16,398 research outputs found

    Chaos via a piecewise-linear switch ed-capacitor circuit

    Get PDF
    A nonlinear switched-capacitor circuit that generates chaotic signals is reported. The circuit is described by a first-order piecewise-linear discrete equation that exhibits a chaotic dynamics. Experimental results illustrating the circuit performance and its use as a noise generator are included.Comisión Interministerial de Ciencia y Tecnología 3467-8

    There is entanglement in the primes

    Full text link
    Large series of prime numbers can be superposed on a single quantum register and then analyzed in full parallelism. The construction of this Prime state is efficient, as it hinges on the use of a quantum version of any efficient primality test. We show that the Prime state turns out to be very entangled as shown by the scaling properties of purity, Renyi entropy and von Neumann entropy. An analytical approximation to these measures of entanglement can be obtained from the detailed analysis of the entanglement spectrum of the Prime state, which in turn produces new insights in the Hardy-Littlewood conjecture for the pairwise distribution of primes. The extension of these ideas to a Twin Prime state shows that this new state is even more entangled than the Prime state, obeying majorization relations. We further discuss the construction of quantum states that encompass relevant series of numbers and opens the possibility of applying quantum computation to Arithmetics in novel ways.Comment: 30 pages, 11 Figs. Addition of two references and correction of typo

    Fully CMOS Memristor Based Chaotic Circuit

    Get PDF
    This paper demonstrates the design of a fully CMOS chaotic circuit consisting of only DDCC based memristor and inductance simulator. Our design is composed of these active blocks using CMOS 0.18 µm process technology with symmetric ±1.25 V supply voltages. A new single DDCC+ based topology is used as the inductance simulator. Simulation results verify that the design proposed satisfies both memristor properties and the chaotic behavior of the circuit. Simulations performed illustrate the success of the proposed design for the realization of CMOS based chaotic applications

    A mechanism for randomness

    Full text link
    We investigate explicit functions that can produce truly random numbers. We use the analytical properties of the explicit functions to show that certain class of autonomous dynamical systems can generate random dynamics. This dynamics presents fundamental differences with the known chaotic systems. We present realphysical systems that can produce this kind of random time-series. We report theresults of real experiments with nonlinear circuits containing direct evidence for this new phenomenon. In particular, we show that a Josephson junction coupled to a chaotic circuit can generate unpredictable dynamics. Some applications are discussed.Comment: Accepted in Physics Letters A (2002). 11 figures (.eps

    Hidden attractors in fundamental problems and engineering models

    Full text link
    Recently a concept of self-excited and hidden attractors was suggested: an attractor is called a self-excited attractor if its basin of attraction overlaps with neighborhood of an equilibrium, otherwise it is called a hidden attractor. For example, hidden attractors are attractors in systems with no equilibria or with only one stable equilibrium (a special case of multistability and coexistence of attractors). While coexisting self-excited attractors can be found using the standard computational procedure, there is no standard way of predicting the existence or coexistence of hidden attractors in a system. In this plenary survey lecture the concept of self-excited and hidden attractors is discussed, and various corresponding examples of self-excited and hidden attractors are considered

    Bifurcations, Chaos, Controlling and Synchronization of Certain Nonlinear Oscillators

    Get PDF
    In this set of lectures, we review briefly some of the recent developments in the study of the chaotic dynamics of nonlinear oscillators, particularly of damped and driven type. By taking a representative set of examples such as the Duffing, Bonhoeffer-van der Pol and MLC circuit oscillators, we briefly explain the various bifurcations and chaos phenomena associated with these systems. We use numerical and analytical as well as analogue simulation methods to study these systems. Then we point out how controlling of chaotic motions can be effected by algorithmic procedures requiring minimal perturbations. Finally we briefly discuss how synchronization of identically evolving chaotic systems can be achieved and how they can be used in secure communications.Comment: 31 pages (24 figures) LaTeX. To appear Springer Lecture Notes in Physics Please Lakshmanan for figures (e-mail: [email protected]
    corecore