions and many other conditions in the process. Finally, the demolding 

methods, the challenges and solutions will be studied.  

2. Mold Inserts 
As tool making is expensive and time consuming, it is recommended for mass production. In the 

case of prototyping, using inserts could allow the industry to avoid multiple tool manufacturing. 

Consequently, the production of varied surface features would not be as expensive and time 

consuming 
39

. An insert (also called a stamper or inlay) is an exchangeable cavity that is inserted 

into the mold. It extends the useful life of the tool and provides the possibility of changing and 

testing various structures and conditions using the main mold without the need to replace the 

complete mold and undergo expensive tool making process. Moreover, replacement of a worn 

insert is much less expensive than replacing a mold 
40

. The use of interchangeable inserts also 

facilitates the creation of patterns on one or more of the cavity walls and provides micro-

nanostructured mold surfaces ready to be replicated 
41

. As the quality of the mold insert is higher, 

the success chance of the replication is more likely.  

2.1. Insert Material 

Inserts in the injection molding process can be fabricated from a number of potential inserts. 

Silicon is the conventional material because of the facility of silicon inserts fabrication. 

However, the convenience of using silicon is limited by its brittle behavior when subjected to the 

high pressure encountered during injection molding processes 
2, 34, 42

. Thus, other materials may 

offer some advantages over the traditional use of silicon for inserts. 

Metals such as nickel 
2-3, 43-44

, steel 
18, 29, 44

, BMG (Bulk Metallic Glass) 
43-45

, and aluminum 
46

 

represent other options for insert material, especially considering the ease of creating patterns via 

mechanical machining and electroforming of metals 
2
. 

Metallic inserts, however, increase the cooling rate of molten polymer due to their high thermal 

conductivity and diffusivity. This high cooling rate leads to the formation of a frozen skin layer 
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between the polymer melt and the mold surface. Therefore, this non-melt skin layer does not let 

the molten polymer penetrate into the micro-nanostructures. The result is a poor replication 
1
. 

As such there are two options to circumvent this problem. The first is to apply a variotherm 

technique that takes advantage of the high-speed cooling and heating of the mold. This technique 

will be assessed later in section 3.1.1. The other option is to replace the metal insert with inserts 

composed of a thermally insulating polymer (heat retardation technique) that has a low thermal 

conductivity.   

For this latter option, the inserts, composed of materials such as polymers, reduce the rate of 

cooling of the polymer melt. Accordingly, molten materials have much more time to fill the 

micro-nanostructures prior to solidifying. The most common polymers used for this purpose are 

PET, PUA 
4
, PI 

39
, PVA 

47-48
, PC 

39
, and PEEK 

33
. 

Use of polymeric inserts during both the packing and filling phases allows polymer melts to flow 

easily into the micropatterns. As shown in Fig.1, in the presence of a polymeric insert, varied in 

thickness, polymer melt had a slower decrease in temperature. Viscosity, as a function of 

temperature, remained low for a longer period and the fluidity of the polymer melt was 

significantly improved 
4
. 

 

  

Fig.1. Changes in mold surface temperature over time, with and without a polymeric stamper 4 

Where a mold insert is deposited in only half the mold, an uneven cooling between the halves is 

observed 
14

, possibly due to the different materials the mold and insert are made of. Therefore, it 

is recommended to use inserts that have similar thermal properties as the mold.  

Ultra-violet cured poly(urethane acrylate) (PUA) is another possible insert material. Due to the 

formation of strong crosslinked chemical bonds upon curing, the UV cured PUA does not melt. 

It is considered as a Rigiflex or ―rigid-yet-soft‖ insert having a relatively high rigidity of more 

than 40 MPa and a low surface energy. As Rigiflex offers a combination of rigid and soft molds, 

they can be used instead of a hard or soft mold in many situations 
4, 49

. Park et al. 
4
 used UV 
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curable PUA resin and observed an effective delayed solidification near the mold surface. They 

also obtained desirable releasing characteristics that facilitated the demolding process. 

Some polymeric materials, such as poly(vinyl alcohol) (PVA) 
47

 and PDMS 
50

, are used as 

inserts in hot embossing processes due to their being economical and offering effortless 

technique to create microfeatures. Regardless, the need remains for further investigation of these 

polymers to adapt them for injection molding process. It is, however, noteworthy that the 

polymeric inserts also deal with the same challenges as the metal inserts, i.e., proper filling 
39

. 

It is believed that during demolding, ejection forces can damage and/or deform the micro-

nanopatterns. This problem will be discussed further in the demolding section of this review. A 

combination of film injection molding (FIM) and nanoimprint lithography methods is proposed 

to overcome this problem. In this method, PVA film is exploited as a sacrificing stamper. 

Benefitting from their water solubility properties, PVA films can be removed from the substrate 

material without serious difficulty. As a result, there is limited formation of the solid layer. 

However, in addition to PVA, any other polymer can be used if it is possible to be removed 

selectively with its special solvent 
47

. 

A number of materials other than metals and polymers, like silicon, quartz 
39

, and gallium 

arsenide (GaAs), have been used 
34

 with various achievements. Yoon et al. 
34

 used silicon and 

GaAs wafers as inserts in a steel mold. To ensure that high pressure during the process did not 

damage the inserts, a 0.4-mm-thick polytetrafluoroethylene (PTFE) sheet was placed between 

the two aforementioned inserts. 

The concept of hybrid inserts has been proposed 
39, 51

. Practically, a hybrid insert consists of both 

a polymeric and metallic layer. Epoxy, polyimide, polyether-ether-ketone are some materials 

used as the polymeric portion, and a metal protective layer is added to prevent any chemical 

interaction with the melt 
51

. The low heat conductivity of the polymer layers improves filling as 

the cooling rate of the melt is reduced and the subsequent skin layer is avoided. When a hybrid 

insert is employed, the polymer melt temperature remains above the glassy state temperature (Tg) 

for a longer period. This increases the likelihood that the molten polymer properly fills the 

structures before solidification. Fig.2 shows a successful filling using a hybrid insert in 

comparison with an incomplete filling in the case of a nickel insert 
39

. 
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Fig.2. A successful filling using a hybrid insert compared to an incomplete filling using nickel insert 39 

Polyimide (PI) films coated with aluminum (Al) and polycarbonate (PC) have been assessed as 

insert materials. PI films showed outstanding replication of microstructures while undergoing 

more than 1000 cycles. However, PC inserts would deform as they could not endure the heat 

transferred from the polymer melt 
39

. 

Hybrid inlays can also lead to a stretching effect with nanopillars stretched up to 40% more than 

their expected height and thus nanopillars that are taller than the depth of the designed insert 

(Fig.3). Therefore, hybrid inserts provide a better opportunity to produce micro-nanostructured 

surfaces having a favorable replication quality 
39

.  

 

 

Fig.3. Comparison of molded PC feature heights made with a Ni inlay and a hybrid inlay 39 
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2.2. Insert Fabrication Methods 

Micro-nanometric dimensioned mold inserts require particular methods to be produced. These 

methods include (I) LIGA based (lithography, electroplating, molding) technologies (LIGA, UV-

LIGA, IB-LIGA, EB-LIGA) 
52-56

; (II) 3D micro machining that regroups micro electrical 

discharge machining (µEDM), micro mechanical milling and electrochemical machining (ECM) 

using ultra-short pulses
12, 44, 57

; (III) silicon wet etching 
58

; (IV) deep reaction ion etching (DRIE) 
1
; (V) thick deep UV resists; (VI) laser ablation 

51, 57, 59-62
, (VII) plasma treatment 

1, 63-66
, micro-

drilling and micro-turning 
67

. 

As an example of the chain of insert manufacturing 
43

, Fig.4 presents the manufacturing of a Ni 

insert using UV-LIGA process and the fabrication of a BMG insert using the thermoplasting 

forming process. The process chain is described in Fig.4 and more details are available in 
43

. 

 

 

Fig.4. (a) UV-LIGA process: (1) Si oxidation, (2) spin coating photoresist, (3) UV lithography, (4) development,(5)etchingSiO2 

and removing photoresist, (6) RIE etching of Si, (7) PVD coating Ti and Ni, (8) electroplating, (9) Si dissolving, (10) Ni wafer 

dicing and polishing; (b) thermoplastic forming process: (1)–(7) are the same as with the UV-LIGA process, (8) BMG 

thermoplastic forming into Si master, (9) Si dissolving in KOH solution43. 

The µEDM method is used to create mold inserts using high temperature metals or alloys. A 

submerging of the anode-cathode system into a dielectric fluid is necessary prior to the 

procedure. Metal removal begins by applying a high-voltage current between the cathode tool 

and anodic electrode. This method can be employed to fabricate high strength metals having a 
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strength of more than 2000 MPa. As such it can be a suitable alternative for the manufacturing of 

mold inserts 
57

. 

Fig. 5 illustrates a die-sinking EDM process.  First, a fluidic microfeature is milled into the 

surface of a graphite/copper electrode. Then, a stainless steel workpiece is eroded using a 

thermal process under a controlled electric spark 
44

. 

 

 

Fig.5. Micromilling of graphite/copper electrode, die-sinking EDM of stainless steel workpiece44 

Laser ablation or laser milling has been considered as a reliable technique to produce inserts out 

of engineering materials 
59

. This method relies on a high-intensity and concentrated laser beam 

that focuses and evaporates material at the focal point. The desired geometry can be achieved by 

moving either the substrate or the laser beam in x and/or y directions (see 
68

 and 
69

 for more 

details.). Fig.6 shows an ablated hole using laser beams showing the wall roughness and the 

debris 
60

. 

 

Fig.6. A laser-ablated structure showing the surface roughness and the debris produced from the process 60 
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Laser milling joining with 3D CAD/CAM techniques is used to produce a shark skin-like surface 

on stainless steel inserts (see Fig.7) 
59

. The laser milling process is accomplished by a series of 

random hatching inside each layer and a clear demarcation of edges. This leads to a favorable 

surface integrity and edge definition.   

 

 

Fig.7. Shark skin-like structures machined by ms laser ablation 59 

2.3. Types of Micro-Nanostructures 

Various types of micro-nanostructures have been used including micro-nanochannels with 

different cross sections e.g. cylindrical, rectangular 
45, 55, 70-72

, micro-nanopillars 
5, 18, 32, 39, 73-74

, 

micro-nanohairs 
75-76

, and square meshes 
77

. 

It is well-known that polymer melts have very different flow behaviors in presence of microscale 

and macro-scale shapes 
78-79

. The viscosity of a polymer melt increases markedly when dealing 

with microstructures. Young et al. 
72

 modeled the filling distance into cylindrical microchannels, 

taking into consideration numerous assumptions including uniform insert temperature, constant 

heat transfer coefficient in the interface of the insert wall, and polymer melt. Based on the 

derived rheological model, the effect of channel radius on filling distance-penetration distance of 

the polymer melt into the microstructure-and aspect ratio of microfeatures (Fig.8 andFig.9). At a 

constant temperature, an increase in channel radius significantly increases the filling distance and 

filling velocity. There is a marked reduction in the cooling rate due to the decrease in the surface 

area to volume ratio. 
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Fig.8. Filling distance in the microchannels having different radii and mold temperatures 72 

 

Fig.9. Aspect ratio of microfeature versus different channel radii and mold temperatures 72 

When comparing the specific surface area (m
2
/m

3
 = m

-1
) of different structures, the filling 

capacity of microchannels (triangle and rectangular cross sections) was most difficult relative to 

all other shapes, according to Fig.10. The filled length of circular structures was the greatest due 

to less specific surface area. 
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Fig.10. Filled length of different specific surface area (shape) 14 

Channels orientated parallel to the main flow direction favor a more accurate and desirable 

filling in comparison channels having a perpendicular orientation 
80

. A proper design of features 

could lead to a higher water contact angle. For cone-shape structures, as the base diameter of the 

individual cones is reduced, the distances between the cone tips are lower and, as such, the 

contact angle increases 
38

. However, the peak-to-peak distance should not decrease 

indiscriminately, as the formed compact surface would cause the drops spreading out more on 

the surface.  

An arbitrary increase in the aspect ratio has a detrimental effect on replication quality 
14

. As the 

aspect ratio of the features increases, due to greater polymer melt solidification, the replication 

percentage decreases. Fig.11 demonstrates this for a determined processing condition for 

injection molding of PMMA 
81-82

. Undoubtedly, an optimal design of aspect ratio could result in 

both appropriate filling and an anticipated replication.  
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Fig.11. Effect of aspect ratio on replication percentage with various temperatures (T) and packing pressures (P) 81 

2.4. Insert Durability 

Although studies of the durability of the produced surface structures undergoing wearing are 

very common, the durability of the inserts is also of great importance in micro-nano injection 

molding. If an insert is not acceptably robust after several molding cycles, there is little 

justification for using the insert.  

In general, relative conventional hard inserts such as steel that has a superior strength, the 

durability of polymeric inserts can be problematic 
4
. Some have suggested that instead of using 

plastic polymers (e.g. PEEK), crosslinked polymers such as the photocurable epoxy can provide 

much greater durability during the replication process. They also favor a greater precision in 

design precision during the fabrication 
39

. 

Stormonth-Darling et al. 
39

 ran a single hybrid insert through more than 2000 cycles and 

observed no remarkable signs of wear and tear. Although AFM analysis showed a decrease in the 

features’ depth over time, the reduction in depth was attributed to polymer residue build-up at the 

bottom of features. After cleaning with N-methyl-2-pyrrolidone (NMP), the average feature 

depth returned to its initial value.      

In a test of the durability of BMG inserts 
45

, a number of scratches on the insert surface were 

observed after 10 000 molding cycles, although marked cracking was absent. However, after 20 

000 molding cycles, a remarkable number of cracks had appeared on the insert surface. The 

roughness of the BMG inserts had increased about 10 fold after 20 000 molding cycles relative to 

10 000 cycles.  

The durability of silicon wafers as a potential insert material has been questioned because of its 

brittleness. Comparing the fracture toughness (KIC) of a silicon wafer with that of metals (0.95 

MPa⋅m1/2
 and 15-150 MPa⋅m1/2

, respectively) can be misleading as most ceramic materials show 
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a high compressive strength rather than high fracture toughness 
34

. Therefore, some argue that 

that silicon can be a promising material to fabricate inserts if it is manipulated properly.  

A deposited metallic coating having a similar thermal expansion coefficient as a silicon wafer 

could be feasible to improve the compressive durability of the silicon tooling surface. The 

inserted silicon withstood injection pressure of 50 MPa. Moreover, a PTFE sheet was used to 

reinforce the silicon wafers produced acceptable results even after 3000 cycles 
34

. In general, use 

of a hard coating material on a mold insert has been proposed to insure greater durability and 

protection of the insert’s surface against wear 
31, 83-84

. 

Consequently, in order to have accurate replication, it is necessary to have adequate filling, 

improved demolding, high quality surface, more durable insert material, as well as proper feature 

design and fabrication technique. After selecting the appropriate insert, the most fundamental 

step in micro-nano injection molding is determining the parameters of processing. 

3. Processing Parameters 
The molding process begins with the flow of molten polymer into the cavity, driven by the 

pressure applied by the screw. There is low flow resistance until the molten polymer reaches the 

microfeatures. At the edge of the microfeatures, resistance increases significantly and the 

polymer hesitates to fill the microstructures. Higher pressure is required to overcome this 

resistance and force the molten polymer down into the microfeatures 
18

. 

During the filling stage, due to the very fast heat loss of the molten polymer once in contact with 

the cavity wall, a solidified premature layer can quickly form. As soon as this solid layer is 

formed, there is not enough back pressure to push this layer into the structures and, consequently, 

the polymer melt is prevented from easily filling the micro-nanostructures. To avoid this 

problem, a number of solutions have been proposed including increasing the mold temperature 

and injection velocity as well as increasing both the injection and holding pressure 
85

. 

It should be noticed that the replication process can be continued until the packing phase, in 

addition to the filling phase 
3-4

. Although the pressure applied to the melt during the first 

moments of contact between the molten polymer and the mold surface is negligible, it can 

increase during the packing phase and push the polymer melt into the micro-nanostructures 
3
. 

This is only contingent on the polymer melt temperature. If the temperature is below the polymer 

Tg, increasing the pressure during the packing stage has almost no effect on the replication. In 

this case, the polymer melt has little time to flow, which is due to the formation of a so-called 

―skin-layer‖ on the surface of the polymer melt where it touches the cold cavity 
3, 73

. 

As concerns the study of the microfeatures, both average height and the uniformity of the micro-

nanostructure are also important. In addition to the high holding pressure and high mold 

temperature, an even distribution of cavity pressure is also required to achieve the highest level 

of uniformity and uniform height for microfeatures. These could be obtained by using efficient 

rapid heat cycle molding techniques and a thicker substrate 
86

. 

Injection velocity is the most questionable parameter among the other ones. Injection velocity is 

the speed at which polymer is injected into the mold cavity during the injection phase. Some 
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argue that high injection velocities lead to better replication whilst others maintain an inverse 

relationship between injection velocity and replication quality 
86

. 

A means of ensuring the efficient filling and more economic process design, it is suggested that 

the micro injection could be first accomplished by using the conventional processing parameters, 

and then by using elevated temperature and pressure to ensure a high filling ratio 
87

. However, 

this technique is highly questionable in the case of rubber injection molding. The mold 

temperature in the latter process is much lower than that for plastic injection molding. As such, 

in the rubber injection molding process, increasing the temperature after the filling stage leads to 

an increase in crosslink density and crosslinking reaction rate. This is highly undesirable 

especially in terms of micro-nanostructure filling.  

Consequently, to achieve a complete and preferable replication, a combination of different 

processing parameters is necessary. A design of experiments (DoE) method has been used in a 

number of studies 
18, 20, 28, 86, 88

. Through a DoE method, experimental data is acquired in a 

controlled way; the significant and non-significant factors affecting a process are determined, 

and, finally, the behavior of injection molding of micro-nanostructures can be carefully 

monitored. Based on ANOVA (analysis of variance) results, all of the main processing 

parameters have been shown to be significant including mold temperature, injection velocity, and 

holding pressure 
86

. To better understanding the effect of various processing parameters on the 

replication quality and to help finding the optimum conditions, a process window could be 

provided 
19

.  

 

3.1. Mold Temperature 

Increasing mold temperature is generally considered as the most useful and practical way to 

improve the filling quality of the microstructures having a high aspect ratio 
18, 20, 39, 53, 86, 89

. This 

is due, mainly, to the easier melt flow in the cavity at higher temperatures due to the greater 

decrease of plastic polymer viscosity. Mold temperatures should be equal or greater to the 

softening temperature of the polymer used during the process [4]. The desired degree of filling 

will only be obtained if the polymer melt has enough fluidity to efficiently fill the 

microstructures. This is acquired only if the temperature of the polymer melt is above its Tg [4]. 

Since most filling of the micro-nanostructure takes place at the packing stage, it is crucial to keep 

the polymer melt temperature high enough at this stage. Increasing the mold temperature is only 

effective when the temperature is above the polymer Tg 
18

. When the mold temperature is equal 

to Tg of the polymer, the acquired aspect ratio is 1. This aspect ratio is not ideal for achieving 

micro-nanostructures. At higher mold temperatures i.e., the temperatures above Tg of the 

polymer, the acquired aspect ratio is more acceptable 
3
. 

Su et al. 
42

 found out that due to the high surface-to-volume ratio in the micro-nanostructured 

cavity, the temperature of molten polymer abruptly decreased immediately after the polymer 

entrance into the cavity, favoring the formation of the skin layer. Therefore, keeping the mold 

temperature high enough could eliminate any skin layer formation. Based on simulations, they 

recommended that the mold temperature about 30 to 40 °C above the polymer Tg to guarantee an 
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efficient filling and no solidified layer. Fig.12 shows the simulation results of acquired depth to 

opening ratio (h/d) versus radial location with various mold temperatures. The aspect ratio does 

not depend on the radial location when the temperature is high enough (200 ºC). Indeed, high 

mold temperature inhibits the fast cooling and would consequently lead to eliminating the 

formation of a frozen layer so that the microfeatures are filled efficiently 
20, 53, 73

.   

 

Fig.12. Simulation results of molding quality versus radial location with various mold temperatures 42 

The necessity of increasing the mold temperature to decrease the polymer viscosity has been 

discussed rheologically 
19

. Based on two basic rheological equations (Eq. 1 and 2) for polymer 

materials, as the thickness of cavity ( ) decreases, the required shear strain rate ( ̇  ) increases to 

keep the average velocity (   ) constant. 

 ̇        ⁄                                                                                                                             Eq. 1 

    ̇                                                                                                                                        Eq. 2 

Therefore, considering the classic stress-strain equation (Eq. 2) indicating the relation among 

shear stress ( ), polymer viscosity ( ) and shear strain ( ̇), shear stress in the cavity increases 

with an increase in shear strain and thus, a higher filling resistance for the polymer. As a result, 

mold temperatures greater than glass temperature of the polymer could fulfill requirements for a 

successful replication. 

It has been clearly shown that there is a direct relation between the acquired aspect ratio of the 

micro-nanostructures and the mold temperature. As the mold temperature increases, the 

achievable aspect ratio could increase 
15, 90

. Fig.13 shows the effect of mold temperature and also 

micro-wall thickness on the replicated aspect ratio. 
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Fig.13. Effects of mold temperature on the achievable aspect ratio of the micro-walls with two different thicknesses 19 

Although it is asserted that the polymer viscosity is influenced by the mold temperature and the 

injection velocity more than any other processing parameter 
73

, increasing the mold temperature 

permits decreasing both injection pressure and injection velocity 
42, 91

. In other words, if in an 

injection system, the mold temperature is high enough, it could be anticipated that injection 

pressure and injection velocity would not need to be increased. 

Mold and melt temperature have been considered as the main parameters affecting micro-nano 

pattern quality, however only mold temperature affects the pattern height. A 50% increase of the 

mold temperature can lead to >300% increase in the average height of micropillars 
18

. 

Consequently, in the packing stage, the polymer melts having a lower viscosity can fill the 

micro-nanostructures more easily and efficiently. The improvement of height replication by 

increased mold temperature is because of two phenomena. i) reduced viscosity due to the 

increase of the mold temperature; and ii) the limitation of elastic effects during the filling and 

subsequent demolding stage. In other words, in the case of high injection velocity, the induced 

shear stress could lead to an elastic relaxation after removal of the manufactured part from the 

mold. An increase in mold temperature could prevent this undesirable induced elastic relaxation 

and cause a viscosity decrease without the development of an elastic effect 
41

. 

However, in addition to the positive effects of a mold temperature increase, there are some 

negative effects that require discussion. This includes an increase in cooling time and consequent 

increase in cycle times, an undesirable effect for industrial purposes 
23, 53

. Moreover, at higher 

mold temperatures, high adhesive and/or frictional forces lead to ineffective demolding of the 

micro-nanostructures, so that the replication quality deteriorates 
3
. Excessive increases in mold 

temperatures can result in polymer degradation 
42, 52

.   

Liou et al. 
19

 demonstrated that there is a limit for increasing mold temperature. A SEM 

micrograph of a PMMA micro-wall part injection molded at an inordinately high mold 

temperature of 160 ºC (Fig.14) clearly shows unsought molding with many voids caused by gas 

generation. The gas likely originates from the polymer material due to the high temperatures. 
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The possibility of air presence in the cavity is not likely because of the use of vacuum evacuation 

and complete drying of the polymer before injection molding. 

 

Fig.14. The effect of excessively high mold temperature on the PMMA micro-walls 19 

As a consequence, there are two overall issues which challenge the replication quality of 

injection molded micro-nanostructures. The first, which takes place in the processing stage, is 

incomplete filling of high aspect ratio micro-nanostructures by molten polymer. It is believed 

that the solution is increasing the mold temperature higher than polymer Tg in order to decrease 

polymer viscosity adequately 
3
. The other issue is attributed to interfacial adhesion between the 

polymer and the mold substrate. This challenge will be discussed further in the demolding 

section of this review.   

Variotherm Heating System 

The formation of a premature solid layer is the great challenge to micro-nanostructure injection 

molding systems. This solid layer restrains the polymer melt from completely filling the high 

aspect ratio micro-nanostructures. Increasing the mold temperature offers a possible solution, 

however, this also unfortunately lengthens cycle time. Therefore, a preferred solution is to have a 

cold mold during the cooling stage and a hot mold during the injection stage. This is the basis of 

the so-called ―variotherm‖ system. Fig. 15 compares mold temperature between classical and 

variotherm processes 
57

. The variotherm process employs numerous heating methods including 

heating by various types of heat transfer phenomena e.g. convection, radiation, conduction, and 

induction 
92

.  
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Fig. 15. Mold temperature in classical and variotherm processes57 

The advantages of using this system include improving component quality, processing control 

and feature replication, increasing the polymer flow path and fluidity of the polymer, decreasing 

residual stresses, molecular orientation and flow resistance, and eliminating the formation of 

weld lines, short shots and material degradation 
57, 92-94

.   

As shown in Fig.16, four samples were produced using variotherm system under two different 

warm circuit temperatures (see the reference 
92

). The results are all highly satisfactory; there is 

no image of the samples produced without the variotherm system, however thus preventing a 

direct comparison.   

 

Fig.16. The SEM images of samples produced using variotherm system with various circuit temperatures: 130 ºC (a and b), 150 

ºC (c and d) and different patterns: water droplet shape (a and c) and square pillar features (b and d)92. 
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As a conclusion, variotherm processes can compensate for an increased cycle time induced by a 

traditional heating system while eliminating the emplacement of an unfavorable solid film layer; 

however this technique, due to the frequent and fast heating and cooling cycles, decreases the 

mold lifetime and also demands expensive equipment 
4, 57

. 

3.2. Melt Temperature 

In general, the effect of melt temperature on the replication quality is similar to the effects of 

mold temperature. An increase in the melt temperature decreases the viscosity of thermoplastic 

polymers, making it easier to fill the micro-nanostructures 
53

. Therefore, high melt temperatures 

are advantageous for achieving a high quality micro-nanostructure. As such, many studies show 

high melt temperatures lead to an improved replication quality due to a decrease in the viscosity 

of the polymer 
53, 95

. In fact, high melt temperatures in the region of the micro-nanostructures 

provide a means for the holding pressure to force molten materials into the structures 
3
. The 

increase of the melt temperature limits the increase of the ―skin layer‖ thickness 
73

. The highest 

possible barrel temperature, which is considered as the melt temperature, is needed to keep the 

materials in their flow state so that they can efficiently fill the structures of the cavity surface 
18

. 

The interaction of the melt and mold temperatures may be crucial for the injection molding of 

micro-nanostructures. An increase in the mold temperature and different melt temperatures 

showed varied replication qualities. An increase in the mold temperature has a positive role when 

the melt temperature is low and has a negative effect when the melt temperature is high. 

Consequently, to make a surface having a large contact angle, the best processing conditions are 

low melt and high mold temperatures 
38

.   

In the case of rubber injection molding, the role of melt temperature is completely different. 

Crosslinking rates increase with temperature, so in the rubber injection process, it is necessary to 

keep the temperature of raw material (uncured rubber) as low as possible before filling the cavity 

to prevent undesirable crosslinking. When the rubber material fills the cavity, it is time to cure in 

situ to create final cured rubber. If the mold temperature is high or the temperature of raw rubber 

is greater than the temperature in which the crosslinking bonds start to be created, an undesirable 

rubber curing happens. Under such conditions, i.e. uncontrolled curing before filling of the 

cavity, it is totally impossible for the rubber material to fill the micro-nanostructures. Hopmann 

et al. 
38

 studied the injection molding of Liquid Silicone Rubber (LSR). They found an internal 

pressure in the mold cavity when the melt temperature is low enough. In other words, low 

temperature results in high viscosity that leads to high stress. This generated pressure can be a 

practical force to facilitate the penetration of rubber into the structures. Maximum heights were 

achieved at lower melt temperatures. 

However, a change in the melt temperature may also have no effect on the replication quality or 

a negligible gradual effect 
39

. For example, a 10°C increase in the melt temperature does not 

significantly influence the achieved height 
41

. It is also mentioned that the increase in the melt 

temperature can lead to an increase in the degradation rate of polymer during processing 
23

. 

3.3. Holding Pressure 

The main driving force that pushes the polymer melt into the micro-nanostructures of the cavity 

surface is packing pressure. Indeed, molten polymer fills the micro-nanostructures in the packing 
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stage 
3, 53

. No matter how high the mold and melt temperatures are, a great pressure is needed to 

push the molten material into the structures. In addition to the role of holding pressure in pushing 

the polymer into the holes, it also could compensate for the trapped air pressure and polymer 

shrinkage 
28, 53

. It has been reported that pressure over 150 MPa is an appropriate holding 

pressure for a complete filling of micro-nanostructures, however too many processes work with 

lower pressures 
53

. 

The effect of holding pressure is highly dependent on the distance of the structures from the 

injection gate. Closer to the injection gate, the pressure is higher. Moving away from the gate, 

the pressure rapidly decreases because of the frictional shear forces due to the flow resistance. In 

many respects, the pressure at the farthest distances from the gate determines the replication 

quality of the final product 
18

. 

There is a remarkable interaction between injection velocity and holding pressure, as shown in 

Fig.17. The variation in the holding pressure significantly influences the feature height for high 

values of injection velocity. The results showed a 50% increase in the average height of the 

features with increasing pressure. However, the high values of injection velocity lead to a non-

uniform pressure distribution that increases the standard deviation of the height values 
86

.  

 

Fig.17. (a) Main effect of holding pressure and (b) interaction between holding pressure and injection velocity on the feature 

height 86 

A better replication for the surfaces with the micro-nanofeatures is thus obtained by a lower 

injection velocity and a higher holding pressure. This is shown in Fig.18 where max (H-σh) (H 

represents the average and σh represents the standard deviation of the height values) indicates the 

most desirable replication quality occurs at lowest injection velocities and highest holding 

pressures.  
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Fig.18. Response surfaces for the average (higher surface) and the standard deviation (lower surface) of the height values 86 

Fig.19 shows the influence of various holding pressures on the transcription ratio. However, it 

should be noted that at a particular injection rate, the effect of mold temperature is greater than 

that of holding pressure 
89

. 

 

Fig.19. Transcription ratio (ratio of depths of V- grooves both in the molded samples and the stamper) versus injection rate with 

various mold temperatures and holding pressures 89 

In general, the filling time of the cavity is much more than the solidifying time of the injected 

material in the vicinity of the mold surface. Accordingly, the formed skin layer between polymer 

bulk and the cavity surface counteracts the influence of packing pressure 
18

. Indeed, holding the 

clamping force is useful as long as the molten polymer is in the flow state. Once the skin layer is 

formed, holding the pressure has no effect on the replication quality. Therefore, in majority of 

studies holding time is not considered as a crucial factor in the injection molding of micro-

nanostructured surfaces 
20, 86

.  
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3.4. Injection Velocity 

Injection velocity is one of the most important yet one of the most debated processing 

parameters. Injection velocity can enhance the melt flow in the cavity and thereupon affects the 

features replication, especially at the locations away from the injection gate 
18, 95

. In general, a 

higher injection velocity has two positive effects that improve the replication quality 
4, 47, 52, 57, 96-

97
: i) a reduced viscosity as according to polymer rheology, a higher injection velocity means 

higher shear rates and shear stress. Consequently, the viscosity of polymer melt decreases with 

an increase of injection velocity, and ii) a reduced cooling rate during the filling step. 

With an increase in injection velocity, the polymer melt has less time to cool down. In other 

words, as injection velocity increases, the contact time between the material and the cavity cold 

surface decreases. It prevents skin layer formation before the molten polymer fills the structures. 

Moreover, the undesirable short shots are also limited under these conditions. 

This is particularly important in the case of rubber injection molding. In rubber injection 

molding, the mold temperature is higher than the melt temperature, so the polymer material in 

the filling stage is in contact with a hot cavity rather than a cold one. When the rubber compound 

is in contact with the hot cavity surface, crosslinks form more often and more quickly. This cured 

skin prevents the filling of micro-nanostructures by other polymer melts and the result is poor 

replication quality. Premature scorching should be necessarily avoided to obtain an acceptable 

filling. It has been claimed that a high injection velocity is the only factor that ensures a 

satisfactory filling in rubber injection molding as longer filling time inevitably leads to 

premature scorching 
38

. When the injection velocity is high enough, the induced internal pressure 

in the cavity forces the molten material into the microfeatures at a desired level. 

On the other hand, a dissipative heating of material due to a high injection velocity can occur 
38

. 

This induced heating which results from the induced shearing by the high velocity of the 

polymer material, can generate a high melt temperature. This rise in melt temperature could lead 

to some undesirable consequences in the case of rubber injection molding. Therefore, an 

appropriate injection velocity during the rubber injection process has a considerable influence on 

the final results.  

Song et al. 
73

 verified the influence of injection velocity on the replication quality. Working on 

the replication of large scale micropillar arrays having different diameters, they used three 

injection velocities: low, intermediate, and high. The mean height of the micropillars decreased 

when injection velocity is low. In the case of intermediate injection velocity, due to the similarity 

of the melt temperature at both the beginning and the end of the filling process, the acquired 

aspect ratio was constant and parallel. Finally, when injection velocity was higher, there was no 

difference in the height of the micropillars in the onward and the opposite directions, meaning 

micropillars height remained constant. As such, injection velocity and the mold temperature were 

selected to be as high as possible. 

Undoubtedly, complete filling is not related to an increase in the injection velocity. If a high 

injection velocity cannot ensure a complete filling, it can at least lead to a more uniform and 

homogeneous molding of the structures, an aspect that has a great effect on the water contact 

angle of the surface 
38

. 
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According to Yokoi et al. 
89

 the most practical way to avoid the formation of solidified thin layer 

is using high injection velocities. They used ultra-high-speed injection molding (UHSIM) to 

process at a high injection rate. In comparison with conventional injection molding process 

having an injection rate of about 50–100 mm/s, UHSIM can inject the polymer into the mold at a 

rate of 1000–2000 mm/s 
89

. 

Contradictory effects of increasing the injection velocity were also observed. Higher injection 

velocities can lead to the improved replication by increasing shear stress and decreasing polymer 

viscosity. This phenomenon is called shear thinning. On the other hand, this generated shear 

stress may cause an induced elastic stress residual in the polymeric parts after demolding. As a 

solution, a high mold temperature  will decrease viscosity without inducing shear thinning and a 

subsequent elastic stress relaxation in the final part 
41, 98

. 

A non-monotonic behavior of the replication depth with increasing injection velocity is presented 

in Fig. 20. With the increase in the injection flow rate up to 4 cm
3
/s, replication depth increases, 

yet above these values, replication depth is reduced 
5
. 

 

 

Fig.20. Replication depth of 50 and 100 nm wide holes as a function of injection velocity (lower axis) or holding pressure (upper 

axis) 5 

 

To obtain high aspect ratio and desirable replication quality, injection velocity has to be set at a 

minimum level 
86

. An increase in the injection velocity causes a marked increase in the trapped 

air pressure between the polymer melt and the cavity surface 
14

. The trapped air leads to a poor 

surface quality in the final product. An active vacuum-based method is suggested to solve this 

problem and guarantee the complete air evacuation 
19, 99

. 

Although high injection velocity improved the filling of micro-nanostructures, poor surface 

quality and edge definition in demolded parts have also been observed 
95

. An enhanced feature 

sizes has been noted in the cases of using low injection velocities 
41

. The replication of all feature 
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sizes except smallest ones (100 nm) were improved as the injection velocity decreased. This 

observation could be attributed to the similarity between the hot embossing process and the 

injection molding process at zero injection velocity. However, this claim would need to be 

verified. 

As a conclusion, one of the most questionable and yet effective parameters is injection velocity. 

Therefore, the selection of injection velocity highly depends on other processing conditions such 

as type of polymer, mold and melt temperature, and holding pressure. 

3.5. Part Thickness 

The thickness for the molded part (also known as substrate) is also a strongly debated subject in 

terms of the role of processing parameters in the injection molding process of micro-nanofeature 

surfaces. Some have argued that with a decrease in the part thickness comes an improvement of 

the filling capability; others state that a reduced part thickness markedly deteriorates replication 

quality. 

The geometry of the substrate affects the pressure profile which in turn affects the filling 

capability of the molten polymer. Indeed, the thickness of the substrate is much larger than the 

microfeatures. Therefore, it could easily change the pressure profile and, in doing so, affect 

replication quality 
18

. In fact, thicker substrates lead to a deterioration in replication quality as it 

limits increases in cavity pressure during the molding process. In contrast, thinner substrates 

favor an increase of in-cavity pressure that tends to increase the height of fillings. 

Some other results complicate the role of part thickness. As wall thickness decreases, the 

injection molding of microfeatures becomes more difficult. Increased substrate thickness leads to 

a uniform distribution of cavity pressure in the holding stage. Therefore, to  improve replication 

quality, a greater wall thickness becomes essential 
19, 86

. A thicker substrate is recommended to 

increase the filling rate and prevent the creation of a solid thin layer 
100

. 

Clearly, as the thickness of the molded part increases, given a constant injection rate, the cavity 

filling time increases 
18

. Sum told, a precise and comprehensive design for a part must consider 

thickness to produce a favorable result.  

3.6. Filling distance 

The distance of micro-nanofeatures from the injection gate influences the replication quality. In 

general, as the structures are closer to the injection gate, replication quality is better. 

Furthermore, processing parameters also play an important role with respect to filling distance. It 

is believed that due to the higher holding pressure closer to the injection gate, the replication 

quality is better in these regions of the mold. As shown in Fig.21 and Fig.22, filling height 

quickly decreases as the distance from the gate increases 
86

.  
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Fig.21. Replicated microfeatures located at (a) 1.5 mm and (b) 35 mm from the gate 86 

 

Fig.22. Comparison between cavity pressure and microfeatures height as a function of the distance from the gate 86 

 

Su et al. 
42

 studied the influence of radial location on the replicated aspect ratio. As shown in 

Fig.23, the obtained aspect ratio is not uniform between different cavity sizes. The replicated 
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microstructures near the gate have higher depth-to-opening ratios (h/d) due to the higher local 

temperature and pressure. However, as radial location increases, the aspect ratio decreases, 

except in the areas close to the edge of the mold. Along the edge, the generated back pressure 

increases. This means that the pressure applied to the molten polymer increases as the materials 

are facing to a closed area. The depth-to-opening ratio increases again even more than that at the 

central area.  

 

Fig.23. Simulation results of molding quality versus radial location with various cavity sizes 42 

Other studies, however, have shown an opposite, positive relationship between replication 

quality and the distance from the gate 
42, 95, 101

. 

Although the distance of the structures from the gate is believed to be an important, albeit 

debatable, parameter affecting the replication quality, distance between micro-nanostructures has 

no significant effect on the filling efficiency 
95

. 

3.7. Vacuum mold venting (air evacuation) 

The presence of air trapped in the mold cavity creates a major problem during molding and 

results in voids and bubbles in the bulk or surface of the final assembled part, incomplete 

filling—known as short shot, poor appearance, surface combustion—known as the diesel effect, 

burn marks, and in some cases permanent damage to the mold 
14, 89, 102

. 

The presence of air in the mold is inevitable. Therefore, it is critical to remove the air from the 

mold cavity. Since the features are susceptible to any dimensional change, these problems are 

much more crucial for the injection molding of nanostructures 
89

. Numerous solutions for the 

evacuation of this trapped air have been proposed 
16, 19, 52, 103-104

.  

Two different methods are used to avoid obtaining voids in the cavity: i) conventional venting 

using particular vents created on the mold walls to let the trapped air escape, and ii) air 

evacuation using pumps to thoroughly remove air. In standard injection molding, air vents 

provide a solution. However, due to the small sizes of the micro injection molding parts and 
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molds; this conventional approach is not a feasible solution. Conventional venting leads to 

unfavorable structural changes in the micro molded materials 
42

. However, the combination of a 

vacuum pump and small holes is used to evacuate the trapped air and prevent poor replication of 

the microstructures 
104

. 

Yokoi et al. 
89

 used the transcription ratio (TR) to illustrate the effect of different processing 

parameters on the quality of filling with or without vacuum pumping. TR is defined as the ratio 

of the depths of V-grooves within the molded sample to those of the stamper. The achieved 

aspect ratio was greater in the case of using vacuum pumping. In contrast, a study of molding 

with air evacuation produced a 16% reduction in the average height of the microstructures (H) 

(Fig.24). The main parameter increasing the aspect ratio is mold temperature. The existence of 

the vacuum mold venting evacuates warm air within the cavity, leading to decreased the mold 

temperature and, as a consequence, there is a deterioration of replication quality 
14, 86

. This 

adverse effect is especially dominant in the case of molding polymers that are sensitive to 

temperature change such as polystyrene 
86

. Therefore, it has been claimed that to obtain a surface 

with desirable average height of the micro-nanostructures, use of air evacuation should be 

avoided. 

 

Fig.24. Main effect of air evacuation on the feature height 86 

3.8. Injection pressure 

Finally, injection pressure is attributed to the pressure by which the materials are injected into the 

mold cavity. Evidently, injection pressure affects the flowability of polymer melt and the 

replication quality 
105-106

. The replicated aspect ratio increases with a greater main injection 

pressure. This tendency to increase is not monotonic. Fig.25 shows that the rate of increase for 

the achievable aspect ratio tends to flatten as the injection pressure increases 
19

. Some 

researchers consider injection pressure as the secondary factor affecting the filling capacity of 

the micro-nanostructures 
107

. 
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Fig.25. Effects of main injection pressure on the obtained aspect ratio of the micro-walls with two different thicknesses 19 

In addition to these processing parameters, other, less studied parameters that may affect the 

replication of the micro-nanostructures include maximum ejection temperature 
104

, metering size, 

main injection time 
19

, type of runners (hot or cold) 
57

, and movement of the injection plunger in 

order to control the holding pressure 
108

. These parameters directly or indirectly affect the main 

aforementioned parameters. 

4. Demolding 
Both processing parameters and demolding conditions affect the final heights of the replicated 

micro-nanopatterns. In addition to a complete mold filling, high quality replication requires a 

flawless demolding where all micro-nanostructures withstand demolding forces. Inappropriate 

design of demolding forces used to remove the manufactured piece from the cavity can lead to 

irreparable structural deformation or even failure of the molded features on the polymer surface, 

and also can affect the lifetime of the mold 
3, 109-110

.  

Accurate design is needed considering many factors from polymer selection and mold conditions 

to processing parameters and part design 
111

. Applied forces to the polymer surface, difference in 

the thermal conduction coefficient between the polymer material and mold metal, generated 

forces due the shrinkage of the polymer during the solidification stage, process parameters, 

cavity shape and material, molding material and geometry, features shape and aspect ratio-to be 

name but a few 
109

. 

There are two different main demolding methods. Either one or both of these methods can be 

used to release the final product from the mold. The first uses demolding chemical surface agents 

named antistiction coatings. The second is a mechanical ejector such as pins, blades, rings, 

sleeves, and stripper blades 
20, 109, 112

. Both methods have advantages and disadvantages. Use of 

chemical demolding agents is restricted in the medical or some microfluidic applications due to 

probable harmful effects on human health 
57

. Mechanical ejectors can lead to permanent 

deformation especially when the part geometry is complicated or the distribution of the ejector 

pins is not appropriate 
28, 109

. Therefore, a proper design of produced tool and the location of 

ejector pins is necessary to avoid damage and failure to the polymeric parts 
20

. To circumvent the 
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disadvantages of both chemical and mechanical demolding approaches, novel methods such as 

ultrasonic vibration 
57

 and reduction the surface roughness to decrease the coefficient of friction 

of the mold surface 
113

 require further investigation. 

In general, demolding is comprised of two different forces (Fig.26): adhesion and friction. 

Adhesion is the force at the intersection of the microfeature bottom and the top surface of 

polymer material. Friction is the force produced by the movement of the molded polymer inside 

the feature along the walls of the microfeature. The force acts in the opposite direction to the 

ejection movement 
109

. 

 

Fig.26. Illustration of the demolding forces 109 

The effects of the processing parameters on the demolding forces are frequently reported. The 

increase in both holding pressure and mold temperature leads to a decrease in the demolding 

force 
114-115

. Increased holding pressure can reduce the shrinkage and consequently decrease 

demolding forces. Evidently, longer cooling times lead to higher demolding forces 
109

. Moreover, 

melt temperature and injection pressure also influence demolding forces 
109, 116

. 

Fig.27 shows the results of the ―Design of Experiments using Taguchi method‖ on the effects of 

the processing parameters on the demolding forces. The mold temperature is the dominant 

parameter determining demolding forces 
109, 117

. Melt temperature has a moderate effect with 

packing pressure and time having negligible effects 
109

. 
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Fig.27. The main effects plot of the data 109 

Moreover, part thickness affects the demolding forces (Fig.28) where as thickness increases, the 

demolding force decreases but not monotonically. 

 

Fig.28. The influence of the part thickness on the demolding forces109 

Antistiction Coating 

Although demolding or release agents are suitable for larger components, they could affect the 

replication dimensions in case of micro replication processes 
110

. The use of antistiction coatings 

can improve the quality of the molded surface and the uniformity of the nanostructures while 

preserving surfaces without any microcracks and polymer residues 
3
.  The low surface energy 

coatings are commonly used as the antistiction coatings using self-assembled monolayer method 
5
.  In general, fluorocarbon or hydrocarbon based coating materials such as fluorocarbonsilanes 

118-121
, fluorocarbon phosphoric acid 

3
, fluorocarbons 

54
 or alkanethiols

3
 are the most common 

antistiction coatings. Specifically, perfluorodecyltrichlorosilane (FDTS) has been used as an 

effective antistiction coating.  

Equation 3 
3
 can be used to calculate the maximum tensile stress         on a cylindrical pillar. 

The friction force       is calculated based on shear stress        which is required for 
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detachment of polymeric parts from the mold surface. The cross-sectional area         of a 

cylindrical pillar can be calculated by its diameter   and height  : 

                    ⁄           ⁄                                                                                     Eq. 3  

Based on Eq. 3, the demolding forces for a nanopillar of diameter 40 nm and height 110 nm can 

be calculated with and without mold coating. The maximum tensile stress of demolding from a 

FDTS coated mold would be 110 MPa, while in the case of unmodified mold, the needed 

demolding stress would be more than 550 MPa 
3
.           

Moreover, as shown in Fig.29 andFig.30, it has been claimed that the average pillar height of the 

samples produced by FDTS coated inserts was higher than that without antistiction coating. 

These results were not dependent on mold temperature 
3
.  

 

Fig.29. AFM micrographs of injection molded replicas on a native nickel mold insert at a mold temperature of (A) 60°C and (B) 

90 °C 3 

 

Fig.30. AFM micrographs of injection molded replicas on a fluorocarbonsilane modified nickel mold insert at a mold 

temperature of (A) 60°C and (B) 90 °C 3 
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To achieve a desirable demolding, tensile forces must be able to overcome the aggregate 

polymer/mold adhesive and friction forces. Indeed, this demolding stress should not exceed the 

ultimate tensile strength of polymer bulk otherwise the molded polymeric structures would 

fracture. Fig.31 shows this phenomenon and also the positive effect of FDTS coating on 

demolding 
3
.  

 

Fig.31. Schematic of the filling and demolding processes: (A) Filling of mold nanostructures with different temperatures (below 

Tg, at Tg, and above Tg) by polymer melt. (B) Demolding at a mold temperature far below Tg leading to fracture of structures. (C) 

FDTS coated nickel molds at a mold temperature far below Tg leading to a proper demolding 3 

Although fluorosilanes are a group of known antistiction coatings in the existing literature, some 

modification may be required 
1, 122

. It is almost impossible to find a coating suitable for all 

molding processes; however, some techniques such as water contact angle measurement could be 

a useful way to efficiently select a proper antistiction coating. An expanded presentation of 

surface coatings used to improve replication quality is provided in the literature 
1
. 

The antistiction coating consistency is considered as a critical factor for obtaining favorable 

demolding results. As it is illustrated in Error! Reference source not found., a stretching effect 

was observed in the case of inconsistent coating. The increase in the friction between mold 

surface at the bottom of the structure and the polymer material caused this stretching 

phenomenon. However, a consistent antistiction layer guarantees ideal demolding of the material 

without any stretching effect 
1
. The stretching effect during demolding has also been observed 

when the polymer melt neighboring the mold surface remained above Tg 
39

.  

Error! Reference source not found.shows an acquired aspect ratio of over 20:1 in the injection 

molding of PC nanopillars with SiO2+TPFS (Trichloro(1H,1H,2H,2H-perfluorooctyl) silane) 

coating 
1
.  
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Fig.32. SEM image of PC nanopillars with aspect ratio 20:1 produced by injection molding with SiO2+TPFS coated inlays 1 

Stormonth-Darling et al. 
1
 proposed the term of ―success rate‖ to clarify the content of perfectly 

formed pillars. The success rate is defined as a ratio between the total number of perfectly 

formed features to the total number visible at the specified surface. In this definition, the broken 

or low height features generated by the improper filling are not considered as successful 

replicated pillars. A successful replication is achieved when there is no overlapping feature and 

the feature has adequate contrast to its neighbors. Three fluorinated coatings, TPFS-only, 

SiO2+TPFS, and Si3N4+TPFS demonstrated a greater stretching capability
1
. The success rate for 

the fluorinated coatings was generally above 80%. On the other hand, the metal surfaces such as 

Ni and Ti were unsuccessful in fully filling the ultra-high aspect ratio structures while their 

success rate in terms of stretching capability was close to 100% 
1
.  

Other antistiction coatings include a plasma-polymerized fluorocarbon-based coating that 

showed a significant improvement in replication quality due the use of a 10 nm  fluorocarbon 

layer on a nickel mold surface 
5
. This antistiction coating did not reduce the replication depth and 

the coating layer did not undergo any degradation even after hundreds of injection molding 

cycles 
5
. 

The effect of using antistiction coating has been studied on the injection molding of 

thermoplastic polyurethane (TPU) with silicon tooling 
98

. TPFS was used as the antistiction 

coating material using a vapor self-assembled monolayer (VSAM) method. The depth ratio 

increased more than two fold at higher mold temperatures, while in the lower mold temperatures 

the increase of depth ratio is much less. In other words, the antistiction coating improves the 

effect of mold temperature. 

Although there are many investigations which acknowledge the positive influence of antistiction 

coatings on the replication quality of micro-nanostructures 
41

, there are some studies which 

consider a detrimental effect for the application of low surface energy coatings on the filling 

capability. For example, due to the insufficient wetting of the coating by the polymer melt, the 

antistiction coating limited the filling of nanostructures 
5
. 
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As a consequence, a negligible deformation during the demolding step is as important as a 

complete filling during the processing 
39

. Indeed, a complete filling and a successful demolding 

can both guarantee the quality of final replication. 

5. Summary 
The demand for micro-nanofeatured parts is increasing rapidly due to the numerous applications 

in the different high-tech areas. Therefore, micro-nano injection systems are recognized as a 

promising industrial tool for rapid and precise fabrication to supply this demand. In this review, 

we discussed different aspects of injection molding of micro-nanostructured polymer surfaces 

across the three main steps of inserts (pre-processing), processing, and demolding (post-

processing). 

The effects and opportunities of various insert materials, particularly the polymeric and hybrid 

inserts were assessed. Modification of an insert’s surface must be accompanied by the 

appropriate processing conditions to produce the desired output. High quality replication of 

pieces includes favorable filling and demolding conditions obtained through a carefully selected 

set of processing parameters. Decisions regarding the exact specifications to use involve multiple 

aspects including the type of employed polymer, the size and shape of the mold, the size and 

shape of the structures. Mold temperature, injection velocity, and holding pressure are the most 

important parameters affecting the quality of the final product in injection molding processing.  

It is crucial to find the best-matched condition to achieve the most favorable processing output as 

the effects from the main parameters are not consistent across variable processing conditions. 

Moreover, the capabilities of various demolding methods should be considered in decision-

making and planning as a proper non-damaging demolding is required after a complete filling in 

the processing step to assure high quality replication. 
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