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ABSTRACT This paper presents a new metaheuristic optimization algorithm, the firefly algorithm (FA), and
an enhanced version of it, called chaos mutation FA (CMFA), for solving power economic dispatch problems
while considering various power constraints, such as valve-point effects, ramp rate limits, prohibited
operating zones, and multiple generator fuel options. The algorithm is enhanced by adding a new mutation
strategy using self-adaptation parameter selection while replacing the parameters with fixed values. The
proposed algorithm is also enhanced by a self-adaptation mechanism that avoids challenges associated with
tuning the algorithm parameters directed against characteristics of the optimization problem to be solved.
The effectiveness of the CMFA method to solve economic dispatch problems with high nonlinearities is
demonstrated using five classic test power systems. The solutions obtained are compared with the results
of the original algorithm and several methods of optimization proposed in the previous literature. The high
performance of the CMFA algorithm is demonstrated by its ability to achieve search solution quality and
reliability, which reflected in minimum total cost, convergence speed, and consistency.

INDEX TERMS Economic dispatch, firefly algorithm, multiple fuel options, valve-point effects.

I. INTRODUCTION

Facing the reduction of energy reserves and environmen-
tal degradation due to excessive use of conventional fuels,
the Economic Dispatch (ED)problem has become the focus
of researchers [1], [2]. For ED, the main objective is to
find the operating point leading to optimal generator output
power so as to minimize the operating cost while meeting
all the physical and operational constraints [3]. The ED is
considered as an important economic operation optimiza-
tion problem in power system. Under normal circumstances,
the objective of the problem can be modeled as a convex cost
function whose satisfactory solution can be found at a small
cost. However, when actual characteristics of real power

systems such as prohibited operating zones, transmission
loss, ramp rate limits, and multiple fuel options are taken into
consideration, the cost function becomes highly quadratic,
non-smooth, non-convex, and multi-modal [4]-[7]. Solv-
ing such a problem is no longer an easy task. Ignoring,
approximating or inaccurately handling these character-
istics may lead to erroneous results of the ED prob-
lem and significant economic losses or accidents [8]-[10].
In the published article on this issue, many methods have
been applied to deal with the ED problem. These meth-
ods can be divided into two categories as 1) classical
optimization methods and 2) metaheuristic optimization
methods.

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.
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Classical optimization technologies include Lagrange
relaxation [11], A-iteration method [12] and nonlinear pro-
gramming [13],etc. The advantages of the classical optimiza-
tion methods are the guarantee of optimization convergence,
the lack of parameters requiring special settings depending
on the characteristics of the problem and computational effi-
ciency; however, they deal mainly with convex cost functions
because this kind of optimization method is based on the gra-
dient theory, which has powerful ability when facing smooth
and continuous functions. Regrettably, practical features of
real power system form a complex non-convex model of
ED problem with extremely high complexity and the appli-
cation of the classical optimization methods is faced with
difficult-to-handle restrictions. In order to improve the ability
of classic optimization algorithms to solve ED problems,
some improved algorithms have been proposed in recent
years. Examples of this include, the dimensional steepest
decline method [13] and Big-M method [14]. Although these
methods show a stronger ability to solve non-convex objec-
tive functions, the tradeoff introduces additional variables
that need additional computation. Its performance, therefore,
is increasingly worsened by the dimension of the problem.

Many modern metaheuristic optimization methods, such as
the genetic algorithm (GA) [15], the particle swarm optimiza-
tion (PSO) [16], [17], and Differential Evolution (DE) [18]
have been developed and utilized successfully to solve the
ED problem due to their ability to find global or near-global
solution of a nonconvex optimization problem. Furthermore,
modified and improved versions of the metaheuristic meth-
ods, with the intention of improving the convergence and
global optimum search capability of the original algorithms,
have been proposed for dealing with the ED problem. Exam-
ples of these improved versions include, conventional genetic
algorithm with multiplier updating (CGA-MU) [19], fuzzy
adaptive particle swarm optimization (FAPSO) [20], new
global particle swarm optimization (NGPSO) [21] and shuf-
fled differential evolution (SDE) [22]. Also, hybrid meth-
ods, generally combined with two methods, one method is
used as the primary search tool, while the other is used to
fine-tune the search process, like combined DE and PSO
algorithms [23], hybrid chemical reaction optimization with
differential evolution(HCRO-DE) [24], have been applied for
solving the ED problem and achieved satisfactory effect
by improving the global search capability while using fast
computational analysis. However, for hybrid methods, how
to determine the integration points between methods and
balance the positive and negative effects of methods is a
headache for practitioners.

Many of the metaheuristic optimization methods reported
in previous literature have a disturbing limitation. They
require adjustment of the algorithm parameters based on the
particular problem before they can be applied. When the
parameters of the algorithm are determined, a satisfactory
result may be obtained in a test system, but at the same time,
satisfactory results may not always be obtained in another
test system. Changes in system load or unit constraints will
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lead to the need for algorithm parameter adjustment, which
is a difficult problem. To solve this problem, the mechanism
for adaptively adjusting parameter values must be added
to the algorithm. However, any metaheuristic optimization
method that adds a parameter to the self-tuning mechanism
may obtain the result of reduced computational efficiency
because additional computational effort is required because
of the need for adjusting algorithm parameters when solv-
ing the main optimization problem. Because of this reason,
only the method that adds self-adjusting parameter is highly
efficient. A novel high efficiency optimization algorithm,
firefly algorithm(FA), has been proposed in [25]. Yang [26]
showed that the FA could compete and outperform many
of metaheuristic optimization algorithms in many aspects,
like convergence rate, numerical stability, and calculation
accuracy. In fact, the FA has proven to have a great advan-
tage over other recently developed algorithms in solving a
variety of optimization problems, for instance the dynamic
economic dispatch problem of power systems [27] and the
optimal chiller loading design [28]. The author of the firefly
algorithm, Yang, has successfully applied the FA to solve
ED problem of small and medium power systems in [29],
but the ED problem consider multiple fuel options was not
considered in the study, which is the contribution of this
paper.

In this paper, FA is applied for solving non-convex and
complex ED problem of five (medium and large) power
systems considering actual characteristics such as prohibited
operating zones, transmission loss, ramp rate limits, and mul-
tiple fuel options. Large-scale test systems with both multiple
fuel options and valve-point effects are included. Further-
more, after carefully considering different components in
designing the algorithms, two modifications are proposed to
significantly increase the FA efficacy. The proposed modi-
fications are to replace the fixed-parameters of the FA with
a new dynamic adjustment of parameters in the FA, and to
add a new powerful self-adaptive mutation mechanism while
replacing the parameter of the mechanism as a fixed value.
An improved version of firefly algorithm, called chaos muta-
tion firefly algorithm(CMFA), is thus generated. In addition,
in most of metaheuristic optimization methods, the equality
constraints are usually handled using the penalty-function
technique, which makes it difficult to generate feasible solu-
tions and maintain feasibility after crossover and mutation
operations, resulting in no good result. Thus, a constraint
handling scheme was proposed for correcting a solution in
infeasible domain region to the space of feasible region with-
out adding any additional goal on the objective function. This
mechanism not only has the ability to handle constraints,
but also has the ability to prevent premature convergence
by introducing a diversity strategy, which ensures that the
fireflies always be a feasible solution to the problem. Indeed,
the proposed measures have positive and reliable effect on the
convergence of the algorithm and the quality of the solution
provided by algorithm. Results of the proposed technique for
solving the known ED problems are compared with other
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algorithms that are recently published. The numerical anal-
ysis of results proves the superiority performance of the
proposed method over the other methods mentioned in this
paper.

The rest of this paper is organized as the follows: Section 2
presents the ED problem formulation. Section 3 introduces
the proposed methodology. Application of CMFA for solving
ED shown in Section 4. Section 5 introduces the simulation
results and discussion, followed by the conclusions and future
work in Section 6.

Il. MATHEMATICAL FORMULATION OF THE ED PROBLEM
A. OBJECTIVE FUNCTION

The mathematical model of the ED problem of considering
different conditions can be modeled as different objective
functions. A comprehensive mathematical model of the ED
problem can be presented as [30]:

NG
Minimize: Fc = ZFi(P,-). 1)
i=1

where, P; represents the power output of ith generator;
F¢ denotes the total generation cost; F;(P;) are generation
cost of unit i; NG meaning the total number of generator.

The objective function as a quadratic polynomial is convex
when neglecting the VPE. It can be shown as:

Fi(P;) = a; x P2 4+ b; * P; + c;. )

where, a;($/MW?), b;($/MW), ci($) are the cost coefficients
of the ith unit.

Furthermore, the objective function becomes non-convex
by adding a sinusoidal term to the quadratic objective func-
tion when considering the VPE and can be modeled as:

Fi(P) = a,-Pl-2 + biPi +ci + lei(f; sin(Pl’-"i” —P)l 3

where, ¢;($) and f;(rad/MW) are the valve-point coefficients
of generator i, Pf’”” is the minimum power output of the
ith unit.

If generators with multiple fuel options and the VPE are
also considered, the objective function can be written as
follows:

FiP) = al,P + biiP; + cj + lej(fij sm(P"”" P))|
l_f Pmm < P < Pmax. (4)

where, a,-j($/MW2), bi;i($/MW), c;($) are the cost coeffi-
cients, and ¢;($), f;j(rad/MW) are the valve-point coefficients
of the ith unit using fuel type j; Pg”" and P{!** are the lower
bound and upper bound of the ith unit using the jth fuel type,
respectively.

The objective function is subject to the following
constraints.

VOLUME 6, 2018

B. POWER BALANCE CONSTRAINTS
The sum of generator output powers must be equal to the sum
of load demand and transmission loss.
NG
Z(Pi) = Pioad + Pioss- ©)
i=1
where Pj,q,q and P,z are the load demand and the trans-
mission loss, respectively. P, is calculated by B matrix
coefficients as follow:
NG NG

mm—ZEF&£+me+m) (6)

i=1 i=1
where Bj;, Bo; and By are the loss coefficients.

C. POWER OUTPUT AND PROHIBITED

OPERATING ZONES LIMITS

In realistic power systems, the output of the generator should
be within its output range. Also there are some prohibited
operating zones for the generator due to the VPE. The limits
can be described as follows:

min . [ .
P < P < Pl ;

P; = 7
l P" <Pi<P_: z=23,....N 7

i,z—1

U R max
P! < P; < P,

where P;’”" and P}"™ are the minimum and maximum output
powers of the ith unit, and N is the total number of prohibited
operating zones for unit i. P}, and Pl . presented upper limit
and lower limit the zth prohlblted zone of unit , respectively.

D. RAMP RATE LIMITS

In practice, the output of the generator cannot be adjusted
instantaneously without limitation. The operating range of
each generator is restricted by their corresponding ramp-up
and ramp-down constraints, which can be formulated as
follow:

max(P!"", PO — DR;) < P; < min(P"™, P + UR;). (8)

where, P? is power output of the ith unit at the previous time
interval; DR; and UR; are down-ramp rate and upper-ramp
rate limitation of the ith generator, respectively.

Ill. PROPOSED METHODOLOGY

A. FIREFLY ALGORITHM

The FA is categorized as one of the population-based algo-
rithm proposed by Yang (2008) [25]. It simulates the social
behavior of the flashing characteristics of fireflies. For the
FA, a firefly of population means a potential solution of
the optimal problem. In terms of the search space, a firefly
represents a point that moves in the search space with the
optimization process. The structure of each firefly in the
candidate solution for solving ED problem, in this paper, can

be described as the following:
Xi=I[Pi1,Pi2,....Pipl; i=12....N. ©)
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where N is the total number of population, and D is the
dimensionality of the problem. In this paper, it if defined as
D = NG.

The higher the light intensity of a firefly, the greater its
attractiveness to other nearby fireflies, and the attractiveness
B of a firefly can be defined as:

B(r) = Poe " (10)
where y is absorption coefficient and commonly set to 1 [26].
Bo is the maximum attractiveness obtained when r = O0;

r is the Cartesian or Euclidean distance between the mth and
nth fireflies, which can be written as:

NG
= | XE - XED% mon=1,2,.. N, (D)

mn
i=1

where X,’f”.and X,’Z" ; are the ith variables of the kth generation
of mth and nth fireflies, respectively.

In the previous study, it was found that when 8 changes
according to Eq.10, the resulting effects could not achieve
the desired effect. So the researchers proposed a variety of
transformation strategies for it. The most obvious strategy
was proposed by Fister et al. [31] and can be described as:

B = Bmin + (Bmax — /3min)eiyr2- (12)

where B4 and B, are set to 1 and 0.2, respectively.

1 T T T T

T T
The change trajectory of B based on strategy used in this paper
The change trajectory of B based on Eq.12

0.9 ‘

The value of B
o
5

0.1 b

. . . . . . . . .
0 100 200 300 400 500 600 700 800 900 1000
Iterations

Fig. 1. Change of g based on different strategies.

However, there are potential pitfalls. As we can see from
Fig.1, Eq.12’s strategy keeps s value at the beginning of 0.2,
and quickly increases to 1 after reaching a certain number
of iterations. The value of g stays at 0.2 for too long, and
increase from 0.2 to 1 too quickly. This will have an adverse
influence on the optimization. Therefore, improved strategy
based on Equation 12 was proposed, which can be written as:

B = (Bmin + (Bmax — ,Bmin)eiyrz) X (L) (13)
Kmax
where B4 and By, are set to 0.9 and 0.4, respectively. &
and K, represent the current number of iterations and the
maximum number of iterations, respectively.
Figure 1 shows the effect of the proposed strategy. It can be
clearly seen that, compared to Eq.12, the increase speed of 8

45910

is significantly slower, which increases the ability to escape
from the local optimum; and the later change is more gradual,
which can increase the speed of convergence.

Similar to other evolutionary algorithms, in the firefly algo-
rithm, the fireflies update their position by moving towards
the brighter fireflies which means better position in search
space, and the modified position can be formulated as:

Xk 4 gR(xk — XKy 4 o (rand ()1 xp — 0.5),
if Fo(Xy) < Fe(Xy);

X,]fl, otherwise.

k+1 _
Xk =

(14)

where o is the randomness parameter which commonly
selected in the rang [0, 1], and rand represents a ran-
dom number generated from a uniformly distributed set
between 0 and 1.

The framework of the FA is given in Algorithml.

Algorithm 1 The Standard FA
1: Generate an initial population X = (X k , Xé‘ e
setk = 0.
2: Define initial value of « and y.
3: Evaluate the fitness values F’ (Xl.k) of all N initial fireflies.

X/\‘,) and

4: while k < K,;,,, do
5: fori=1tondo
6: forj=1tondo
: k k
7 1fF(Xj)<F(Xl.)then
8 Update position of Xl-k using the formula in

(14).

9: Evaluate the fitness values of X lf’f move
10: if F(X!,,..) < F(X}) then
11: Xik‘H = Xl.lfmove; else,Xik'H = Xlk
12: end if
13: end if
14: end for

15:  end for
16: k=k+1.

17: end while
18: Output the Optimum solution Xpey;.

B. CHAOS MUTATION FIREFLY ALGORITHM

Because of its advantages, the application of FA to solve the
problems in various aspects of the power system has aroused
great concern Simple concept and low number of parameters
need for tuning are its obvious advantages, Having the ability
to seek global optimums and local optima at the same time
makes it highly applicable. However, it also has a vexing
defects. For instance, premature convergence or convergence
to an inappropriate position often occurs because the algo-
rithm falls into a local optimum. However, the existing mech-
anism of diversifying populations does not have the ability to
help it escape from the local optimum. Even if the algorithm

VOLUME 6, 2018
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can successfully avoid the local optimum, the cost is an
unbearable computational burden. When the FA is applied
to solve constrained optimization problems, its performance
depends largely on the selection of control parameters. Also,
the population diversity has a great effect on computational
efficiency and convergence rate. In addition, it is obvious that
an appropriate constraint handling mechanism can improve
the performance of the algorithm. Therefore, special care in
redesigning the algorithm based on these considerations has
been taken in this paper. The control parameters and mutation
mechanism are discussed in the following few subsections.

1) DYNAMIC ADJUSTMENT OF « AND y

As we know, a powerful optimization algorithm, not only
have the ability to effectively exploit the current solutions that
have good fitness, but also has a strong ability to explore the
unknown fields in the search space. The random movement
factor, o, controls the range of random search of firefly, and
generally determined in the range [0, 1], has a huge impact
on the balance between the ability of algorithm exploration
and exploitation in search space. Too large value of an «
makes the random search range of solution too large to cause
convergence difficulties and the smaller « will trap firefly
in the local optimum. The absorption coefficient y controls
the decrease of light intensity and commonly set to 1 [26].
It is a fact that FA’s parameter control deeply influences its
performance, and how to select the appropriate parameter is
an intractable optimization problem..

Numerous studies showed that the performance of the evo-
lutionary optimization algorithms are improved when chaotic
sequences were used [32]. Therefore, after testing different
chaotic operator, a dynamic adjustment mechanism base
on chaotic sequences for the random movement factor is
deployed in this paper, opposed to monotonically decreased
as the iterations progress in basic firefly algorithm, parameter
a of the proposed methods also being variety decreased from
its initial value based on chaotic formula with optimization
process, which can be calculated as:

ak = xF x af. (15)

where, ocf and (x;‘ are the chaotic-based random movement
factor and the random movement factor with linear decrease
at iteration k. The value of af‘ is decreased linearly from
a set initial value to zero, and x* is the chaotic parame-
ter at iteration k, which produced by a so-called sinusoidal
iterator [32], can be represented as the following:

X = sin(r x x). (16)
in this paper, x” was set to 0.7.

The chaotic-based o we introduced enhance the searching
capability and efficiency of FA and illustrated in the numeri-
cal results. Also, the performance of « in dynamic adjustment
mechanism is shown in Fig. 2 for better understanding.

As for the absorption coefficient y, a fixed value is
replaced with a variable that needs to be optimized, and then
it was added to the firefly as a variable in the candidate
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Fig. 2. Two change trajectories of o.

solution vector [27]. The new structure of solution vector can
be written in the following form:

Xi=[Pi1,Pi2,....Pip,yvi]l, i=12,....,N. (17)
2) ADAPTIVE MUTATION MECHANISM

In the previously mentioned methods, inappropriate con-
vergence and local optima traps may still be impossible to
avoid. Also, each enhancement of the algorithm optimization
will become very slow before the global optimal solution is
obtained. We have noticed that the optimization mechanism
of FA itself is simple and efficient, even adding additional
strategies that increase search power will not have an unac-
ceptable negative impact on the computational efficiency of
the algorithm. Therefore, a new powerful mutation mecha-
nism, which mainly for enhancing the ability of the algorithm
to exploit the unknown area of the search space, is introduced
to solve the afore-discussed problems, thus the ability of the
FA to eventually be enhanced.

Since mutation has been applied to the algorithmic process,
many mutation operators have been proposed. Unfortunately,
there exists no single optimal solution to all problems. There-
fore, a new powerful mutation strategy that contains two
mutation operators is considered in this paper. First, three vec-
tors m; to m3 obtained from solution are randomly selected
as my # my # m3 # m. Consequently, a mutant firefly X"
is generated as the following:

X\ A+ Fu(Xh, — X5,
if randy < Cry, and randy < 0.5;
X' = 1 X Fu(X0, = X500 + X = X50),
if randy < Cry, and randy > 0.5;
Xk otherwise.

myp°

(18)

where, rand; and rand, are random numbers generated from
a uniform distribution in the interval [0, 1]. F), is the scale
factor and Cry, is the crossover rate. They should be fixed
values, but picking the optimum values for a specific problem
is tricky. Thus, a self-adaptation strategy was introduced to
select the most appropriate value. For each firefly in the
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search space, with two control parameters (F and Cr) of the
mutation mechanism. In the beginning, ' € N(0.5, 0.1) and
Cr e N(0.5,0.1). N(0.5,0.1) means a normal distributions
whose mean equals to 0.5 and standard deviation is 0.1.
Consequently, F, and Cry, in (18) are generated as described
below:

_ I'T"ml + randl(l‘?m2 — Ij“m3), if (randy < §); (19)
B rands, otherwise.
Cr. — E’rml + rand;;(érmz — 6rm3), if (rands < §);
"o randg, otherwise.
(20

where F m;, and E’rm.A (A = 1,2, 3) are parameters of corre-
sponding firefly (Xnku) inF and C r,respectively; and rand,, €
O, )(nw = 1,2,...,6), are generated using uniform dis-
tribution of 0 to 1. The value of §, in this paper, set to
0.75 according to the test, appropriate range of F, and Cry, is
0.1 to 1, so, if their value is outside this range, it is truncated
to 0.1 and 1, respectively [33].

The proposed mutation mechanism followed by a greedy
selection process is such that, the brightest one between
the current firefly (X¥) and the mutant firefly(X7), will
replace the position of the current firefly and become the new
offspring of the fireflies. The process can be written as:
XEH = X{””“’, ECE™) < Fe®: o)
X, otherwise.

It is important to point out that the value of F and Cr
are also updated with the optimization process. If the mutant
fjreﬂy is better than the current firefly, then, F,,, = F,, and
Cry = Cry,.
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Fig. 3. A schematic diagram of the role of the first mutation operator.

The main effect of the first mutation operator is to speed
up the convergence, as shown in Fig. 3. The main purpose of
the second one is to diversify population. The point behind
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using two multi-operators instead of more is to control the
computing burden within a reasonable range. The main func-
tion of this mechanism is to provide better information to
the main algorithm of the proposed algorithm, rather than
determine the optimization process of algorithm.

The framework of the CMFA is given in Algorithm?2.

Algorithm 2 The Proposed CMFA
1: Generate an initial population (X=X {‘, Xé‘, e,
setk = 0.
2: Define initial value of «, F' and Cr.
3: Evaluate the fitness values F’ (Xl.k )of all N initial fireflies.

Xllf,) and

4: while k < K,y do
5: fori=1toN do
6: forj=1toN do
. k k
7 if F(X") < F(X;") then
8 Update position of Xl.k using the formula in

(14).
9: Evaluate the fitness values of X,.move’k
10: if F(X"”"%) < F(X)) then
11 xk = xmvek,
12: else
13: Xik-H = Xl.k;
14: end if
15: end if
16: end for
17 end for
18: fori=1toN do
19: Generate mutant firefly X using the formula in
(18).
20: Evaluate the fitness values of X using the for-
mula in (1).
21: if F(xmu-ky < F(XF) then
22 XF = Xk,
23: else
24: X = X(k);
25: end if

26:  end for

27:  Update o using the formula in (15).

28:  Update F, and Cr,, according to (19)-(20).
29: k=k+1.

30: end while

31: Output the Optimum solution Xpes:-

IV. IMPLEMENTING CMFA FOR SOLVING ED PROBLEM

In this section, the steps of the proposed CMFA for solving
the ED problems under various constraints of power system
will be described. But before that, various constraints, espe-
cially equality constraints, will be described. The ED problem
is a nonlinear constrained optimization problem, which con-
tains a large amount of equality and inequality constraints.
Thus, the initial fireflies are hard to satisfy all the constraints
due to the fact that they are randomly generated, even though
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one may satisfy all the constraints, it is difficult to maintain
it feasible after updating its position. Generally, there are
two strategies to deal with constraints of the ED problem,
one is to use a penalty function which is achieved through
adding an extra objective function for punishing violations of
constraints on the original objective function, and the other
way is to generate solutions that satisfy all constraints by
some strategies and maintain the feasibility of the solution
in the optimization process so that optimization is only done
in the feasible region. The first method is simple and can
maintain population diversity but not adequate for handling
constraints. The second method will lose a certain population
diversity but with high efficiency in finding feasible solution.
Therefore, in this paper, the latter method is chosen since
mutation mechanism has been applied for diversifying the
population. Also, the constraints handling mechanism we
used, which will be described in detail next, will also improve
the diversity of the population simultaneously.

Implementing the CMFA for solving ED problem can be
briefly described via the following steps:

1) Generate initial individual X;(i = 1,2..., N), consid-

ering ramp rate limits:
X; = PN + rand ()(P!"™ — PIi™);
PI'" = max(P{"", P) — DR;) 22)

: 0

Pl = min(P]"™, P; + UR;)
where P*" and PZ’;" are the maximum and minimum
output powers of the ith unit in rth, respectively.

2) Check whether the solution satisfies the other system
constraints such as the prohibited operating zones,
if the output of a unit(P;) fall in a prohibited zone of
[L, U], its value will be determined by the following
way:

L, ifP—-L U - P));
po_ b D<@ -P:
U, otherwise.

3) To make solutions satisfy equality constraints, the fea-

sibility of a solution is checked as:

NG

1> (P) = (Pioad + Ploss)| < & (24)

i=1
where, ¢ is a tolerance limit factor, the value of ¢, in this
paper, from a larger initial value gradually reduced to
a small final value set to 107> (an acceptable accuracy
[34]). The way ¢ changes can be given as [35]:

e(0) = ¢(xg) = girial; (25)
k C, . .
) = e(0)(1 — FC) P.if 0 <k <Ty; 26)
1078, k> T..

where xp is the top 6th individual and 6 = 0.4N. cp is
a control parameter of the 6 level and set to 5 in this
paper. With the number of iterations k increase to the
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control generation 7, The 6 level has been updated.
There are no solutions that violates the constraints in
the population when the control generation is reached.
The value of 7, is 150 in this paper.

If the value of the power deviation is larger than the
preset value, a slack unit P; (s = 1,2,..., NG) that
choose randomly from the unit poor was used to bal-
ance the power deviation follow the following rules:

NG
Py = (Pioad + Ploss) — Z (P);
i=1(i#s) (27)
if Py > P,

max
P. = Pi,t > it
s min : min
Plin.if Py < P,

it
If the power balance constraint is still not satisfied,
similarly, one unit from the remaining units is randomly
select as the slack generator to balance the power devi-
ation. This process continues until all units are selected,
and when the output is in a prohibited operation zone
after balancing power deviation, its output can be deter-
mined using Eq.21.

4) Calculating the value of the objective function of all
fireflies using the formula in Eq.1.

5) Update the position of each firefly using Eq.14, calcu-
late fitness of new firefly as described in Step4, and
select the best solution among all fireflies as P’gest.

6) Generation mutant firefly using the formula in Eq.18.

7) Modify the fireflies produced by the mutation mecha-
nism to satisfy the constraints using Step2 and Step3,
and generation offspring fireflies using the formula in
Eq.21.

8) Check stopping criterion. In this paper, the termination
condition of the algorithm is reaching the maximum
number of iterations. If the termination condition has
not been reached, go to Step5. If the maximum number
of iterations has been reached, stop and output the best
optimization results.

Figure 4 shows the flowchart of the CMFA method.

V. SIMULATION RESULTS

For comparison with other methods, several commonly ED
tests of different sizes are used. A list of state-of-the-art
algorithms and abbreviations of each algorithm mentioned
in this paper is showed in Table 1. There are 65 methods in
Table 1. The references for these methods are also exhibited in
the same table. The simulations are carried out on MATLAB
(R2013a) environment using a desktop machine, which CPU
is Intel Core(TM) i7 processor with 3.6 G-Hz clock frequency
and 8 GB of RAM.

In order to more effectively verify the effectiveness of
the proposed method of solving ED problem in large-scale
systems, a few systems used by a large number of literature
that involve up to 160 units are tested. Large-scale systems,
like 160-unit system, make the cost function of ED problem
highly non-convex and complex when both considering VPE
and multiple fuel options. Thus, the ability to consistently
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|

Input required information of test systems,
ED problem and proposed algorithm

/

Initialize positions all fireflies randomly using (22)

}

Modify each firefly to satisfy all constraints

\

Compute objective function of each firefly according to (1)-(4)
and determine the global best solution

o

Y
Update position of each firefly using (14)

\

Modify each firefly to satisfy all constraints

/

Updating the value of the objective function of all fireflies and
selecting the new current optimal solution

\

Start of Variation phase

¥

Modify each mutant firefly to satisfy all constraints

Y

Obtain offspring fireflies using (21) Oand update algorithm parameter values

If the maximum
number of iterations
reached

Stop the procedure and output the best optimization results

Fig. 4. The flow chart of the CMFA algorithm.

obtain good optimization results, will demonstrate the effi-
ciency of the algorithm. The robustness of the proposed
algorithm, in this paper, will be validated from the results
of 100 independent runs for each case study. The quality
of the solution provided in this paper is compared with the
results provided by the most advanced methods reported in
the previous literature.

In this paper, the number of populations is set to 20 for
6-unit,10-unit and 15-unit system. The maximum number of
generations for these three systems are 500. The population
size of 80- and 160-unit are 25, and the optimized process
will stop when 1000 generations are reached.

A. CASE 1: 6-UNIT SYSTEM
The system of this case study has six thermal generators and
supply a total load demand of 1263 MW. In this case study,
the prohibited operating zones, the ramp rate limits, and the
transmission losses are considered. The data of the test system
are the same as reported in [16].

The detailed best output dispatch optimization results pro-
vided by the FA, CMFA and other 8 algorithms reported
in previous literature are listed in Table 2 for comparing
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TABLE 1. List of algorithms mentioned in the previous literature and
corresponding Acronyms.

Algorithms Abbreviation
Artificial bee colony algorithm ABC[36]
Adaptive real coded genetic algorithm ARCGA[37]
Biogeography-based optimization BBO[38]
Backtracking search algorithm BSA[15]
Chaotic bat algorithm CBA[13]
Conventional genetic algorithm with multiplier updating CGA_MU[19]
Cuckoo search algorithm CSA[39]
Crisscross optimization algorithm CSO[40]
Differential evolution DE[18]
Differential harmony search DHS[41]
Distributed Sobol PSO and TSA DSPSO-TSA[42]
Elitist cuckoo search ECS[43]
Estimation of distribution and differential evolution cooperation = ED-DE[44]
Exchange market algorithm EMAJ45]
Fuzzy adaptive particle swarm optimization FAPSO[20]
Fuzzy based hybrid PSO-DE FBHPSO-DE[46]
Fast A-iteration method FAI[12]
Foraging activity based predator-prey optimization algorithm FWPPOI[47]
Genetic algorithm GA[15]
Global-best harmony search algorithm GHS[48]
Global particle swarm optimization GPSO[49]
Group search optimizer GSO[50]
Grey wolf optimization GWOI[51]

Hybrid particle swarm optimization-differential evolution
Hybrid shuffled frog leaping algorithm and GHS

HPSO-DE[46]
SFLA-GHS[48]

Immune algorithm for economic dispatch problem IA_EDP[52]
Improved fast evolutionary programming IEEP[53]
Improved genetic algorithm with multiplier updating IGA_MU[19]
Improved orthogonal design particle swarm optimization I0DPSO[54]
Improved particle swarm optimization IPSO[55]
Improved random drift particle swarm optimization IRDPSO[30]
Kinetic gas molecule optimization KGMO[56]
Modified artificial bee colony algorithm MABC[34]
Modified differential evolution algorithm MDE[57]
Multi-gradient particle swarm optimization MG-PSO[58]
Multi-strategy ensemble biogeography-based optimization MsSEBBO[59]
Modified shuffled frog leaping algorithm MSFLA[48]
Modified Symbiotic Organisms Search MSOS[60]
New global particle swarm optimization NGPSO[21]
Oppositional real coded chemical reaction algorithm ORCCRO[61]
One rank cuckoo search algorithm ORCSA[62]
Particle swarm optimization PSO[16]
Particle swarm optimization with chaotic sequences CSPSO[63]
Particle swarm optimization with Gaussian mutation PSO-GM[64]
Pseudo-inspired chaotic bat algorithm PI-CBA[65]
PSO with the proposed constraint treatment strategy CTPSO[63]
PSO with both chaotic sequences and crossover operation CCPSO[63]
Quantum particle swarm optimization QPSO[66]
Random drift particle swarm optimization RDPSO[30]
Real coded chemical reaction algorithm RCCRO[38]
Real-coded genetic algorithm RCGA[67]
Synergic predator-prey optimization SPPO[68]
Species-based quantum particle swarm optimization SQPSO[66]
Stochastic weight trade-off particle swarm optimization SWT_PSO[69]
Teaching-learning-based optimization with Lvy flight TLBOI[70]
Tabu search algorithm TSA[42]
Water cycle algorithm WCA[71]
O-particle swarm optimization 6-PSO[72]

the differences among the results of different methods. The
accuracy of the calculations of the FA and CMFA are for
this case are 3.28946E-08 and 9.89811E-06, respectively.
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TABLE 2. The system generator parameters in case 1 (6-unit system).

Power output (MW) GA[15] MTS[15] PSO[16] BSA[I3] TSA[42] CBA[13] FA CMFA
2 474.3066 4481277 447497 4474902 4493651 447 4187 439.293500 4475026568
P 178.6363 172.8082 173.3221 173.3308 182.252 172.8255 175.0455644 173.3160988
Ps 262.2089 262.5932 263.4745 263.4559 2542904 264.0759 265.0000000 263.4717081
Py 134.2826 136.9605 139.0594 139.0602 143.4506 139.2469 140.7740665 139.0669181
Ps 151.9039 168.2031 165.4761 165.4804 161.9682 165.6526 167.042084 165.4677395
Ps 74.1812 87.3304 87.128 87.1409 86.0185 86.7652 88.78165465 87.13305585
Total power (MW) 1276.03 1276.023 1276.01 1275.958 1277.345 1275.9848 1275.9367 1275.958177
Ploss(MW) 13.0217 13.0205 12.9584 12.9583 14.3449 12.9848 12.93686954 1295818715
Total generation cost ($/h) 15459 15450.06 15450 15449.898 15451.63 15450.23 15450.50896 15449.899391
TABLE 3. Comparison of results in the 6-unit system. 15a6a%10"
Total generation cost ($/h) . 1.5462} B i . : H i
Methods Minimum £ Average Maximum Std.dev time(s)
GA[I3] 15459 15469 15,469.00 NA 41.58 156l . i
TSA[42] 15451.63 15462.26 15506.451 5.98 18.09 = i
CBA[13] 15450.2381  15454.76 15518.6588  2.965 0.704 = ! T,
PSO[16] 15450.14 15465.83 15,492.00 6.82 10.1502 g 154581 ! B -
MTS[15] 15450.06 15451.17 15453.64 0.93 1.29 S ' . " ! o
SPPO[68] 15450.0 NA NA NA NA S tsasol oo : i . ) (Rt
DHS[41] 15449.8996  15449.9264  15449.9884  0.0204 0.01 b Bt i ! : T
BSA[15] 15449.8995  15449.9001  15449.9056  0.0010 0.56 8 susal o ltalih g " RS I T
MABC[34] 15449.8995  15449.8995  15449.8995  6.04E-8 NA T PR L B R R AT S
RDPSO[30] ~ 15449.89 1545801  NA 13.647 0.707 e P e e S e iy
IRDPSO[30]  15449.89 15456.55 NA 10.9865 0.676 18452 e RN A IR Hl e T
FA 15450.50896  15452.53099 15458.44268  2.048 1.965 i Lo PR TV N Ve e
CMFA 15449.89939  15449.89941 15449.89944 89GE-06  2.724 1545
NA: data not available.
! '54480 1‘0 2‘0 (;O 4‘0 56 f;O 7‘0 8‘0 S;O 100

Table 3 shows the super efficiency of the CMFA in obtaining
high quality solutions over 100 independent experiments,
when compared with other methods. The bold values indi-
cate the best result provided by its corresponding method.
Obviously, the CMFA can provide better solutions than
other algorithms under the condition of guaranteeing stability
and computing efficiency. The standard deviation of GA is
smaller than the proposed algorithm in this paper, however,
even the worst result of the CMFA is better than the best
solution of GA, which proves the superior ability of the
proposed method to avoid trapping into local optimum.

x 10

1.5475 .
4
15454710
18471 1.5453 il
= 1.5452
S 1.5465 B
k7
8 1.5451
§
2 1546 —
s 1.545 . .
2
[
o
= 1544
g 1-5455L ™0 100 200 300 400 500
1.545 [~
1.5445 i i i i i i i i i
0 50 100 150 200 250 300 350 400 450 500

Iteration

Fig. 5. Convergence characteristics of FA and CMFA (6-units system).

Figure 5 shows the convergence properties of the FA and
CMFA when the optimal results are obtained in 100 inde-
pendent trials. It can be seen that the FA settles at about
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Number of trial runs

Fig. 6. Generation cost distribution of FA and CMFA (6-unit system).

20 iterations and provides a value of the total generation cost
of about 15451($/h); the settle iteration number of the CMFA
is about 80 and achieves about 15450($/k). This indicates
that the CMFA provides more accurate results, although more
iterations are needed, compared to the FA. The cost value
distribution of the FA and CMFA running 100 times indepen-
dently are shown in Fig.6, which proves that the CMFA has
an obvious effect on improving the stability of results when
comparing with the FA.

B. CASE 2: 15-UNIT SYSTEM

In this case study, a 15 thermal-unit system with the pro-
hibited operating zones, ramp rate limits, transmission losses
and the valve point effects are considered [16]. The detailed
information of the generator parameters and the loss coeffi-
cients are provided in [15]. The total power load demand is
2630MW. Table 4 lists the detailed best results obtained by
the CMFA and the FA, as well as the best solutions provided
by the other eight methods reported in the previous literature.
It can be seen that both the FA and the CMFA provide
solutions that satisfy all constraints. The minimum, average
and maximum generation cost value of the CMFA and the
FA obtained from 100 independent trials are presented in
Table 5 with the other twenty-seven state-of-the-art methods.
Also, standard deviation(Std.dev) and computational average
time are given in the same table. Obviously, the best solution
of the proposed algorithm is better than the FA and many
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TABLE 4. Best results for case 2 (15-unit system).

Power output (MW) GA[15] PSO[16]  APSO[15] MTS[I5] _ AIS[21] TSA[42]  DSPSO-TSA[42]  BSA[15]  FA CMFA
P 4153108 439.1162 455 4539922 441.1587 4405 453.627 55 55 455
Py 3597206 407.9727  380.01 379.7434  409.5873  346.8 379.895 380 380 380
Ps 104.425 119.6324 130 130 117.2983  110.88 129.482 130 129.9999 130
Py 74.9853 129.9925 12652 129.9232 1312577 12246 129.923 130 130 130
Ps 380.2844  151.0681  170.01 168.0877  151.0108  177.74 168.956 170 169.9906 170
Ps 4267902 459.9978 460 460 4662579 459.11 459.907 460 460 460
Py 3413164 4255601  428.28 4292253 4233678 406.41 429.971 430 429.9993 430
Py 1247867  98.5699 60 1043097  99.948 107.55 103.673 71.6368 91.0013 71.195
Py 133.1445 1134936 25 35.0358 110.684 107.27 34.909 59.0234 57.7144 58.9897
Pio 89.2567 101.1142  159.79 1558829  100.2286  140.56 154.593 160 136.0273 160
Py 60.0572 339116 80 79.8994 32.0573 78.47 79.559 80 79.9957 79.9897
P1y 49.9998 79.9583 80 79.9037 78.8147 74.17 79.388 80 79.9958 80
P13 38.7713 25.0042 337 25.022 23.5683 31.95 25.487 25.0001 25.0076 25.0048
Pyy 41.9425 41414 55 15.2586 40.2581 37.38 15.952 15.0001 19.5467 15
P15 22,6445 35.614 15 15.0796 36.9061 2247 15.64 15.0005 15.4951 15.01228
Total power (MW) 2668.4 2662.4 2658.32 2661.36 2662.04 2663.7 2660.96 2660.661 2659778 2660.192
Power loss (MW) 38.2782 32.4306 28.37 31.3523 324075 33.811 30.952 30.6609 29.7779 30.19217
Total generation cost ($/h) 33113 32858 3272478 3271687 32854 32918 32715.06 3270445 3270403  32699.2
TABLE 5. Comparison of results in the 15-unit system. 53x10°
Methods M}?s}ﬁf mjii:;r;ecos{]\(g:i)mum Std.dev Average time(s) 3.295 3276210 4
GAIT5] 33113 33228 33337 NA 2931 3275
TSA[42] 32917.87 33066.76 3324554  66.82 25.75 = 329 3274 1
GPSO[49] 32891.83 33850.95 33137.55 197.33 35901 2
PSO[16] 32858 33039 33331 NA 26.59 3 3213
TLBO[70] 32770.72  33073.882 32819.743 NA NA 8 32851 s27 ]
MTS[15] 3271687 3276721 3279615 17.51 3.65 $ o
DSPSO-TSA[42] 3271506 32724.63 3273039 8.4 23 S Ly : i
IA_EDP[52] 32712.63 3292070 32817.73 43.3935 1.652 s 327
ABC[36] 32707.85 32707.95 3270827 NA NA 5 2200
QPSOI[66] 3270742 3271348 3276398 13.8115 8.46 P 3278 100200 300 400 500 . |
6-PSO[72] 32706.68 3271149 32744.03 9.8874 5.5794 P
MDE[57] 327049 32708.1 327115  NA 12.88
SQPSO[66] 3270457 32707.08 3271162 1.077 7.45 3271
BSA[15] 3270445 3270447 3270458  0.028 3.74
WCA[71] 3270445 NA NA NA NA 2265 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
CCPSO[63] 3270445 3270445 3270445  0.00 16.2 5 100 150 200 250 300 350 400 450 500
SWT_PSO[69] 3270445 NA NA NA NA Iteration
225511[4639]] gggizg 3N2A703.35 13\]2[\705'23 E: II\;A; Fig. 7. Convergence characteristics of FA and CMFA (15-unit system).
FAI[12] 32701 NA NA NA 0.015
MG-PSO*[58] 3267791 32678.02 32677.96 0.0348 9.2084
KGMO®[56] 3254817 3254821 3254837 NA 7.24 ,
FA 3270448 32708.71 32719.17 3.9327 2.86 3273710
CMFA 3269920 32704.63 3271092 27779 435
a: The Toss coefficients B(; and Bg( without considered.
b: Ramp rate limits without considered. 3.2725 B
NA: data not available.
. . . . T 32r2p ]
algorithms that have been recognized as efficient in solving 2
ED problems, which proves the superiority performance of 8 somist 1
the proposed algorithm. Furthermore, a small standard devi- 2 l
. Q
ation reflects the robustness of the CMFA. g 2 1 | . i V |
. . = e, a o g [° = o il Lo 5 \ Y
Figure 7 shows the convergence properties of the FA and Btk L NV 2 EL R
3 VAR R R LN ST A SR DAy HEVS AR STV QUSRS SE R
the CMFA. It can be seen that the FA and the CMFA settles LTI ;," Y W Ch A
at about 270 and 240 iterations with cost value of about sarb by 0 i Lo .
32705($/h) and 32700 ($/h), respectively. This shows that
the CMFA is superior to the FA in both efficiency and 828050 a0 a0 80 60 70 80 0 100
. . . Number of trial runs
accuracy as the complexity of the problem increases. Fig. 8
shows the distribution of the generation cost value obtained Fig. 8. Generation cost distribution of FA and CMFA (15-unit system).

from running the FA and the CMFA with 100 independent
trials, respectively. This figure clearly shows that the CMFA
provides more consistent and reliable solutions, compared to
those of the FA.

C. CASE 3: 10-UNIT SYSTEM
In this case study, a slightly larger benchmark system that
has 10 units is used. The total load demand of the system

45916

is 2700MW. The valve point effects, the ramp rate limits,
and multiple fuel options are considered when optimizing
the allocation of unit output. The generators’ cost coeffi-
cients, the valve-point coefficients, and multiple fuel data
of this test system are given in [19]. The optimal allocation
of unit output and fuel types provided by the FA and the
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TABLE 6. Best results for case 3 (10-unit system).

Methods
Output power (MW) IGA-MU[19] TSA[42] PSO[16] BSA[I3] FA CMFA
PG (MW) Fuel type PG (MW) Fuel type PG (MW) Fuel type PG (MW) Fuel type PG (MW) Fuel type PG (MW) Fuel type
2 219.1261 2 219.4959 2 225.5729 2 218.5777 2 219.6434 2 218.6003 2
Py 211.1645 1 206.7093 1 208.224 1 211.2153 1 212.7272 1 210.9692 1
P; 280.6572 1 291.3532 1 278.8078 1 279.5619 1 279.6276 1 280.6565 1
Py 238.477 3 237.6731 3 238.0062 3 239.5024 3 238.5630 3 239.6396 3
Py 276.4179 1 279.2478 1 282.4136 1 279.9724 1 281.0941 1 279.9307 1
Py 240.4672 3 237.3793 3 239.6464 3 241.1174 3 239.3707 3 239.7734 3
P; 287.7399 1 277.9598 1 285.4269 1 289.7965 1 288.0566 1 287.7242 1
Ps 240.7614 3 238.9435 3 239.1045 3 240.5785 3 239.2376 3 239.7738 3
Py 429.337 3 429.9256 3 425.5856 3 426.8873 3 426.5232 3 427.0638 3
Pio 275.8518 1 281.3126 1 277.2121 1 272.7907 1 275.1567 1 275.8686 1
Total power (MW) 2700 2700 2700 2700 2700 2700
Generation cost ($/h)  624.5178 624.3078 624.3046 623.9016 623.9351 623.8334
TABLE 7. Comparison of results in case 3 (10-unit system). 650
628
Methods T.bt.al generation cost ($/h,) Std.dev Average time(s) 645 b
Minimum Average Maximum A 627
CGA_MUI[19] 6247193 627.6087 633.8652 NA 26.64
IGA_MUI[19] 624517 6258692 630.8705 NA 7.32 3 626
GA[15] 624.505 624.7419 624.8169 0.1005 18.37 2640 1
TSA[42] 6243078 624.8285 635.0623 1.1593 9.71 g s
PSO[16] 6243045 6245054 625.9252 0.1749 11.04 <
PSO-GM[64] 624305 624.6749 625.0854 0.158 NA 3 635 1
FAPSO[20] 6242189 6242951 624.2782 NA 59 2 624
MSFLA[48] 624.1157 624.8958 6283428 NA NA 5
HPSO-DE[46] 624.1034 NA NA NA 4.09 £ 630 82300 300 350 400 500 1
CBPSO-RVM[64]  623.9588 624.0816 624.2930 0.0576 NA =
BSA[15] 623.9016 623.9757 624.0838  NA 0.25 /
IPSO[55] 623.8730 623.8887 623.8900 0.00085 1.032 6251 ]
CSA[39] 623.8684 623.9495 6263666 0.2438 1.587
ORCSA[62] 623.8608 623.8963 623.9353 0.0154 1.54
CTPSO[63] 623.8588 6329313 624.0368 0.0332 33 620 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
FWPPO[47] 623.85 NA NA NA 3.16 0 50 100 150 200 ZSQ 300 350 400 450 500
GHS[48] 623.8491 624.1341 6253157 NA NA tteration
GSO[50] 623.8465 6239829 624257  NA 17.81 . i L, .
CSPSO[63] 623.8402 623.8988 623.9852 0.0269 33 Fig. 9. Generation cost distribution of FA and CMFA (10-unit system).
SFLA-GHS[48] 623.8406 6239521 624.7804 NA NA
DSPSO-TSA[42]  623.8375 623.8625 623.9001 0.0106 3.44
GWO*[51] 605.6818 605.6263 605.7937  1.02 236
FA 623.9351 623.9939 624.2512 0.1016 2.43 624.3
CMFA 623.8334 623.8666 623.9062 0.0189 3.78

*The total computed cost by the authors Tor the optimal solutions reported in [31] are much higher than reported in
references
NA: data not available.

CMFA are presented in Table 6, with the best solutions of
4 literature published in recent years. It can be sure that the
solution satisfies all the generation limit constraints. The total
generation cost obtained by the CMFA is 623.8334 ($/h)
when meeting the power demand of 2700MW while the
violation of power balance is zero, which reveals a powerful
ability of the proposed algorithm that provides better results
in the case of keeping accuracy. Table 7 lists the compar-
ison of generation cost values among the FA, the CMFA
and other 23 methods. It can be seen that the least gener-
ation cost is provided by the CMFA with a good standard
deviation (0.0189) and a fast calculation time (3.78 s). The
FA also provides a good standard deviation of results and
calculation time, but it falls into a mediocre local mini-
mum of 623.9351($/h), although it’s better than the other
11 methods.

Figure 9 shows the convergence properties of the FA and
the CMFA. It can be seen that both the FA and the CMFA
provide smooth convergence. Fig. 10 shows the distribution
of the total generation cost value provided by running the
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Fig. 10. Generation cost distribution of FA and CMFA (10-unit system).

FA and CMFA with 100 independent trials, respectively.
It intuitively shows that the results provided by the CMFA are
in a small range between 623.8334 ($/h) and 623.9062 ($/h),
and the solutions of the FA are in a larger range between
623.9351 ($/h) and 624.2512 ($/h). This demonstrates
that the CMFA is more accurate, stable and reliable than
the FA.
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TABLE 8. Best results for case 4 (80-unit system).

FA CMFA FA CMFA FA CMFA FA CMFA
Unit Output(MW) Fuel type Unit Output(MW) Fuel type Unit Output(MW) Fuel type Unit Output(MW) Fuel type
Gy 214.6768  220.0854 2 Ga1 221.6592  218.5876 2 Ga1 2023496 221.5771 2 Gg1 2225073 2183111 2
G2 214.2034  213.6888 1 G2 2137086  210.7270 1 G4z 210.7252  211.4615 1 Gea  212.1928 211.4507 1
G3 272.5517 282.7161 1 Gaz 2859261  282.9041 1 Gaz  279.1123  285.7622 1 Gez  283.1551 281.6243 1
Ga 239.6338 240.3123 3 Gag 2413704  241.1210 3 Gaq 2415169 238.8336 3 Ges  240.1839  240.5803 3
Gs 279.9324  281.2814 1 Gas 2849724 2752641 1 Gys 2773431 2799167 1 Ges  279.1448 279.3733 1
Gg 237.2130 241.3849 3 Gag  240.1811  239.1008 3 Gae  241.0066 2403111 3 Gee  238.6957 238.6983 3
G 286.9389  284.6647 1 Ga7 2873132 285.7905 1 Ga7 2922747 286.0424 1 Ge7  282.0482 288.6673 1
Gg 238.5608 239.1023 3 Gag  236.8020  240.1735 3 Gas 2393699 237.8927 3 Geg 2392352 239.3714 3
Gy 424.8441 4232263 3 Gag 4323391  423.7396 3 Gag9 431.8699 423.3299 3 Ggg 42577379 427.1530 3
Gio 2732563 277.8224 1 Gao  279.8028  271.1403 1 Gso 2778151 277.9563 1 Gro 2707472  275.5865 1
Gi1 220.7616  220.7842 2 G31 216.1175 2155818 2 Gs1 214.0925 219.7209 2 Gr1 2183198 219.6253 2
Gi2  209.7294 211.9482 1 G3a 2104939  213.4437 1 G52 210.7533  211.7136 1 Gra  214.1919 208.7501 1
Gi13 2864163 281.2083 1 Gz 2875734  287.7624 1 Gs3  280.0570 278.9925 1 Gr3  281.5130 279.8381 1
G4 238.1615 238.8331 3 Gzg 2419306  240.0396 3 G54 240.1775 241.9235 3 Grg 2412503 241.1195 3
Gis  279.7888 276.4529 1 Gas  281.3822  284.0416 1 Gss 2814912 2753101 1 Grs 2827339 270.1158 1
Gi16  238.1685 240.0412 3 G3e  239.7666  239.2346 3 Gse 2417915 238.8320 3 Gre  238.6903 240.9832 3
Gi7  296.5628 290.5925 1 Ga7  286.8823  284.7568 1 Gs7  289.6894 289.6645 1 Grr  292.8880 286.1451 1
Gig  238.1583 239.3725 3 Gag 23777603 240.4446 3 Gsg  240.7379  237.8933 3 Grg 2404406 242.7281 3
Gig9 4237026 427.4155 3 G3g9  430.2566 4289713 3 Gsg9 416.1985 432.8728 3 Grg 4184742 421.5532 3
Goo  272.0008 279.6887 1 Gao 2769149  276.0346 1 Ggo 274.5754 272.8368 1 Ggo 2764871 276.0011 1
Total generation cost ($/h): 4994.0583  4992.0655 Total power output(MW): 21600 21600

D. CASE 4: 80-UNIT SYSTEM

In the third case study, an 80-unit power system 8 times
larger than the system of case-3 supplying a load demand
of 21600 MW is utilized. Multiple fuel options and the VPE
are considered. The problem has become more complex due
to the existence of as many as 80 nonconvex cost functions.
It may be more difficult to solve an ED problem under such
conditions than the real power system, because not all the
units in a real system need to consider the valve-point effects.
Table 8 shows the optimal unit output allocation results
obtained by the FA and the CMFA. It is clear that all the
constraints of the ED problem are satisfied. The comparison
of objective function values among the FA, the CMFA and
other recently reported methods are presented in Table 9,
which shows that the cost of the CMFA is the lowest among
the other methods, and the standard deviation is the least of
all methods except for the ORCSA [62].

Figure 11 shows the convergence properties of the FA
and the CMFA. It can be seen that both the FA and the
CMFA provide smooth convergence, and settles at about
240 and 200 iterations, respectively. It indicates that, in spite
of facing such a high dimension (d = 80) ED problem, both
the FA and the CMFA can still converge at a fast speed. Fig. 12
shows the distribution of the total generation cost value pro-
vided by running the FA and the CMFA with 100 indepen-
dent trials, respectively. It intuitively shows that the results
provided by the CMFA vary between 4992.06 ($/h) and
4994.97 ($/h), and in the FA, it varies between 4994.06 ($/h)
and 5006.63 ($/h). This demonstrates that the CMFA is more
accurate, stable and reliable than the FA.

E. CASE 5: 160-UNIT SYSTEM

In this case study, a 160-unit system is generated by com-
bining sixteen 10-unit systems, and supplying a load demand
of 43200MW. Multiple fuel options and the VPE are con-
sidered. In such a large system, the cost function is highly

45918

TABLE 9. Comparison of results in case 4 (80-unit system).

Total generation cost ($/h)

Methods Minmam Average Maximom Std.dev  Average time(s)
CGA-MU[19] 5008.143 NA NA NA 309.41
IGA-MU[19]  5003.883 NA NA NA 85.67
BSA[15] 4995.127 4997.551 5000.983 1.0961 4.78
ED-DE[44] 4992.71 NA NA NA NA
CSA[39] 4992.685 4993.731 5003.429 1.0931 18.25
ORCSA[62] 4992.422 4994.499 4995.672 0.4939 15.24
FA 4994.0583  4997.5182  5006.6316  4.2667 17.52
CMFA 4992.0655  4993.7483  4994.9760  0.7240 23.84
*NA: data not available.
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Fig. 11. Convergence characteristics of FA and CMFA (80-unit system).

non-smooth and dimensionality. Therefore, finding the global
optimal result of this system is a very difficult challenge.
In recent research, a large number of algorithms have been
applied to solve this problem. Though have shown good
results, but there still exists room for further improvement.
The detailed optimization results provided by the CMFA are
listed in Table 10. The detailed optimization results of other
methods are no longer shown, as in previous cases. Table 11
shows a comparison of the solution of the FA, the CMFA, and
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TABLE 10. Best results for case 5 (160-unit system).

Unit Output(MW) Fuel type Unit Output(MW)  Fuel type  Unit Output(MW) Fuel type Unit Output(MW)  Fuel type  Unit Output(MW) Fuel type
G 221.9636 2 Gzz  280.4331 1 Ges 284.2236 1 Go7 285.5699 1 G129 426.6207 3
Go 2139288 1 Gzq  238.6961 3 Ges 239.7727 3 Gog 239.9016 3 G130 273.0512 1
Gz 280.6310 1 G35 278.8651 1 Geg7 287.7888 1 Ggg 421.1971 3 G131 2262088 2
G4 2421929 3 Gzg 241.2524 3 Geg 2424567 3 G100 275.3600 1 G132 209.2391 1
Gs  284.3912 1 G37  288.9952 1 Gegg 421.0851 3 Gio1 227.5996 2 G133 282.1344 1
Gg  237.0879 3 Gzg 2389676 3 Gro 278.4603 1 G2 2127017 1 G134 238.9642 3
Gr7  287.6546 1 Gzg  433.8875 3 Gr1 2247192 2 G103 275.5033 1 G135 278.0948 1
Gg 2389705 3 Gao 282.0451 1 Gra 2124253 1 Glioa 2424617 3 G136 241.5306 3
Go 4326141 3 G411 219.8887 2 Grs 2804753 1 Gios 273.8717 1 G137 291.6681 1
Gio 272.1067 1 G4z 2124634 1 Gra 2399055 3 G106 240.8500 3 G138 2403108 3
Gi1 219.2781 2 G4z 278.7995 1 Grs 2782885 1 G1o7 292.6097 1 G139 431.0884 3
G12 2109637 1 Gaa 2381696 3 Gre 2409832 3 Glos 238.1632 3 G40 268.9722 1
Gi3  280.6246 1 Gas  279.6021 1 Gr7  288.0648 1 G1o9 428.9940 3 Gra1 219.3540 2
Gia 2372225 3 Gae 240.0402 3 Grg 2409971 3 Gii1o 277.8815 1 Gha2 211.1744 1
G5 282.8932 1 Ga7 288.4727 1 Grg 419.4645 3 G11 220.5089 2 G4z 280.9284 1
Gie 239.7742 3 Gag 240.0447 3 Ggo 277.1086 1 Gii2 211.9746 1 G144 240.4493 3
Gi7  291.1901 1 Gao 4247444 3 Gg1  217.5805 2 G13 277.7493 1 G145 276.5820 1
Gis 2382993 3 G50 2729769 1 Gga 2119571 1 G114 2405752 3 G146 240.0403 3
Gig 4279873 3 Gs1  222.8882 2 Ggs 278.5453 1 G15 278.3002 1 G147 287.0040 1
Gao 2764210 1 G52 209.7710 1 Ggsa 239.6428 3 Gi16 239.3618 3 G148 238.8289 3
Ga1 211.1136 2 Gs3  282.5274 1 Ggs 277.3197 1 G117 2904911 1 Giag 426.3411 3
Gaz  209.9899 1 G54 240.4486 3 Gge 2439387 3 G1s 239.5018 3 G150 277.1389 1
Gaz  279.6295 1 G55 2776104 1 Gg7 291.4335 1 G119 427.5232 3 G151 216.7567 2
Gas  241.3869 3 Gse 239.2311 3 Ggg 2404538 3 G120 273.7198 1 G152 209.4809 1
Gas 2744303 1 Gs7  291.6438 1 Ggg 4282689 3 Gl21 2129348 2 G153 282.6100 1
Gag  238.1750 3 Gss  241.1150 3 Goo 277.1636 1 Gli22 212.1934 1 G154 237.8966 3
Gao7 281.7884 1 Gs9 4203728 3 Go1 2165329 2 G123 281.1074 1 G155 279.7538 1
Gag 2399105 3 Geo 277.1215 1 Goa 2109612 1 Gli24 238.1617 3 G156 239.3712 3
Gag 432.1459 3 Ge1  217.5685 2 Goz 275.6833 1 G255 279.9547 1 G157 289.8992 1
G3o 275.1992 1 Ge2 212.6544 1 Gos 240.4472 3 G126 239.1045 3 G158 240.5898 3
G31 2183116 2 Ges 280.1882 1 Gogs 274.8983 1 G127 285.1209 1 G159 421.2496 3
G3z 2134316 1 Gea 240.0492 3 Gos 237.7620 3 G128 239.9081 3 G160 273.7605 1
Total generation cost ($/h): 9985.5965 Total power output(MW): 432000
5012 TABLE 11. Best results for case 5 (160-unit system).
5010 4
soosl- | Methods Minimur(n}enerAa\tlleorggceosl ($/Mhe)1ximum Std.dev Average time(s)
CGA_MUI[19] 10143.72 10143.72 NA NA 621.3
5006 4 IGA_MUI19] 10042.47 1004247 NA NA 174.62
s PSO[46] 10036.199 NA NA NA 204.73
Z 5004 BSA[15] 10014.085 10035.403  10060.93 9.037 9.44
E HPSO-DE®[46] 10013.008 NA NA NA 101.44
£ 5002 ED-DE[44] 10012.68  NA NA NA NA
g FBHPSO-DE®[46] 10011.072 NA NA NA 97.01
2 5000 RCCRO[38] 10009.518  10009.52  10009.58 NA 50.216/iter
° BBO[38] 10008.71 10009.16  10010.59 NA 0.62/iter
4998 1 DE/BBO([38] 10007.05  10007.56  10010.26 NA 0.56/iter
ORCCROI[61] 10004.20  10004.21 10004.45 NA 0.019/iter
4996 - ‘ . CBA[15] 10002.859  10006.33 1004523  9.5811 5.71
A s B! I AT KIS R CSA[39] 9996.639  9996.639  10014.02  4.9268 75.42
w00t et T A P R R T g PI-CBA[65] 9995.805  10029.08  10069.74 NA NA
ST T TR e R i U ORCSA[62] 9989.9444 9992.0503 9996.832 14138 67.50
4992, m 2 m m P R—— 20 20 % 700 FA 9995.6720  10011.185 10038.068  8.8454 43.86
Number of trial runs CMFA 9985.5965  9987.5525 9996.9409 2.5174 76.78

Fig. 12. Generation cost distribution of FA and CMFA (80-unit system).

a:Cack of detailed optimization result.

NA: Data not available.

the other 15 methods. It’s clear that the best generation cost
provided by the CMFA is the lowest among all the methods
mentioned. Furthermore, the average generation cost is better
than the best cost value of residual algorithm, and a standard
deviation is a small number that equal to 2.5174.

Figure 13 shows the convergence curve of the FA and the
CMFA when provided the best solution for case-5. It can be
seen that the FA settles at about 350 iterations and for the
CMFA is about 500, which indicates that the FA converges
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faster than the CMFA. However, the cost value provided by
the CMFA is significantly better than that of the FA, which
indicates that the FA has early convergence and trapped into a
local minimum but the CMFA successfully avoided. The gen-
eration costs distribution of the 100 independent run validates
the robustness of the CMFA, which shown in Fig. 14 with the
FA. This makes clear that the CMFA has the ability to provide
a consistent and reliable optimal solution. On the other hand,
The performance of the FA is weak and the optimal solution
cannot be provided due to the high complexity of the problem.
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Fig. 13. Convergence characteristics of FA and CMFA (160-units system).
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Fig. 14. Generation cost distribution of FA and CMFA (160-units system).

VI. CONCLUSION

In this paper, a new metaheuristic algorithm called firefly
algorithm (FA) is proposed in which the concept is simple
and easy to implement. The Firefly Algorithm is used to
solve non-convex and large scale economic dispatch prob-
lems when considering both the valve-point effects and the
multiple fuel options. Furthermore, a modified version of the
FA, the CMFA, is proposed for solving the ED problems
after carefully considering different components in designing
the method. A sinusoidal chaotic map was incorporated into
FA for the adaptation of the random movement factor («),
and the absorption coefficient () was introduced into can-
didate solutions as variables that need to be optimized for
enhancing the search capability of the FA and eliminate the
need for manually tuning the algorithm. Besides, a new pow-
erful self-adaptive mutation mechanism is used to maintain
diversity in the population and enhance the global searching
ability of the CMFA. In addition to the above contribution,
a new equality constraint handling mechanism is set up,
a dynamic relaxation factor has been used and some solutions
that slight violations of the constraint but have good fit-
ness for the objective function are retained. This mechanism
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biases the optimization towards the feasible region, which
enhances convergence rate and handling different constraints
in ED problems simultaneously. The FA and the CMFA were
applied to five test systems having 6, 10, 15, 80, 160-units
and the analysis of simulation results demonstrates that the
proposed methods exhibit superior performances in solv-
ing ED problems including the prohibited operating zones,
the valve-point effects, the transmission losses, the multiple
fuel options, and other constraints of power systems like ramp
rate limits and so on, compared to previously proposed state-
of-the-art methods.

In future work, we intend to apply these methods to
solve other problems related to power systems optimization
because the CMFA has shown good performance in solving
the ED problem.
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