23 research outputs found

    Chaos Firefly Algorithm With Self-Adaptation Mutation Mechanism for Solving Large-Scale Economic Dispatch With Valve-Point Effects and Multiple Fuel Options

    Get PDF
    This paper presents a new metaheuristic optimization algorithm, the firefly algorithm (FA), and an enhanced version of it, called chaos mutation FA (CMFA), for solving power economic dispatch problems while considering various power constraints, such as valve-point effects, ramp rate limits, prohibited operating zones, and multiple generator fuel options. The algorithm is enhanced by adding a new mutation strategy using self-adaptation parameter selection while replacing the parameters with fixed values. The proposed algorithm is also enhanced by a self-adaptation mechanism that avoids challenges associated with tuning the algorithm parameters directed against characteristics of the optimization problem to be solved. The effectiveness of the CMFA method to solve economic dispatch problems with high nonlinearities is demonstrated using five classic test power systems. The solutions obtained are compared with the results of the original algorithm and several methods of optimization proposed in the previous literature. The high performance of the CMFA algorithm is demonstrated by its ability to achieve search solution quality and reliability, which reflected in minimum total cost, convergence speed, and consistency

    CUCKOO SEARCH ALGORITHM TO SOLVE THE PROBLEM OF ECONOMIC EMISSION DISPATCH WITH THE INCORPORATION OF FACTS DEVICES UNDER THE VALVE-POINT LOADING EFFECT

    Get PDF
    The essential objective of optimal power flow is to find a stable operating point which minimizes the cost of the production generators and its losses, and keeps the power system acceptable in terms of limits on the active and reactive powers of the generators. In this paper, we propose the nature-inspired Cuckoo search algorithm (CSA) to solve economic/emission dispatch problems with the incorporation of FACTS devices under the valve-point loading effect (VPE). The proposed method is applied on different test systems cases to minimize the fuel cost and total emissions and to see the influence of the integration of FACTS devices. The obtained results confirm the efficiency and the robustness of the Cuckoo search algorithm compared to other optimization techniques published recently in the literature. In addition, the simulation results show the advantages of the proposed algorithm for optimizing the production fuel cost, total emissions and total losses in all transmission lines

    Enhancement of Metaheuristic Algorithm for Scheduling Workflows in Multi-fog Environments

    Get PDF
    Whether in computer science, engineering, or economics, optimization lies at the heart of any challenge involving decision-making. Choosing between several options is part of the decision- making process. Our desire to make the "better" decision drives our decision. An objective function or performance index describes the assessment of the alternative's goodness. The theory and methods of optimization are concerned with picking the best option. There are two types of optimization methods: deterministic and stochastic. The first is a traditional approach, which works well for small and linear problems. However, they struggle to address most of the real-world problems, which have a highly dimensional, nonlinear, and complex nature. As an alternative, stochastic optimization algorithms are specifically designed to tackle these types of challenges and are more common nowadays. This study proposed two stochastic, robust swarm-based metaheuristic optimization methods. They are both hybrid algorithms, which are formulated by combining Particle Swarm Optimization and Salp Swarm Optimization algorithms. Further, these algorithms are then applied to an important and thought-provoking problem. The problem is scientific workflow scheduling in multiple fog environments. Many computer environments, such as fog computing, are plagued by security attacks that must be handled. DDoS attacks are effectively harmful to fog computing environments as they occupy the fog's resources and make them busy. Thus, the fog environments would generally have fewer resources available during these types of attacks, and then the scheduling of submitted Internet of Things (IoT) workflows would be affected. Nevertheless, the current systems disregard the impact of DDoS attacks occurring in their scheduling process, causing the amount of workflows that miss deadlines as well as increasing the amount of tasks that are offloaded to the cloud. Hence, this study proposed a hybrid optimization algorithm as a solution for dealing with the workflow scheduling issue in various fog computing locations. The proposed algorithm comprises Salp Swarm Algorithm (SSA) and Particle Swarm Optimization (PSO). In dealing with the effects of DDoS attacks on fog computing locations, two Markov-chain schemes of discrete time types were used, whereby one calculates the average network bandwidth existing in each fog while the other determines the number of virtual machines existing in every fog on average. DDoS attacks are addressed at various levels. The approach predicts the DDoS attack’s influences on fog environments. Based on the simulation results, the proposed method can significantly lessen the amount of offloaded tasks that are transferred to the cloud data centers. It could also decrease the amount of workflows with missed deadlines. Moreover, the significance of green fog computing is growing in fog computing environments, in which the consumption of energy plays an essential role in determining maintenance expenses and carbon dioxide emissions. The implementation of efficient scheduling methods has the potential to mitigate the usage of energy by allocating tasks to the most appropriate resources, considering the energy efficiency of each individual resource. In order to mitigate these challenges, the proposed algorithm integrates the Dynamic Voltage and Frequency Scaling (DVFS) technique, which is commonly employed to enhance the energy efficiency of processors. The experimental findings demonstrate that the utilization of the proposed method, combined with the Dynamic Voltage and Frequency Scaling (DVFS) technique, yields improved outcomes. These benefits encompass a minimization in energy consumption. Consequently, this approach emerges as a more environmentally friendly and sustainable solution for fog computing environments

    Multiobjective optimisation of heat exchangers using evolutionary algorithms

    Full text link
    This study is about optimal design of shell and tube heat exchangers using state of the art evolutionary algorithms. The research introduces a novel hybrid objective function which its optimisation leads to new design solutions not previously found by traditional techniques.<br /

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Improvements on the bees algorithm for continuous optimisation problems

    Get PDF
    This work focuses on the improvements of the Bees Algorithm in order to enhance the algorithm’s performance especially in terms of convergence rate. For the first enhancement, a pseudo-gradient Bees Algorithm (PG-BA) compares the fitness as well as the position of previous and current bees so that the best bees in each patch are appropriately guided towards a better search direction after each consecutive cycle. This method eliminates the need to differentiate the objective function which is unlike the typical gradient search method. The improved algorithm is subjected to several numerical benchmark test functions as well as the training of neural network. The results from the experiments are then compared to the standard variant of the Bees Algorithm and other swarm intelligence procedures. The data analysis generally confirmed that the PG-BA is effective at speeding up the convergence time to optimum. Next, an approach to avoid the formation of overlapping patches is proposed. The Patch Overlap Avoidance Bees Algorithm (POA-BA) is designed to avoid redundancy in search area especially if the site is deemed unprofitable. This method is quite similar to Tabu Search (TS) with the POA-BA forbids the exact exploitation of previously visited solutions along with their corresponding neighbourhood. Patches are not allowed to intersect not just in the next generation but also in the current cycle. This reduces the number of patches materialise in the same peak (maximisation) or valley (minimisation) which ensures a thorough search of the problem landscape as bees are distributed around the scaled down area. The same benchmark problems as PG-BA were applied against this modified strategy to a reasonable success. Finally, the Bees Algorithm is revised to have the capability of locating all of the global optimum as well as the substantial local peaks in a single run. These multi-solutions of comparable fitness offers some alternatives for the decision makers to choose from. The patches are formed only if the bees are the fittest from different peaks by using a hill-valley mechanism in this so called Extended Bees Algorithm (EBA). This permits the maintenance of diversified solutions throughout the search process in addition to minimising the chances of getting trap. This version is proven beneficial when tested with numerous multimodal optimisation problems

    Uncertainty Quantification And Economic Dispatch Models For The Power Grid

    Get PDF
    The modern power grid is constrained by several challenges, such as increased penetration of Distributed Energy Resources (DER), rising demand for Electric Vehicle (EV) integration, and the need to schedule resources in real-time accurately. To address the above challenges, this dissertation offers solutions through data-driven forecasting models, topology-aware economic dispatch models, and efficient optional power flow calculations for large scale grids. Particularly, in chapter 2, a novel microgrid decomposition scheme is proposed to divide the large scale power grids into smaller microgrids. Here, a two-stage Nearest-Generator Girvan-Newman (NGGN) algorithm, a graphicalclustering-based approach, followed by a distributed economic dispatch model, is deployed to yield a 12.64% cost savings. In chapter 3, a deep-learning-based scheduling scheme is intended for the EVs in a household community that uses forecasted demand, consumer preferences and Time-of-use (TOU) pricing scheme to reduce electricity costs for the consumers and peak shaving for the utilities. In chapter 4, a hybrid machine learning model using GLM with other methods was designed to forecast wind generation data. Finally, in chapter 5, multiple formulations for Alternating Current Optimal Power Flow (ACOPF) were designed for large scale grids in a high-performance computing environment. The ACOPF formulations, namely, power balance polar, power balance Cartesian, and current balance Cartesian, are tested on bus systems ranging from a 9-bus to 25,000. The current balance Cartesian formulation had an average of 23% faster computational time than two other formulations on a 25,000 bus system

    Energy Harvesting and Energy Storage Systems

    Get PDF
    This book discuss the recent developments in energy harvesting and energy storage systems. Sustainable development systems are based on three pillars: economic development, environmental stewardship, and social equity. One of the guiding principles for finding the balance between these pillars is to limit the use of non-renewable energy sources
    corecore