20 research outputs found

    <Poster Presentation 11>Noise-induced Phenomena in Two Strongly Pulse-coupled Spiking Neuron Models

    Get PDF
    [Date] November 28 (Mon) - December 2 (Fri), 2011: [Place] Kyoto University Clock Tower Centennial Hall, Kyoto, JAPA

    Building a Chaotic Proven Neural Network

    No full text
    International audienceChaotic neural networks have received a great deal of attention these last years. In this paper we establish a precise correspondence between the so-called chaotic iterations and a particular class of artificial neural networks: global recurrent multi-layer perceptrons. We show formally that it is possible to make these iterations behave chaotically, as defined by Devaney, and thus we obtain the first neural networks proven chaotic. Several neural networks with different architectures are trained to exhibit a chaotical behavior

    Rikitake dynamo system, its circuit simulation and chaotic synchronization via quasi-sliding mode control

    Get PDF
    Rikitake dynamo system (1958) is a famous two-disk dynamo model that is capable of executing nonlinear chaotic oscillations similar to the chaotic oscillations as revealed by palaeomagnetic study. First, we detail the Rikitake dynamo system, its signal plots and important dynamic properties. Then a circuit design using Multisim is carried out for the Rikitake dynamo system. New synchronous quasi-sliding mode control (QSMC) for Rikitake chaotic system is studied in this paper. Furthermore, the selection on switching surface and the existence of QSMC scheme is also designed in this paper. The efficiency of the QSMC scheme is illustrated with MATLAB plots

    Synchronization Phenomena in Coupled Birkhoff-Shaw Chaotic Systems Using Nonlinear Controllers

    Get PDF
    In this chapter, the well-known non-autonomous chaotic system, the Birkhoff-Shaw, which exhibits the structure of beaks and wings, typically observed in chaotic neuronal models, is used in a coupling scheme. The Birkhoff-Shaw system is a second-order non-autonomous dynamical system with rich dynamical behaviour, which has not been sufficiently studied. Furthermore, the master-slave (unidirectional) coupling scheme, which is used, is designed by using the nonlinear controllers to target synchronization states, such as complete synchronization and antisynchronization, with amplification or attenuation in chaotic oscillators. It is the first time that the specific method has been used in coupled non-autonomous chaotic systems. The stability of synchronization is ensured by using Lyapunov function stability theorem in the unidirectional mode of coupling. The simulation results from system’s numerical integration confirm the appearance of complete synchronization and antisynchronization phenomena depending on the signs of the parameters of the error functions. Electronic circuitry that models the coupling scheme is also reported to verify its feasibility

    Unconventional Signals Oscillators

    Get PDF
    Dizertační práce se zabývá elektronicky nastavitelnými oscilátory, studiem nelineárních vlastností spojených s použitými aktivními prvky a posouzením možnosti vzniku chaotického signálu v harmonických oscilátorech. Jednotlivé příklady vzniku podivných atraktorů jsou detailně diskutovány. V doktorské práci je dále prezentováno modelování reálných fyzikálních a biologických systémů vykazujících chaotické chování pomocí analogových elektronických obvodů a moderních aktivních prvků (OTA, MO-OTA, CCII ±, DVCC ±, atd.), včetně experimentálního ověření navržených struktur. Další část práce se zabývá možnostmi v oblasti analogově – digitální syntézy nelineárních dynamických systémů, studiem změny matematických modelů a odpovídajícím řešením. Na závěr je uvedena analýza vlivu a dopadu parazitních vlastností aktivních prvků z hlediska kvalitativních změn v globálním dynamickém chování jednotlivých systémů s možností zániku chaosu v důsledku parazitních vlastností použitých aktivních prvků.The doctoral thesis deals with electronically adjustable oscillators suitable for signal generation, study of the nonlinear properties associated with the active elements used and, considering these, its capability to convert harmonic signal into chaotic waveform. Individual platforms for evolution of the strange attractors are discussed in detail. In the doctoral thesis, modeling of the real physical and biological systems exhibiting chaotic behavior by using analog electronic building blocks and modern functional devices (OTA, MO-OTA, CCII±, DVCC±, etc.) with experimental verification of proposed structures is presented. One part of theses deals with possibilities in the area of analog–digital synthesis of the nonlinear dynamical systems, the study of changes in the mathematical models and corresponding solutions. At the end is presented detailed analysis of the impact and influences of active elements parasitics in terms of qualitative changes in the global dynamic behavior of the individual systems and possibility of chaos destruction via parasitic properties of the used active devices.

    Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons

    Get PDF
    Understanding common dynamical principles underlying an abundance of widespread brain behaviors is a pivotal challenge in the new century. The bottom-up approach to the challenge should be based on solid foundations relying on detailed and systematic understanding of dynamical functions of its basic components—neurons—modeled as plausibly within the Hodgkin-Huxley framework as phenomenologically using mathematical abstractions. Such one is the Hindmarsh-Rose (HR) model, reproducing fairly the basic oscillatory activities routinely observed in isolated biological cells and in neural networks. This explains a wide popularity of the HR-model in modern research in computational neuroscience. A challenge for the mathematics community is to provide detailed explanations of fine aspects of the dynamics, which the model is capable of, including its responses to perturbations due to network interactions. This is the main focus of the bifurcation theory exploring quantitative variations and qualitative transformations of a system in its parameter space. We will show how generic homoclinic bifurcations of equilibria and periodic orbits can imply transformations and transitions between oscillatory activity types in this and other bursting models of neurons of the Hodgkin-Huxley type. The article is focused specifically on bifurcation scenarios in neuronal models giving rise to irregular or chaotic spiking and bursting. The article demonstrates how the combined use of several state-of-the-art numerical techniques helps us confine “onion”-like regions in the parameter space, with macro-chaotic complexes as well as micro-chaotic structures occurring near spike-adding bifurcations

    Hybrid Chaos Synchronization of 3-Cells Cellular Neural Network Attractors via Adaptive Control Method

    Get PDF
    Abstract: In this research work, we first discuss the properties of the 3-cells cellular neural network (CNN) attractor discovered b

    Hybrid Synchronization of the Generalized Lotka-Volterra Three-Species Biological Systems via Adaptive Control

    Get PDF
    Abstract: Since the recent research has shown the importance of biological control in many biological systems appearing in nature, this research paper investigates research in the dynamic and chaotic analysis of the generalized Lotka-Volterra three-species biological system, which was studied b
    corecore