354 research outputs found

    E-BLOW: E-Beam Lithography Overlapping aware Stencil Planning for MCC System

    Full text link
    Electron beam lithography (EBL) is a promising maskless solution for the technology beyond 14nm logic node. To overcome its throughput limitation, recently the traditional EBL system is extended into MCC system. %to further improve the throughput. In this paper, we present E-BLOW, a tool to solve the overlapping aware stencil planning (OSP) problems in MCC system. E-BLOW is integrated with several novel speedup techniques, i.e., successive relaxation, dynamic programming and KD-Tree based clustering, to achieve a good performance in terms of runtime and solution quality. Experimental results show that, compared with previous works, E-BLOW demonstrates better performance for both conventional EBL system and MCC system

    Integrated polymer photonics : fabrication, design, characterization and applications

    Get PDF
    [no abstract

    Micro- and sub-microstructuring and characterisation of technical surfaces by means of laser direct writing including a novel approach for laser beam profiling

    Get PDF
    Within recent years, numerous fields of engineering, like mechanics, optics and electronics, have been influenced and revolutionised by the technique of microand nano-structuring. For example, special optical elements for beam shaping, surface structures for the reduction of friction or modern "lab on chip" devices have been produced. Within this thesis a universal system has been developed facilitating the production of such structured surfaces with dimensions down to 500 nm. This system is not only capable of structuring surfaces by means of lithographic processes; it further allows the inspection of surfaces by scanning their topography. To realise such a system, two different technologies have been evaluated: Scanning Near-field Optical Lithography (SNOL), a very sophisticated technique which uses a thin fibre tip to expose a photo resist-covered surface, and confocal scanning technology. Here, the confocal scanning is accomplished using an adapted optical component, the optical pickup unit (OPU), from a gaming console, which turned out to be the most suitable and cost-efficient solution for the realisation of this system. Several test series have been carried out during this work, to verify the performance of the confocal system, both to structure photo resist surfaces and to characterise unknown surfaces. This present work will show the ability of the developed system to produce structures down to the sub-micron range and to characterise unknown surfaces with sub- micron precision. Various patterns have been written into photo resistcoated substrates to structure their surface. Beginning with diffractive optical elements (DOE) for beam shaping, followed by Dammann gratings for twodimensional beam shaping and optical gratings for light guidance as well as producing technical surfaces imitating the properties of sharkskin or simple micromechanical structures, the developed confocal system has shown itself to be flexible and widely-applicable. IV During the development of the confocal system, a strong need for a beam profiling system analysing the light beam diverging from the OPU, was recognised. Due to the fact that no commercially available system was capable of characterising beam sizes within the range of the diffraction limit, a novel method for beam profiling was invented. This method makes use of the fibre tips already applied within the SNOL system, producing tomographical scans of the beam spot

    Attosecond physics at the nanoscale

    Get PDF
    Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds, which is comparable with the optical field. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this article we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as ATI and HHG. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nano physics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the induced fields and the unique electron dynamics initiated by them with high temporal and spatial resolution

    Resolution Improvement and Pattern Generator Development for theMaskless Micro-Ion-Beam Reduction Lithography System

    Get PDF
    The shrinking of IC devices has followed the Moore's Law for over three decades, which states that the density of transistors on integrated circuits will double about every two years. This great achievement is obtained via continuous advance in lithography technology. With the adoption of complicated resolution enhancement technologies, such as the phase shifting mask (PSM), the optical proximity correction (OPC), optical lithography with wavelength of 193 nm has enabled 45 nm printing by immersion method. However, this achievement comes together with the skyrocketing cost of masks, which makes the production of low volume application-specific IC (ASIC) impractical. In order to provide an economical lithography approach for low to medium volume advanced IC fabrication, a maskless ion beam lithography method, called Maskless Micro-ion-beam Reduction Lithography (MMRL), has been developed in the Lawrence Berkeley National Laboratory. The development of the prototype MMRL system has been described by Dr. Vinh Van Ngo in his Ph.D. thesis. But the resolution realized on the prototype MMRL system was far from the design expectation. In order to improve the resolution of the MMRL system, the ion optical system has been investigated. By integrating a field-free limiting aperture into the optical column, reducing the electromagnetic interference and cleaning the RF plasma, the resolution has been improved to around 50 nm. Computational analysis indicates that the MMRL system can be operated with an exposure field size of 0.25 mm and a beam half angle of 1.0 mrad on the wafer plane. Ion-ion interactions have been studied with a two-particle physics model. The results are in excellent agreement with those published by the other research groups. The charge-interaction analysis of MMRL shows that the ion-ion interactions must be reduced in order to obtain a throughput higher than 10 wafers per hour on 300-mm wafers. In addition, two different maskless lithography strategies have been studied. The dependence of the throughput with the exposure field size and the speed of the mechanical stage has been investigated. In order to perform maskless lithography, different micro-fabricated pattern generators have been developed for the MMRL system. Ion beamlet switching has been successfully demonstrated on the MMRL system. A positive bias voltage around 10 volts is sufficient to switch off the ion current on the micro-fabricated pattern generators. Some unexpected problems, such as the high-energy secondary electron radiations, have been discovered during the experimental investigation. Thermal and structural analysis indicates that the aperture displacement error induced by thermal expansion can satisfy the 3{delta} CD requirement for lithography nodes down to 25 nm. The cross-talking effect near the surface and inside the apertures of the pattern generator has been simulated in a 3-D ray-tracing code. New pattern generator design has been proposed to reduce the cross-talking effect. In order to eliminate the surface charging effect caused by the secondary electrons, a new beam-switching scheme in which the switching electrodes are immersed in the plasma has been demonstrated on a mechanically fabricated pattern generator

    Using Grazing Incidence Small-Angle X-Ray Scattering (GISAXS) for Semiconductor Nanometrology and Defect Quantification

    Get PDF
    Hintergrund: Die Entwicklung von Nanotechnologien und insbesondere integrierten Schaltkreisen beruht auf dem Verständnis von Struktur und Funktion auf der Nanoskala, wofür exakte Messungen erforderlich sind. Kleinwinkel-Röntgenstreuung unter streifendem Einfall (GISAXS) ist eine Methode zur schnellen, berührungs- und zerstörungsfreien dimensionellen Messung von nanostrukturierten Oberflächen. Ziele: Es soll die Möglichkeit untersucht werden, die zunehmend komplexeren Proben aus Wissenschaft und Industrie mit Hilfe von GISAXS präzise zu vermessen. Ein weiteres Ziel ist es, Messtargets aus der Halbleiter-Qualitätskontrolle mit einer Größe von ca. 40x40 µm² zu messen, deren Signal typischerweise nicht zugänglich ist, weil ein Bereich von ca. 1x20 mm² auf einmal beleuchtet wird. Methoden: Synchrotron-basierte GISAXS-Messungen verschiedener Proben werden mit Hilfe einer Fourier-Konstruktion, der "distorted wave Born approximation" und einem Maxwell-Gleichungs-Löser basierend auf finiten Elementen analysiert. Ergebnisse: Aus GISAXS-Messungen kann die Linienform von Gittern mit einer Periode von 32 nm rekonstruiert werden und sie weicht weniger als 2 nm von Referenzmessungen ab. Eine sorgfältige Bayes'sche Unsicherheitsanalyse zeigt jedoch, dass wichtige dimensionelle Parameter innerhalb der Unsicherheiten nicht übereinstimmen. Für die Messung von kleinen Gittertargets entwerfe ich ein neuartiges Probendesign, bei dem das Target in Bezug auf die umgebenden Strukturen gedreht wird, und stelle fest, dass dadurch parasitäre Streuung effizient unterdrückt wird. Fazit: GISAXS-Messungen von komplexen Nanostrukturen und kleinen Targets sind möglich, jedoch würde GISAXS enorm von effizienteren Simulationsmethoden profitieren, die alle relevanten Effekte wie Rauhigkeit und Randeffekte einbeziehen. Hier gibt es vielversprechende theoretische Ansätze, so dass GISAXS eine zusätzliche Methode für die Halbleiter-Qualitätskontrolle werden könnte.Background. The development of nanotechnology such as integrated circuits relies on an understanding of structure and function at the nanoscale, for which reliable and exact measurements are needed. Grazing-incidence small angle X-ray scattering (GISAXS) is a versatile method for the fast, contactless and destruction-free measurement of sizes and shapes of nanostructures on surfaces. Aims. A goal of this work is to investigate the possibility of precisely measuring the increasingly complex samples produced in science and industry using GISAXS. A second objective is to measure targets used in semiconductor quality control with a size of approx. 40x40 µm², whose signal is typically not accessible because an area of approx. 1x20 mm² is illuminated at once. Methods. I take synchrotron-based GISAXS measurements and analyze them using reciprocal space construction, the distorted wave born approximation, and a solver for Maxwell's equations based on finite elements. Results. I find that the line shape of gratings with a period of 32 nm can be reconstructed from GISAXS measurements and the results deviate less than 2 nm from reference measurements; however, a careful Bayesian uncertainty analysis shows that key dimensional parameters do not agree within the uncertainties. For the measurement of small grating targets, I create a novel sample design where the target is rotated with respect to the surrounding structures and find that this efficiently suppresses parasitic scattering. Conclusions. I show that GISAXS measurements of complex nanostructures and small targets are possible, and I highlight that further development of GISAXS would benefit tremendously from efficient simulation methods which describe all relevant effects such as roughness and edge effects. Promising theoretical approaches exist, so that GISAXS has the potential to become an additional method in the toolkit of semiconductor quality control

    Direct Patterning of Optical Coupling Devices in Polymer Waveguides

    Get PDF
    The aim of the present work was to design and fabricate all purpose, positioning-tolerant and efficient interconnects between single-mode fibers and integrated waveguides out of polymers. The developed structures are part of the optical packaging of integrated optical chips. Integrated optics have gathered tremendous interest throughout recent years from research as well as from the industry, and most likely the demand will further grow in the future. Today’s trend is to establish optical data communication not only in far-distance transmission but also in end-user or so called fiber-to-home configurations, or, in the near future, also on board or even chip level. In addition, integrated optical sensors are gaining more and more importance. In the future, lab-on-a-chip systems may be able to simplify and accelerate analysis methods within health care or allow for a continuous monitoring of almost any environmental variable. All these applications call for robust optical packaging solutions. Many integrated optical chips are using a silicon-on-insulator design. Technologies which were originally intended for the manufacturing of integrated circuits can be utilized for the fabrication of such silicon-on-insulator chips. Point-of-care testing, which is a considerable part of bio-sensing, in some cases only allows the use of disposable transducer elements. The fabrication of these transducers, also including almost all other system parts, may be possible using polymers. Alternative fabrication methods like nanoimprint lithography can be applied for the patterning of polymers. With these, the extension of already known working principles or even entirely new device architectures become feasible for mass production. The direct patterning of polymers by means of nanoimprint was used to fabricate interconnects for integrated waveguides. In contrast to conventional lithography approaches, where a patterned resist layer is used as a masking layer for subsequent process steps, direct patterning allows the immediate use of the structures as functional elements. Firstly, nanoimprint allows diffraction-unlimited patterning with nanometer resolutions as well as the replication of complex three-dimensional patterns. These unique properties were used within this work to pattern shallow gratings atop an integrated waveguide within only one single manufacturing step. The gratings are used as coupling elements and can be utilized either to couple light from external elements to the chip or vice versa. Considerations regarding the optical effects on single-mode polymer waveguides as well as grating couplers were obtained from simulation. They are specific to the chosen design and the used polymer and cannot be found elsewhere so far. Compared to similar designs and fabrication strategies proposed in literature, the ones followed here allow for a higher efficiency. The dimensions and process windows obtained from simulation did serve as a basis for the subsequent fabrication of the grating couplers. All steps which are necessary to turn the calculated design into reality, ranging from master fabrication, to working mold cast and imprint, are shown in detail. The use of a working mold strategy is of crucial importance for the fabrication process and is discussed in detail. The use of a working mold preserves a costly master and further allows for a cost-efficient production. Parameters which are relevant for the production as well as for the final polymer patterns were analyzed and discussed. On the basis of the obtained data, a process optimization was performed. The optical characterization was also part of the presented work. A comparison with the results obtained from simulation is included and additional effects were revealed. Most of them may be subject to further improvement in future designs. In summary, the present work contributes to the field of optical packaging. It shows a viable route for the design and fabrication of interconnects of single-mode polymer waveguides. The presented design can be used as a building block which can be placed at almost any positions within an integrated optical chip. The fabrication method includes a minimum number of process steps and is still able to increase performance compared to similar approaches. Moreover, all process steps allow for scaling and are potential candidates for mass production

    Resolution Improvement and Pattern Generator Development for theMaskless Micro-Ion-Beam Reduction Lithography System

    Full text link
    • …
    corecore