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ABSTRACT

The modern power grid is constrained by several challenges, such as increased pen-

etration of Distributed Energy Resources (DER), rising demand for Electric Vehicle

(EV) integration, and the need to schedule resources in real-time accurately. To address

the above challenges, this dissertation offers solutions through data-driven forecasting

models, topology-aware economic dispatch models, and efficient optional power flow

calculations for large scale grids. Particularly, in chapter 2, a novel microgrid decompo-

sition scheme is proposed to divide the large scale power grids into smaller microgrids.

Here, a two-stage Nearest-Generator Girvan-Newman (NGGN) algorithm, a graphical

clustering-based approach, followed by a distributed economic dispatch model, is de-

ployed to yield a 12.64% cost savings. In chapter 3, a deep-learning based scheduling

scheme is intended for the EVs in a household community that uses forecasted demand,

consumer preferences and Time-of-use (TOU) pricing scheme to reduce electricity costs

for the consumers and peak shaving for the utilities. In chapter 4, a hybrid machine

learning model using GLM with other methods is designed to forecast wind genera-

tion data. Finally, in chapter 5, multiple formulations for Alternating Current Optimal

Power Flow (ACOPF) are designed for large scale grids in a high-performance com-

puting environment. The ACOPF formulations, namely, power balance polar, power

balance Cartesian, and current balance Cartesian, are tested on bus systems ranging

from a 9-bus to 25,000. The current balance Cartesian formulation had an average of

23% faster computational time than two other formulations on a 25,000 bus system.
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CHAPTER 1

Introduction

1.1 Motivation

The electric power industry is experiencing drastic changes in its economic outlook as

countries are replacing fossil fuels with Renewable Energy Sources (RES) [1]. The

percentage contribution of RES to the power grid needs to increase in order to satisfy

the increasing level of energy consumption. While the integration of RES is beneficial

to the environment in reducing greenhouse gas emissions, it comes with technological

challenges for utilities, such as the variability and reliability of RES [2]. In US, the

most widely used RES in 2019 were wind and solar, constituting a total of 33% among

the different renewable sources as shown in Figure 1.1 [3]. The energy production from

these sources depends on several factors, such as wind speed, wind direction, solar

irradiance, temperature, air pressure and humidity, among other variables. Any of these

sources may vary instantaneously, influencing the amount of power generation. In the

operations and planning of power systems, quantifying the uncertainty associated with

RES is vital [4, 5, 6]. Predicting solar power is more accurate when compared to wind

power, as there are fewer uncertain variables; the intensity and duration of wind power

is both uncertain and variable, while solar power is more variable than wind power but

more predictable [7, 8, 9, 10].

1



Figure. 1.1 U.S. primary energy consumption by source for 2019 [3].

Uncertainty evaluation and quantification is a topic of great interest in both the in-

dustry and the scientific community, as evidenced from the increased amount of lit-

erature in the area. The Uncertainty Quantification (UQ) plays an important role in

improving the reliability, security, and availability of RES when evaluated within the

engineering processes. Earlier concepts of uncertainty focused on probability theory to

represent the variation in a variable process. Representation of uncertainty by probabil-

ity methods may not always suit the scenario, such as when an information needed is

unavailable. When using methods such as Economic Dispatch (ED) and Unit Commit-

ment (UC), a more robust methods of representing uncertainty is required.

The uncertainty associated with a process can be categorized as either modeling,

parametric, aleatory, epistemic or error. Aleatory uncertainty is the irreducible or stochas-

tic uncertainty which can be better characterized with an increase in knowledge. Epis-

temic uncertainty is the reducible or systematic uncertainty, gets reduced with an in-

crease in knowledge. Error is considered different from uncertainty; however, some
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Figure. 1.2 Wind power generation capacity growth in MISO.

researchers refer to it as numerical uncertainty [11]. R. Lima and R. Sampaio [12] feel

there is a need to develop an improved statistical measure to represent uncertainty since

the utilization of CDF is clumsy, even though it may be the best method to represent

variability.

A steady increase in installed wind capacity can be seen in the MISO region, the

capacity growth of which is shown in 1.2 [13]. The management of wind power re-

lies heavily on short-term forecasting. For wind power two uncertainty types can be

considered: the inherent uncertainty of wind speed due to its variable and intermittent

nature (aleatory uncertainty) and the uncertainty associated with the relationship be-

tween wind speed and wind power generated due to different parameters influencing

the power generation (epistemic uncertainty). The wind power generation values from

April 1st through 7th, 2020, in PJM MIDATL region, is shown in Figure 1.4. The wind

power generation values does not follow any pattern like the load values (AECO load

area) shown in Figure 1.3.

The two important optimization problems in a power system are unit commitment
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Figure. 1.3 Net load in PJM April 1st - April 7th.

Figure. 1.4 Wind generation in PJM April 1st - April 7th.

(UC) and economic Dispatch (ED), both of which handle resource scheduling and re-

source allocation operation in power systems. ED is a process of economically al-

locating generation values to a mix of generating units to satisfy the system load re-

quirements. The allocation process is subject to load, generation, and transmission

constraints with the goal to reduce generation costs [14]. The UC involves selecting

the generators to meet system demand while reducing the cost of operation and ED

determines the generation value for the committed generators. An optimum resource
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allocation model requires an accurate value of wind generation in the grid to economi-

cally allocate the resources. To increase the percentage of RES in the generation mix of

a power grid and to make it a more attractive investment for power companies, requires

an accurate forecast model to predict the RES generation.

Figure. 1.5 PEV Sales in USA.

A significant and growing demand on the electrical grid is related to providing

power to EVs, a field which is growing rapidly. The exponential growth in EV sales

within the US from 2011 to 2019 is shown in figure 1.5 [15]. The 2019 sales of EVs

alone increased by 329,528 units in the US [15]. California is the leader in US EV

adoption with an increase of 61.7% from 2017 to 2018, which accounts for a 7.84%

market share. The US has almost 1.2 million EV vehicles on the road as of March 31st,

2019 [16]. Globally EVs are gaining acceptance among consumers, where sales were

approximately 2.1 million in 2018, a growth of 64% compared to the sales in 2017.

Perhaps the most challenging issue the power industry faces is the increasing demand

for electricity during the peak hours, which happens to be at the same time EV owners
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connect their cars to the grid after working hours.

Microgrids which can be defined as a low-voltage distribution network with control-

lable loads, storage devices and DER, can be used to counter the uncertainty from wind

generation, increased EV load, system failures and load variation. The formulation of

the resource optimization problem can also play a vital role in the efficient operation

of a grid management system. The dissertation tries to answer the following research

questions:

1. What is an economical way to decompose (or group) a large scale grid into

smaller microgrids?

2. How do we optimize electricity consumption by analyzing load profiles (e.g., EV)

and consumer preferences?

3. How do we generate accurate forecast models for distributed energy resources

(e.g., wind generation) under uncertain conditions?

4. How do we reduce the computation run times of optimal power flow calculations

for larger grid systems?

1.2 Thesis Outline

Chapter 1 introduces the concepts and motivation for this thesis. Chapter 2 details the

grid clustering and the proposed economic clustering schemes for microgrid decompo-

sition. Chapter 3 establishes the need to schedule the EV load in the system for peak

shaving and models the scheduling scheme. In chapter 4, the novel hybrid methods

for short-term wind power forecasting is introduced. The chapter 5 discusses the com-

putational and numerical performance evaluation of ACOPF and Security Constrained
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Optimal Power Flow (SCOPF) formulations. Chapter 6 describes in detail the conclu-

sions drawn from the thesis and outlines the future work to overcome the limitations

and to extend the current research work.

1.3 Contributions of the Dissertation

My key contributions from this work are summarized below:

• Demonstrated the performance of clustered microgrid systems for varying load

conditions (Chapter 2,C1-C3).

• Developed economic decomposition of a large-scale system in to smaller micro-

grids using grid clustering (Chapter 2, B1)

• Presented a novel EV scheduling scheme using linear programming incorporat-

ing customer preferences and forecasted demand using clustering technique and

DNN (Chapter 3,C5).

• Explored the performance of different forecasting methodologies for short-term

wind power generation (Chapter 4,J2).

• Proposed hybrid forecasting methods with superior performance in delivering

consistent results for short-term wind power generation (Chapter 4,J2).

• Demonstrated the computational and numerical performance of the three different

formulation of ACOPF and SCOPF on large-scale test grids (Chapter 5,J3).

• Proposed the relevant future work regarding the limitations of this thesis and out-

lined the strategy to improve certain aspects of the research (Chapter 6).
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1.4 Publications

Results presented in this work have been published in a book chapter, peer-reviewed

journal publications and conference proceedings. The findings from chapter 2 were

published in a book chapter (B1) and in conference proceedings (C1, C2, C3). The

work presented in chapter 3 has been published in articles C4 and C5. The results from

chapter 4 and 5 are in the preparation stage for journal submissions. Collaborations

with colleagues during the course of this work resulted in various publications which

are listed from C6-C15, which are not included as part of the dissertation.
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B1. M. Campion, A. S Nair, E. Nygard, P. Ranganathan, ”Decomposition of Micro-
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CHAPTER 2

Economic Dispatch Models using Decomposition Methods

2.1 Introduction

Sources of RES power generation, such as wind, solar, tidal, and wave power, are het-

erogenous and have uncertain variables. This uncertainty, coupled with the dynamic

nature of distributed sub-system architecture and the need for information synchroniza-

tion, has made the problem of resource allocation and monitoring a challenge for the

next-generation smart grid. The deployment of distributed algorithms across micro-

grids has been unfortunately overlooked in the electric grid sector; centralized methods

for managing resources and data may not be sufficient to monitor a complex electric

grid. We therefore examine a decentralized constrained decomposition using Linear

Programming (LP), which optimizes the inter-area transfer across micro-grids, reduc-

ing total generation costs for the grid.

2.2 Literature review

Electrical power systems are designed to meet the power demand through various gen-

eration sources, making the minimization of generation and operating cost critical. ED

is often used to schedule and match the generator outputs to variable demands meet-

ing system and transmission line constraints [17]. Accomplishing an optimal way to
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effectively schedule generation resources will result in significant savings in operating

cost such as fuel and transportation cost, while enabling appropriate demand response

mechanisms.

Significant work has been done on the ED challenge, which obtains optimal solu-

tions to the generator allocation issue; some reported methods include: lambda itera-

tion methods [18], Lagrange Multiplier [19], genetic algorithm [20], hopfield networks

[21], particle swarm optimization [22], dynamic programming, simulated annealing

[23], firefly algorithm [24] and artificial intelligence approaches [25]. The application

of ED on clustered microgrid has not been seen in the literatures reviewed. We propose

economic formation of microgrids using clustering techniques for test systems.

2.3 Problem formulation

Formulating objective functions and constraints for electric grid structures, which is a

collection of micro grids, is our goal. The standard IEEE test system (14-bus system)

is used to model the electric grid, after which an optimization problem, ED, is devised

that minimizes the total cost; while satisfying load demand, generation, and line flow

constraints. The fuel cost for generating unit i supplying PGi amount of real power can

be represented by a quadratic equation [26] as shown in equation (2.1).

Fi(PGi) = aiP
2
Gi + biPGi + ci (2.1)

Where ai, bi, ci are the cost-coefficients of generating unit i and PGi is the real power

generation of the unit i. The objective is to minimize the total cost of generation, which
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can be represented by the following equation:

Min F =

ng∑
i=1

Fi(PGi) (2.2)

Where ng is the number of generators working in the bus system. The economic dis-

patch problem is then solved subject to several formulated constraints.

PGimin 6 PGi 6 PGimax i = 1..ng (2.3)

ng∑
i=1

PGi = D (2.4)

mg∑
i=1

PGi +
m∑
i=1

Tk = Dk (2.5)

Tmn(min) 6 Tmn 6 Tmn(max) (2.6)

In Equation (2.3), the constraint illustrates how the generation from each generator must

be within its maximum and minimum limits, while in Equation (2.4) the constraint

shows a condition where total generation should meet the total demand in the system.

In Multi-Area Economic Dispatch (MAED) problems, the entire electric grid net-

work is divided into several microgrids or areas, to carry out the ED. The power flow

through the inter-connecting transmission lines, or tie lines, connecting the micro grids

is an additional constraint in the MAED problem. In each micro grid, the loads must

be satisfied by the sum of generation within the microgrid and the power coming to

the microgrid from connected areas. The generation load constraint is shown in Equa-

tion (2.5), where the first term shows the summation of power generated in the area and

the second term indicates the power flow from connected areas. The variables mg in-
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dicate the number of generators in the current area, variable m indicates the number of

inter-connected areas to the area under consideration, and T represents the power flow

between the areas. An additional constraint is added to the model to restrict the power

flow between the areas as shown in Equation (2.6).

The power flow between two areas m and n are subjected to a minimum and a

maximum value of Tmn(min) and Tmn(max) respectively. In the MAED model, the cost

of power flow through the tie lines is also taken into consideration. A value of 0.01$

per MW is assumed as the cost and 100 MW is applied as the maximum tie line flow

limit [27]. The total cost function to be minimized, therefore will be modified into

Equation (2.7) [28]. The variable Cj denotes the cost of tie line power flow which is

assumed to be constant for all tie lines. In the model, t represents the number of tie

lines, and Tj is the amount of tie line power flow.

Min F =

ng∑
i=1

Fi(PGi) +
t∑

j=1

CjTj (2.7)

2.4 ED on PJM Region

Figure 2.1 shows the data flow in the load forecasting – economic dispatch model. The

historical load data values were obtained for the PJM system, and different forecasting

methods were applied to obtain the day ahead data for the loads, which implies the

forecasted load values for the next 24 hours. The ED will be applied to the forecasted

load values to obtain the hourly power generation values for the different generators.

The data flow for the proposed model is shown in Figure 2.1.
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Figure. 2.1 Data flow in the forecasting- economic dispatch model.

2.4.1 PJM Datasets

We utilized the PJM historical load dataset for 2016, which is a publicly available his-

torical dataset with hourly resolution [29]. This dataset consists of load values from 10

load areas in the PJM grid, the region of which is served by the PJM interconnections

shown in Figure 2.2 [30]. The territories coordinated by PJM Interconnection include

region from New Jersey, North Carolina, Indiana, Illinois, Delaware, Kentucky, Michi-

gan, Maryland, Ohio, Pennsylvania, Tennessee, Virginia, West Virginia and the District

of Columbia.

Figure. 2.2 Region served by PJM Interconnection [30].
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2.4.2 Forecasting

Forecasting involve the use of different amounts of historical data. The dataset used for

this project contains hourly historical demand data ranging from 1/1/2016 to 11/15/2016.

The goal of load forecasting is to create a power load forecast for 11/16/2016, to show

how the ED of this load could be simulated and examined. ARIMA and exponential

smoothing (ES) were applied to the entire past year of power usage data as well as just

the preceding 30 days of power demand data. Using ARIMA, ES, and an ensemble

ARIMA forecasting method, the hourly loads for 11/16/2016 were forecasted for the

PJM data. This ensemble method forecasts the residuals of a first stage fitting model

either ARIMA or ES and uses ARIMA to forecast the residuals of the first stage, after

which the residuals are added to the forecast from the fitted model. The p,d,q param-

eters of ARIMA forecasts were determined using the method described in [8]. The

accuracy of ARIMA and ES methods were then compared to actual hourly load data for

11/16/2016. The accuracy of the forecasts were quantified according to Mean Absolute

Percentage Error (MAPE) and Mean Absolute Deviation (MAD) shown in Equations

2.8 and 2.9 as follows [31]:

MAPE =
100

n

n∑
t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣ (2.8)

MAD =
1

n

n∑
t=1

|yt − ŷt| (2.9)

Day-ahead forecasting using 11-month and 30 day data for a single region are shown

in Figures 2.3 and 2.4. The Performance of the methods in day-ahead forecasting using

30 days of data for the total PJM market is presented in Figure 2.5. The forecasting
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error from the hybrid methods in compariosn to ARIMA and ES are listed in Table 2.1.

Figure. 2.3 Day-ahead forecast PJM-E using 11-month data

Figure. 2.4 Day-ahead forecast for PJME using 30 days data

17



Figure. 2.5 Day-ahead forecast comparison of all the explored methods

Table 2.1 Performance of forecast methodologies for the PJM market

Forecasting Method Historical data MAD MAPE

ARIMA 1 year 4287 5.316

Exponential Smoothing 1 year 4543 5.0314

ARIMA 30 days 1650 1.949

Exponential Smoothing 30 days 1687 1.987

ARIMA-ARIMA 30 days 884 1.081

Exponential Smoothing-ARIMA 30 days 1782 1.544

2.4.3 ED on Forecasted Load

Based on the results of the most accurate load forecasting, a simulated run of ED was

carried out for the forecasted hourly load. Figure 2.6 shows the amount of power dis-

patched by the individual generators to meet the forecasted load demand. For example,

at hour 0, GEN 1 to GEN5 should generate 13442 MW, 20754.1MW, 19869.7 MW,

7990.25MW and 10108.9MW respectively. ED for a 24-hour duration based on the
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forecasted demand values is shown in Figure 2.6. Combining the forecasting scheme

with an ED model allows for the day-ahead scheduling of generators. This combina-

tion of techniques provides for operational insight in generator scheduling and plan-

ning from a utility perspective. The results indicate that ARIMA performs more accu-

Figure. 2.6 Economic dispatch on PJM data

rately under both training scenarios; in addition, forecasts trained with 30 days prior to

forecast day are found to be more accurate. The combination of load forecasting and

ED provides a simple framework for day-ahead optimal generation cost and generator

scheduling. An ensemble forecasting method, specifically an ensemble ARIMA method

in a two-stage combination that forecasts residuals allows for an increase in forecast ac-

curacy. The ensemble ARIMA method produced a forecast error in the range of 1%,

which is a considerable increase in accuracy compared to traditional implementations

of ARIMA and ES. This increase in prediction accuracy is important for ED and the

scheduling of generators.
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2.5 System Decomposition and Description

The IEEE 14 bus Test Case, which represents a portion of the American Electric Power

System in the Midwestern US as of February, 1962, is used to model the microgrids.

The single line diagram of the IEEE 14 bus system model is shown in Figure 2.7 [32],

illustrating how a grid can be sectioned into two micro grids. In this division, area 1

or micro grid 1, consists of 3 generators and 4 loads while the area 2 or micro grid

2, consists of 2 generators and 7 loads. The cost coefficients and the maximum and

minimum power value of the generators used for the analysis are shown in table 2.2

[26].

Figure. 2.7 Two grid decomposition model.

The MAED of resource allocation is then performed on the decomposed IEEE 14

bus system, consisting of 5 generators and 11 loads. The developed ED model accom-

modates two-way power flow between the microgrids. The A Mathematical Program-

ming Language (AMPL) software develops ED model and is solved using the CPLEX

(IBM ILOG CPLEX Optimization Studio) solver. The two and three microgrid test
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Figure. 2.8 Three grid decomposition model.

Table 2.2 Generator parameters

a b c PGmax PGmin

G1 0.0301 27.5 750 50 90

G2 0.0195 27.3 1400 30 70

G3 0.0203 30 1050 30 60

G4 0.0507 26.5 450 10 50

G5 0.04 28 600 10 40

system utilized for the study are shown in Figures 2.7 and 2.8.

2.6 Discussion and Results

The model is evaluated on three different test cases.

• (case 1) No decomposition

• (case 2) Decomposition into two micro grids

• (case 3) Decomposition into three micro grids
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The variation in the distribution of power generation when there is a load value change

is analyzed to study the sensitivity of the generators. The loads in each area is increased

in small increments and recorded to observe the generator power distributions until the

solution becomes infeasible

2.6.1 No decomposition

The loads L1 and L2 are selected randomly and increased in equal amounts, after which

the MAED solution is determined using AMPL. The power generation from the 5 gen-

erators in the system for the load changes are shown in Figures 2.9 and 2.10.

Figure. 2.9 Generation Re-allocation for variation in L1 with no grid decomposition.

Figure. 2.10 Generation Re-allocation for variation in L2 with no grid decomposition.
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2.6.2 Two Grid Decomposition

Similar to case 1, the loads L1, and L2 are increased in equal amounts and the ED

solution is determined using AMPL for case 2 with two area decomposition. The power

generation from the 5 generators in the system and their respective load changes are

shown in Figures 2.11 and 2.12.

Figure. 2.11 Generation Re-allocation for variation in L1 in a 2 micro-grid system

Figure. 2.12 Generation Re-allocation for variation in L2 in a 2 micro-grid system

2.6.3 Three Grid Decomposition

Similar to case 1, in case 3 the loads L1 and L2 are increased in equal amounts and

the ED solution is determined using AMPL with three area decompositions. The power

generated by the 5 generators in the system for the load changes are shown in Figures

2.13 and 2.14.
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Figure. 2.13 Generation Re-allocation for variation in L1 in a 3 micro-grid system

Figure. 2.14 Generation Re-allocation for variation in L2 in a 3 micro-grid system

Table 2.3 Total variables and constraints in two and three grid decomposition

Decomposition in to
3 areas

Decomposition
in to 2 areas

Without de-
composition

Area 1 Area 2 Area 3 Area 1 Area 2

Constraints 5 4 5 7 5 10

Decision
variables

3 3 3 4 3 5

Run-time 1.60938 1.59375 1.57812

Total Cost 11859.9 11850.3 11850.3
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Figure. 2.15 Microgrids with no reserve constraints.

The Figures 2.11 to 2.14 indicate how the grid tries to identify the localized supply

of power to the loads within the local micro grid when economic dispatch is carried. In

all three cases, generation from G3 increases when the grid is sectioned in to three micro

grids to supply power to loads in micro grid 2. Similarly, the generation in G1 reduces

in three area decomposition, as other micro grids try to satisfy their demand locally. The

number of variables, constraints, run-time and total cost for the grid system are shown in

Table 2.3. As an example, allocations of G1 start reducing from 65.24 MW to 51.7 MW,

as decomposition is being applied, indicating there is unspent power in the micro grid

that can be better utilized in other micro grids where demand needs to be met. Not all

generators are optimally re-allocated, which is an important point; the local generations

where demand is higher than the supply gets fulfilled first, after which excess supplies

are re-routed to other micro grids or areas. Although there is a very small percentage

increase (e.g., 0.06%) in total cost of generation, the model successfully optimizes both

the inter-transfer and intra-transfer supply among micro grids.

We formulated reserve constraints in the ED model to prevent the loads in the micro

grids from utilizing 100% of their generation capacity. These additional constraints will
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Figure. 2.16 Microgrids with reserve constraints.

make sure the system is not overloaded, and there is at least a certain percentage, 15%

in our model, of remaining supply ready to be used in the event of abrupt changes in

demand. The reserve capacity in each micro grid for all three area system with and

without this additional constraint are shown in Figures 2.15 and 2.16, respectively. In

Figure 2.15, area 3 has a very limited supply of power remaining, as there were no

reserve constraints, showing how demand is satisfied locally first and it therefore uses

its generators heavily. The reserve constraints were added to the model to mandate a

minimum requirement of 15% reserve available in all micro grids.

2.7 Graph Clustering for Microgrid Decomposition

In order to develop an economic clustering scheme to decompose a grid system, an

ED is applied to the clustered IEEE test systems. We use ED as a method to schedule

the generator outputs with respect to its load demands in order to operate the power

system most economically. The main objective is to allocate the optimal power gener-

ation of different units at the lowest possible cost while meeting all system constraints

[19]. Economic-load dispatch is performed in a multi-generator system to schedule the
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generators in order to satisfy the loads in the system that are subject to generator and

transmission-line limits. In a power system, minimizing the operation cost is impor-

tant, therefore, we can use ED as an effective way to evaluate the different clustering

techniques. The steps followed for the MAED is shown in Figure 2.17. We utilized the

IEEE 118 and 300 bus system for the creation of clustered microgrids.

Bus system

(118 Bus, 300 Bus)

Graph Clustering Scheme
(L-GN, A-GN, NGGN)

Multi-Area Economic Dispatch
(Linear Programming Formulation)

Result
(Cost and cluster analysis)

Figure. 2.17 Step followed for multi-area economic dispatch

2.8 Cluster evaluation using Multi-Area Economic Dispatch

The clustering techniques divide the bus system into different zones, or areas and apply-

ing ED to a multi-area system is known as MAED. Three clustering techniques, L-GN,

A-GN and NG-GN were utilized to group the electric grid structure. The two-stage

clustering technique is shown in Figure 2.18. The aim of MAED applications is to min-

imize the power-generation cost while satisfying the system’s load demand subject to

the generation and line-flow constraints. The fuel cost for generating unit i to supply

a PGi amount of real power can be represented by a quadratic equation as shown in
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Figure. 2.18 Two-stage process.

Equation (2.7) [26]. The clustered microgrids for the IEEE 118 and 300 bus test system

are shown in Figures 2.19 and 2.20

Tables 2.4 and 2.5 list the generation cost, tie-line flow cost, and total cost for the

IEEE 118 and IEEE 300-bus systems for each of the L-GN, A-GN, and NG-GN clus-

tering techniques, respectively. For the 118-bus system, there is a 66.6% reduction in

Table 2.4 ED cost distribution for an IEEE 118-bus system.

L-GN A-GN NGGN

Number of clusters 10 11 5

Generation Cost ($) 9074.86 9137.03 9148.06

Tie-line flow cost ($) 262.871 87.725 36.45

Total Cost ($) 9337.73 9224.76 9184.51

tie-line flow cost for the A-GN clustered system when compared to the L-GN system

and there is a significant reduction of 86.13% for the NGGN method compared to the

L-GN method. For the total cost, the cost reductions are 1.21% and 1.64%, respectively,
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(a) Admittance Girvan-Newman (A-GN) (b) Length Girvan-Newman (L-GN)

(c) Nearest-Generator Girvan-Newman (NG-GN)

Figure. 2.19 118 Bus system grouped using the different clustering techniques
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(a) A-GN (b) L-GN

(c) NG-GN

Figure. 2.20 300 Bus system grouped using the different clustering techniques
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for the A-GN and NGGN method. For the 300-bus system case, the value for the tie-

line flow-cost reduction is 0% for the A-GN method as this cluster was identical to the

L-GN method and 29.91% for the NGGN method. Similarly, the reduction for the total

costs are 0% for the A-GN method and 12.64% for the NGGN method. These results

demonstrate a significant reduction in the tie-line flow cost for the NGGN clustering

techniques when compared to the L-GN and A-GN technique. The usage of the NGGN

method also results in the reduction of total cost for the system. Another parameter pro-

Table 2.5 ED cost distribution for an IEEE 300-bus system.

L-GN A-GN NGGN

Generation Cost ($) 141704 141704 123824

Number of clusters 14 14 8

Tie-line flow cost ($) 233.089 233.089 163.361

Total Cost ($) 141937 141937 123988

posed to compare grid clusters is the generation to load (G/L) ratio, Equation (2.10),

which provides a measure of the self-sufficiency of the micro grid. An important ben-

efit of having microgrids is it’s ability to isolate from the main grid in the event of any

system wide contingency.

G

L
=
Generation capacity in the microgrid

Microgrid Load
(2.10)

A G/L value greater than 100% indicates a self-sufficient grid cluster with excess

generation which can be given to other regions. A G/L value less than 100% indicates

the generation within the cluster is not sufficient to satisfy its load, therefore requiring

resources from neighboring regions to meet the demand. Tables 2.6 and 2.7 list the

maximum and minimum values of G/L for the IEEE 118-bus and 300-bus systems,
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excluding the zones with no active power generation. The data analysis suggest the

NG-GN clusters are more suited due to their self-sufficiency, when compared to the

other two cases, since the values are closer to the ideal value of 100.

Table 2.6 Generator/Load ratio of the IEEE 118-bus system clusters.

Generation/Load ratio L-GN A-GN NGGN

Maximum value (%) 198.61 277.08 124.48

Minimum value (%) 49.62 47.22 50.63

Table 2.7 Generator/Load ratio of the IEEE 300-bus system clusters.

Generation/Load ratio L-GN A-GN NGGN

Maximum value (%) 616.61 616.61 411.86

Minimum value (%) 61.9 61.9 86.96
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CHAPTER 3

Optimal Operation of Residential EVs using DNN and Clustering

based Energy Forecast

3.1 Introduction

The automobile industry is now going through a transitional phase with gas powered

vehicles being replaced by Electric Vehicle (EV) and hybrid models. The ability to

deliver efficient and clean mode of transportation and government incentives have in-

creased the consumer interest towards EVs [33]. The increased customer demand for

EVs have led the change with all the major automakers now manufacturing hybrid and

Plug-in Electric Vehicle (PEV) variants of their gas powered vehicle models.

Although EV sales are a small fraction of total US purchases, 1.8% in March of 2019

[16] market share is expected to increase, creating a challenge for utilities who must

meet this new energy demand. The flexibility of the grid must, therefore, be increased

to accommodate the charging of these vehicles in the form of either Vehicle-to-Grid

(V2G), Vehicle-to-Home (V2H), Vehicle-to-Vehicle (V2V) or charging schedule. The

V2G system utilizes the EV battery as a storage system to deliver energy back to the grid

in times of peak load. The V2V and V2H work similarly by allowing energy exchanges

between vehicle to vehicle and vehicle to home in times of need [34].

The increasing percentage of EVs in residential communities necessitates the need
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for a scheduling model to charge EVs. The actual load from MISO from July 1st through

July 7th, as shown in 3.1, represents an example for a ”Duck Curve” pattern. The

increased demand for power during peak times for a utility, starting at approximately 5

PM, creates an additional load on an already stressed power grid and increased prices

for consumers. High peak loads require innovation on the part of utility companies as

they look for methods in which to reduce the peak load, also called ‘peak-shaving’,

such as relying on demand response and TOU pricing schemes.

Figure. 3.1 Load from the MISO area from July 1-7, 2020.

The impact on the distribution system from the increased market penetration of

EVs is discussed in [35], which also illustrates the effects on electricity generation

adequacy,transformer aging and the distribution of power. The authors of [35] also

proposes mitigation techniques such as Time-Of-Use (TOU) pricing schemes and smart

charging algorithms to mitigate the effects of connected EVs. A coordinated framework

to charge an EV fleet was presented by M. Usman et al. [36], proposing a control

scheme to maintain the grid capacity while satisfying the needs of the EV fleet.
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We therefore propose the creation of a scheduling model for a community with high

EV market penetration. The method used will encompass the next-day forecasted EV

usage, consumer preference for the amount of charge, and the charger unit to avoid a

surge in demand from the community due to price drop or simultaneous charging from

a large number of EVs. The proposed EV scheduling model is based on forecasted

day-ahead EV demand based on historic values, and will also considers the forecasted

household demand. The approach of utilizing household demand, along with demand

in the community in the scheduling model, has not been seen in the reviewed literature.

3.2 Dataset

The demand profiles of 200 randomly selected households from the Midwest region of

the United States [37] are generated by using a modeling technique proposed by Mura-

tori et al. [38, 39]. This modeling technique produced residential power consumption

data with a 10 minute resolution and was validated using metered data, which repre-

sented the total electricity usage in Watts and households varying in size and number of

residents [40].

The variations in demand for a single household, household 1 in the dataset, for a

whole year is shown in the Figure 3.2. There is a surge in demand during the month of

June to the end of September, which may be caused by the increased load of air condi-

tioning units used during the summer months. The energy usage of all 200 households

for a single day (January 1st), is shown in Figure 3.3. This figure does not show any

pattern for single day household energy usage, but at an ISO level, the energy usage for

a day usually exhibits the duck curve pattern.

The residential electricity usage from household’s L1 and L2 charging ports for the
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Figure. 3.2 Electricity demand from household 1.

Figure. 3.3 Electricity usage from all the 200 households for a single day (Jan 1st).

year of 2010 is shown in Figures 3.4 and 3.5. The electricity demand from the L1 port

will be held 1920 W and the value from L2 port will be held at 6600W.

3.3 DNN based Day-Ahead Energy Forecast

3.3.1 Clustering and k-means cluster analysis

Our model consists of a set of 200 households, with each households owning one to

six EVs, for a total of 348 EVs connected. Using the K-means clustering technique,we

utilized a 5-cluster system to group the households, 7 to 99 per cluster, based on their en-

36



Figure. 3.4 Residential PEV charging from household 1 (L1 port).

Figure. 3.5 Residential PEV charging from household 1 (L2 port).

ergy consumption pattern. The clusters are listed in Table 3.1. The day-ahead schedul-

ing for EVs are based on the forecasted demand of EVs and household energy con-

sumption. A DNN based forecasting was used to predict the energy consumption of

EVs and households based on a year-long dataset with 10-minute resolution.

3.3.2 Designing Deep Neural Networks

In our model, we used Keras on top of TensorFlow to design the DNN. Keras is an

open source neural-network library developed using Python, and is capable of running

on top of TensorFlow, Theano or R. Now one of the most popular ML libraries, Keras

allows the users to utilize GPU to accelerate neural network training. TensorFlow is an
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Table 3.1 Household clusters

Cluster No. of households No. of EVs

Cluster 1 7 22

Cluster 2 28 111

Cluster 3 9 20

Cluster 4 27 54

Cluster 5 99 141

open source platform for machine learning, and is an interface for the development and

implementation of ML algorithms.

Residential
load data

Sample
generation

Training set
(1..K)

K-Means
clustering Clusters (1..K)

Training and tetsing
dataset split

Result

Testing set (1...K)

Training model Forecasting Performance

Figure. 3.6 Flows of constructing the DNN based method with K-Means algorithm

3.3.3 Results

The prediction accuracy of the forecasting approach is evaluated using MAPE, which

defines the accuracy as a percentage, given in Equation 3.1 [41]. Here, n represents

the number of instances in the forecast period, yt the actual value and ŷt the forecasted

value.

MAPE =
100

n

n∑
t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣ (3.1)
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Table 3.2 Deep learning TensorFlow parameters

Parameters Values

Total number of samples 52560

Training samples 52416

Validation samples 1440

epochs 100

Learning rate 0.001

Mini batch size 100

Activation function Linear

Number of hidden layer 3

The MAPE values for the forecasting results of individual clusters are given in Table

3.3. These values range from 1.0064 for the cluster with the smallest number of house-

holds, to 3.2936 for the cluster with the largest number of households, therefore,the

forecasting model is able to deliver accurate results.

Table 3.3 Cluster wise residential household MAPE values

Cluster MAPE

Cluster 1 1.0064

Cluster 2 1.1018

Cluster 3 1.3347

Cluster 4 1.3078

Cluster 5 3.2936
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3.4 EV Scheduling Model

The future power grid system needs to accommodate the increased energy consumption

from EVs without a surge in demand during peak hours. The scheduling model needs

to consider user comfort, household energy consumption, EV demand,energy price as

well as other factors, while reducing the electricity cost of the total EVs in the system.A

cost reduction model will make the use of EVs more cost-effective, therefore customers

will adjust power usage according to the scheduling scheme based on TOU price.

Table 3.4 Optimization model parameters

Sl. No Model Parameters

1 Forecasted EV demand

2 Forecasted household demand

3 Schedule time

4 Day-Ahead energy price

5 Consumer preferred charging time

6 Consumer preferred charger type (L1 or L2)

7 Final State of Charge (SOC)

8 EVs in each household

9 Households in each cluster

3.4.1 System Modeling

The objective of the proposed model is to minimize the total electricity cost for EV

charging in a residential location, as shown in Equation (3.2). The different parameters

used for the scheduling model are listed in Table 3.4

Min F =
M∑
i=1

N∑
j=1

PijCj (3.2)

Here, M stands for the number of connected EVs in the system and N represents
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the varying energy price time-slots. N represents the energy scheduled for the ith EV

in time-period j along with the energy cost. The EV scheduled in the model is subject

to several user-defined and power system constraints [42, 43, 44].

1. Demand constraint

The demand constraint, shown in Equation (3.3), assures the forecasted demand

for each individual EVs is met while scheduling for the time-period desired.

N∑
j=1

Pij = EVj (3.3)

EVj represents the forecasted demand for the EVs in the system. The sum of all

energy scheduled in N time periods should meet the forecasted demand.

2. Consumer preferred time

Preferred time duration for charging EVs will vary with the customer. The model

allows the residential consumer to specify his preferred time of charging for the

EV,therefore the energy scheduling model will only be allocated within the user-

specified time period, as represented in Equation (3.4).

Pij > 0 Tij = 1 else 0 (3.4)

Tij represents the user preference for the ith EV at time j. The program accepts

the user preference as a set of ones and zeros for the next 24 hours.

3. Consumer preferred charger

The model provides an option for customers to identify a preferred charging port.
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The energy allocation will be determined based on the user specified charging

port, either L1 or L2.

4. EV charger rating

The charger rating ensures the constraint of the specified charger capacity allo-

cated for each time period, as represented in Equation (3.5). If the rated charger

capacity is greater than that allocated by the optimization model, the charger

points will not be able to support the increase in power level demand.

Pij 6 Charger Rating (3.5)

The charger rating will be 1.92KW (L1) or 6.6KW (L2) depending on the user

preference for each individual EV.

5. State of Charge (SOC)

The user can also provide the percentage of demand to be met for the next day.

If the user does not plan to make longer trips with their EVs, a reduced charging

percentages can be allocated to reduce cost.

N∑
j=1

Pij > (FSOCj) ∗ EVj (3.6)

FSOC represents the user specified percentage of charge for each individual EV.

6. EVs connected to the household

All of the households evaluated in this dataset have connected EVs, with owner-

ship varying from one to six vehicles. The scheduling of all connected EVs in a
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household at the same time can cause a sudden surge in demand and can create

power stability issues. The constraint throttles the scheduled EV energy in each

hour for a single household to a maximum of 25% of the total demand.

Eh∑
i=1

N∑
j=1

Pij 6 KhH (3.7)

For each household in the system, Eh represents the number of connected EVs ,

H is the corresponding household demand and Kh represents the percentage of

household demand allowed in each hour.

7. Households in a cluster

In each cluster, the number of households vary from 7 to 99 and have multiple

EVs connected to them. If all of the EVs in a cluster are plugged in at the same

time, it can create transmission and generation issues for power companies. This

constraint limits the total scheduled energy for all EVs in the cluster for each

hour, up to a maximum of 20% of the total household demand in the cluster.

Et∑
i=1

N∑
j=1

Pij 6 Kc

Hc∑
h=1

Hj (3.8)

For each cluster,Hc represents the number of houses,Ec represents the connected

EVs for all the households and Kc represents the percentage of total demand

allowed in each hour.

The day-ahead energy price from the MISO on December 31st, 2016 was used for

this model [45]. MISO is an RTO providing open-access transmission service, and

monitors the high-voltage transmission system in the Midwest region of the United
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Table 3.5 MISO day-ahead energy price values

Time-period Energy Price Time-period Energy Price

0 0.01322 12 0.01978

1 0.01064 13 0.02021

2 0.00925 14 0.02156

3 0.00821 15 0.02116

4 0.009 16 0.02175

5 0.00883 17 0.02883

6 0.00912 18 0.03114

7 0.01288 19 0.02453

8 0.01514 20 0.02133

9 0.01669 21 0.01933

10 0.01927 22 0.01885

11 0.01976 23 0.01456

States. Figure 3.7, shows the variation in energy price for different hours of the day.

Customers have an option of L1 and L2 charging points. Many consumers prefer to

use L2 charging points due to the increased speed of charging. An L1 port is capable of

charging a depleted EV battery in 20 hours or more from a standard 110V outlet while

an L2 port can do the same in four to six hours from a 220V outlet. While an L2 port

can be used to deliver short bursts of power, consumers usually keep their EVs plugged

in all night, and may not necessarily need the speed of a L2 charger. The households

in the different clusters are assumed to have access to both L1 and L2 charging points,

therefore optimization is performed taking consumer preference into account.

The proposed scheduling model also provides an option for households to provide

their preferred timing, any period within a 24-hour duration, for charging their individ-

ual EVs. Some customers may not consistently use their EVs for long distance travels

and therefore do not require fully charged batteries. This model supports the option to
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Figure. 3.7 MISO day-ahead energy price

supply a reduced amount of charge for the next-day according to the customer’s needs.

3.4.1.1 Optimization

AMPL is used in this research to model the linear programming based scheduling

model. AMPL is an algebraic modeling method created at Bell Laboratories by Robert

Fourer, David Gay, and Brian Kernighan and is used to solve large scale optimization

and scheduling problems. The AMPL coding syntax is similar to the mathematical

notation of optimization problems, which helps developers program their models, and

supports several open-source and commercial solvers.

3.5 Results and Discussion

The forecasted results were used in the second part to develop a scheduling scheme for

EVs in the region to minimize cost and prevent aggregated charging during low demand,

high price time slots. The total energy cost of connected EVs in each individual cluster
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is represented in Figure 3.10. The energy cost is almost reduced by half for clusters

properly scheduled to connect their EVs to the power grid. The individual household

energy costs for their EVs are shown in Figure 3.8 and 3.9. All of the households in

each cluster show a cost savings from the scheduling process.

The model can perform the EV schedule based on user preference. The Figure 3.10

illustrates the cluster wise cost analysis. The model schedules EVs during off-peak

hours when the price is lower to shift the load from peak hours.

Figure. 3.8 Household cost analysis in cluster 1.

Figure. 3.9 Household cost analysis in cluster 3.
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Figure. 3.10 Household cost analysis in the clusters.

3.6 Concluding Remarks

A novel electric vehicle charging schedule is proposed using concepts from DNN, K-

means clustering and linear programming. A dataset with 200 households, 348 EVs

and 52560 data points were utilized for the study. A K-Means algorithm was employed

to segment the data set into subsets in order to construct the household clusters. A

DNN based forecasting tool was then applied on the clustered dataset, which improved

the forecasting accuracy, and allowed for the generation of the day-ahead demand for

residential households and EVs. The linear programming based scheduling model was

able to use the forecast demand to generate the charging schedule for all EVs in the

cluster. The scheduled EVs reduced the energy cost for consumers along with reduced

power surge from households and residential regions.
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CHAPTER 4

Quantifying Uncertainty under High DER penetration (Wind)

4.1 Introduction

The installed wind capacity in the US is over 100,000 MW, with an installed capacity

of approximately 29,000 MW, the state of Texas produces the most wind power in the

country. The state of North Dakota has over 3,500 MW installed wind power [46].

The US wind industry recorded a 117% increase in new wind power installation in

the first quarter in 2020 over the same period in 2019 [47]. Forecasting wind power

generation is challenging, as there are several uncertain variables during the generation

process. Calculation of wind power generation depends on several parameters such as

wind speed, wind direction, turbine swept area, air density, power coefficient, turbine

height, cut-in speed and cut-out speed. For example in [14], discusses uncertainties

such as wind-flow, equipment failure, sensor assemblies and their related inaccuracies

and calibration. The authors proposed a probability of exceedance concept to quantify

the uncertainty in calculating the total wind power and calculated the net-wind energy

production using a normal distribution.

Wind speed can be approximated using historical and Numerical Weather Predic-

tions (NWP) models, but power generated is difficult to predict accurately from wind

speed and power curve models. Previous studies have used different statistical mod-

48



els for wind speed distribution such as Weibull, Rayleigh and β distribution, and have

shown the probability distribution of wind speed is adequately represented by Weibull

distribution. The Weibull distribution model for a wind model is shown in Equation 4.1

and is plotted in Figure 4.1. Here, v represents the wind speed and a and b are the scale

and shape parameters of the Weibull distribution. An extensive review on short-term

wind power forecasting is performed in [48]. The authors conclude the superiority of

statistical models over physical methods, e.g. NWP models, for short forecasts of 6

hours or less [49, 50]. The NWP model requires hours of computation time and the

resultant spatial interpolation can cause imprecision [51].

f(v) =
b

a
(
v

a
)b−1exp[−(

v

a
)b] (4.1)

Figure. 4.1 Wind speed probability density distribution plot.

The Weibull distribution of a wind model can be generated using several numerical

methods such as the Graphical method, Standard Deviation (SD) method, Maximum

Likelihood method (ML), Modified Maximum Likelihood method (MML), Empirical
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method of Justus (EMJ), Empirical method of Lysen (EML) and Energy pattern factor

method (EPF). Graphical methods use least square regression to fit the data to a curve,

which requires sorting the time-series data in to bins. The Standard Deviation method

uses the mean and standard deviation to calculate the Weibull parameters. EMJ is a spe-

cial case of the SD method, where the shape parameter, b, is calculated using Equation

4.2. In EML, shape parameter calculation is similar to EMJ and the scale parameter,

a, estimation is shown in Equation 4.3. In the Energy pattern factor method, the scale

parameter calculation is similar to the SD method and the shape parameter calculation

is related to the average calculated wind speed. The Maximum likelihood method uses

numerical iterations to calculate the Weibull parameters; this method uses wind speed

data in a frequency distribution format. Although several methods exist to evaluate the

parameters for a Weibull distribution, it is difficult to calculate an accurate estimate.

b = vm(0.568 +
0.433

a

− 1
k

) (4.2)

a = (
σ

vm
)−1.086 (4.3)

Figure. 4.2 Ideal wind power curve

A general formula for converting wind speed into wind power (P ) is given in Equa-

50



Figure. 4.3 Wind power curve

Table 4.1 Wind Energy assessment uncertainty parameters [52].

1. anemometer uncertainty I: calibration uncertainty
2. anemometer uncertainty II: dynamic over-speeding
3. anemometer uncertainty III: vertical flow effects
4. anemometer uncertainty IV: vertical turbulence effects
5. tower effects
6. boom and mounting effects

Wind Speed
Measurement

7. data processing accuracy
8. MCP Correlation Uncertainty
9. Weibull Parameter Estimation Uncertainty

Long-term Resource
Estimation

10. Changes in the Long-term Average
11. Inter-Annual Variability UncertaintyWind Resource

Variability 12. Uncertainty over Turbine Lifetime
13. Topographic Effects

Site Assessment
14. Wind Shear Model Uncertainty

tion (4.4). Here, ρ represents the air density in kg/m3, A the area swept by the blades,

V the wind speed in m/s at hub height and Cp is the turbine performance coefficient.

An example of an ideal wind power curve is given in Figure 4.2. Turbines while in op-

eration will not be able to perform ideally, an example of wind turbine power curve is

given in Figure 4.3. The different uncertainties associated with wind power generation

are listed in Table 4.1 [52].

P =
1

2
CpρAV

3 (4.4)
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Independent System Operator (ISO) relies on energy curtailment as the main method

to manage the oversupply of RES. Curtailment is the reduction in RES energy genera-

tion from its capacity when there is insufficient demand to consume energy production,

which results in a loss of resources and an opportunity to produce carbon free energy.

Increased solar energy generation in the middle of the day, along with uncertain wind

generation creates a challenge for utilities attempting to satisfy the demand which fol-

lows the expected duck curve. In 2015, CAISO, curtailed more than 187,000 megawatt-

hours (MWh) of wind and solar generation, 308,000 MWh in 2016. Figure 4.4 shows

Figure. 4.4 MISO actual and forecasted wind power with their MAPE values

a plot of real-time forecasted wind power generation against actual wind power gen-

eration in Midcontinent Independent System Operator (MISO) on May 5th 2020 (from

0 hrs to 17 hrs) and the corresponding MAPE values for each data point. The MAPE

values for the forecasting period range from a minimum value of 0.95 to a maximum

value of 29.97 in a span of just 11 hours, and had an average MAPE of 16.80.

State-of-the art regression techniques have been applied to wind power forecasting

(WPF). In most cases however, the scope is limited to a single time horizon in the dataset

or in a portion of the dataset. Independent System Operator (ISO) rely on short-term

forecasts of RES to plan daily operations with predictions generated more frequently
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than the forecast horizon, such as in the case of short-term forecasts of 6 hours, which

are performed after each hour of operation. We study the variation of regressional

approaches on moving datasets, and propose the following:

• Performance comparison of different regressional models (ARIMA, SVM, RF,

GLM, GAM) on the same dataset.

• Evaluation of the proposed hybrid forecasting methods on wind generation fore-

casting.

• The capability and performance of these methods for a rolling dataset with a

short-term forecast of 6 hours executed at each hour.

4.2 Literature Review

Wind power generation forecasts for a day-head operation using a combination of Gaus-

sian Process and NWP was proposed in [53]. The wind speed information from an NWP

model was corrected using a GP and was later converted to wind power using the tur-

bine model. The resulting method had a 17% improvement in MAE compared to ANN.

Researchers have used methods such as ARIMA [54, 55, 56, 57], Markov Chain [58],

RF [59], SVM [60, 61] and SVM with pattern matching [62] in wind power generation

forecasting. Research has been performed on the usage of Neural Networks (NN) in

the area of wind power forecasting, such as in [63], where a Recurrent Neural Network

(RNN) with a Gated Recurrent Unit (GRU) was used for the short term forecast of wind

speed for a 15 minute duration. The method of adaptive neuro-fuzzy inference systems

(ANFIS) combines ANN and fuzzy inference systems, which are then used to forecast

wind power generation [64]. An NN ensemble approach is proposed in [65], which uses
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multiple NN models for the same dataset. A double optimization model with Particle

Swarm Optimization (PSO) and the Genetic algorithm is used to adjust the NN param-

eters in [66]. Some of the other works with NN usage include the application of the

radial basis function [67] and integration AI with NWP [68] .The NN based forecasts

have yielded acceptable results in wind power forecasting but are susceptible to bias

and weight initialization. The issue of over-training may arise if there are numerous

parameters to be estimated from training data.

A systematic analysis on wind power generation methods and trends in the past

literature is performed in [69], revealing that statistical methods are used 54% of the

time, of which, wind generation forecasting had a 43% share. Among the different fea-

tures utilized for wind generation forecasting, wind speed had a 60% share as an input

variable. A comprehensive review on short-term wind power generation forecasting

is given in [48], and focuses on methods encompassing Numerical Weather Prediction

(NWP) Models and the errors occurring from these approaches.

4.3 Problem Formulation

4.3.1 Formalization

Wind power generation forecasting is modelled as a regression problem with a set of k

predictor variables x(t) = (x1(t), x2(t), ..., xk(t)) and the predicted variable y(t) with

N historical data points 1 ≤ t ≤ N [60]. The objective of this model is to predict the

wind energy production ŷt+θ for a particular time horizon θ, at time t.
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4.3.2 Wind Power Generation Data

We utilized wind power generation data from NREL’s wind integration dataset, which

provides wind generation data with a 5 minute resolution for the years 2009-2012. The

data set consists of wind power generation along with 5 independent variables; wind

speed (m/s), wind direction (deg), air temperature (K), surface air pressure (Pa), and

air density at hub height (kg/m3). Forecasting models and weather data were used to

develop this dataset in a roughly 2km by 2km grid throughout the entire continental

United States to generate approximately 126,000 feasible production sites [70].

4.3.3 Performance Metrics

The prediction accuracy of the forecasting approaches are evaluated using Root Mean

Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage

Error (MAPE). The equation for these accuracy metrics are given in Equations (4.5)

to (4.7) [41]. Here, n represents the number of instances in the forecast period, yt the

actual value and ŷt the forecasted value.

RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)2 (4.5)

MAE =
1

n

n∑
t=1

|yt − ŷt| (4.6)

MAPE =
100

n

n∑
t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣ (4.7)
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4.3.4 Forecast horizon

We have focused on the short-term forecast of wind power generation. The duration of

short-term wind power prediction can vary from 30 minutes to six hours depending on

the operation and the agency. A duration of six hours is set as the forecast horizon for

all of the test cases in this study and is performed with a 5-minute resolution resulting

in 72 data points per prediction.

4.3.5 Computing Resource

The forecasting models were programmed using the R language. The computations

were performed on a 64-bit Windows operating system with a 2.6 GHz Intel i7 proces-

sor,a 4 GB NVIDIA GeForce GTX 1650 graphics card and 16 GB of RAM.

4.4 Correlation with Predictor Variables

The correlation between each of the predictors with the predicted variable are shown in

the Figures 4.5 to 4.9.

Figure. 4.5 Correlation between wind power and wind speed
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Figure. 4.6 Correlation between wind power and air density

Figure. 4.7 Correlation between wind power and wind direction

Figure. 4.8 Correlation between wind power and air temperature

Figure. 4.9 Correlation between wind power and air pressure
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4.5 Methodologies

4.5.1 ARIMA

Auto Regressive Integrated Moving Average (ARIMA) is a combination of Autoregres-

sive (AR), Moving Average (MA) and differenced model (I) [56]. In AR models, a

linear combination of past values of the variable of interest is used to forecast the future

values. The MA model utilizes a regression on past forecast errors, with the differ-

encing used to stationarize the non-stationary data. The full ARIMA model is given

in Equation (4.8) [71, 72], where yt−i is the lagged values of yt, φ represents the AR

coefficients, εt−i is the MA coefficients and εt is the white noise. In the ARIMA(p, q, d)

model, the parameters (p, q, d) represent the order of the AR, degree of differencing and

order of the MA model.

ŷt = c+

p∑
i=1

φiyt−i +

q∑
i=1

θiεt−i + εt (4.8)

4.5.2 Generalized Linear Models (GLM)

Generalized Linear Models are a version of normal linear regression, that permits re-

gressed variables with an error distribution other than normal distribution. GLMs in-

clude different models such as linear regression, Poisson regression, logistic regression,

and Loglinear, among others. There are three components in a GLM model, a linear

predictor, a link function and a probability distribution [73]. Here, as shown in Equa-

tion (4.9) g is the link function applied to the linear predictor assuming a probability

distribution for the data. For a Gaussian distribution with an identity link function, the

GLM performs identical to a linear regression model.
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g(EY (y|x)) = β0 +
∑
i

βixi (4.9)

4.5.3 Generalized Additive Models

Generalized Additive Models (GAM) can be considered an extension of GLM, which

attempts to incorporate non-linear relationships. GAM provides a structure for the re-

sponse variable by modeling it based on smooth functions, which is a flexible repre-

sentation compared to a defined parametric relationship on the independent variables.

GAM allows for the adoption of broad range of distributions and the link function mea-

sures the effect of the predictors on the predicted variable. A general model for GAM

can be written as

g(EY (y|x)) = β0 +
∑
i

fi(xi) (4.10)

4.5.4 Support Vector Regression

Support Vector Machines (SVM) are supervised machine learning models that can be

used for classification and regression, referred to as Support Vector Regression (SVR).

Generating a hyperplane for the dataset while maximizing the margin is the core idea

behind both SVM and SVR. The intention is to minimize error; however, the algorithms

tolerate a small error margin. An SVM can be written as an optimization problem with

a minimization objective as in Equation (4.11) subjected to a constraint such as Equa-

tion (4.12), where y = wx + b defines the hyperplane, (xi, yi) denote the independent

and dependent variable in the data, ε stands for the maximum error, ξ represents the

training error for each sample n and parameter C is used for regularization [62].
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min
1

2
‖w‖2 + C

n∑
i=1

|ξi| (4.11)

subject to

|yi − wxi| ≤ ε+ ξi (4.12)

4.5.5 Random Forest

Random Forest (RF) regression is a supervised machine learning technique which uses

the concept of ensemble learning. This method uses the bagging approach; splitting the

data sets into small chunks and feeding it into several learning models or decision trees

and aggregating the values to achieve the expected product [74, 75]. The regression

technique uses random sampling with the replacement, or bootstraping, of the records

and splits the feature set to create the training set for the learning models. The increased

diversity of these base models reduces the over fitting and high variance of decision trees

resulting in more robust solutions. This class of ensemble models can be represented

in the following equation, where the final output g(x) is the aggregate of base models

fi(x).

g(x) = f0(x) + f1(x) + f2(x) + ..... (4.13)

4.5.6 Hybrid Methods

Hybrid forecasting approaches combine the advantages of multiple approaches into one

methodology [76]. Combinations of methods performing well are utilized to develop

hybrid techniques with greater performance in wind generation forecasting, the proce-

dure of which can be described in these following five steps:

Step 1: (Data preprocessing) The historical data needs to be preprocessed into a
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format suitable for forecasting. All explanatory variables are lagged by the forecast

horizon and the six explanatory variables are utilized by the model.

Step 2: (Initial wind power generation forecast) The first forecast model creates the

wind generation forecast (Ŷt) based on the explanatory variables. We have used Arima

and GLM are used for first stage prediction.

Step 3: (Residual calculation) The residual for the forecast from step 2 is calculated

(residual (Rt) = actual value (Y ) - forecasted value (Ŷ )).

Step 4: (Residual forecast) The second forecasting model predicts the residual based

on the previous residuals and explanatory variables (R̂t).

Step 5: (Final wind power forecast calculation) The final wind power forecast value

is calculated based on the forecast from step 2 and residual forecast from step 4 (ŷt =

Ŷt + R̂t).

Steps 1 through 3 are part of the first stage and step 4 through 5 constitute the second

stage of the model. The block diagram for the hybrid forecasting model is shown in

Figure 4.10. Detailed representation of the proposed hybrid forecasting framework is

given in Figure 4.11.

4.6 Results and Discussion

All forecasting models rely on 29 days of wind generation data with six predictor vari-

ables and five-minute resolution, in order to train the forecasting model. The predictor

variables include lagged version of wind power, wind direction, wind speed, air temper-

ature, air pressure, and air density. The 30th of every month is chosen as the forecast day,

except for February in which the 28th day is chosen. The actual wind generation values

on these 12 days are shown in Figure 4.12. We have used 6-hour ahead forecasts, per-
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Figure. 4.10 Hybrid forecasting method

formed after each hour in a day. The graphical representation is shown in Figure 4.13.

In the reviewed literatures, wind generation forecasting is generally performed starting

at either a single point or multiple portions of the same dataset. The performance of the

regression methods and the proposed hybrid method’s performance is evaluated using

this moving window approach. For each of the forecast days, 19 different predictions

are executed starting at 12:00AM to 6:00PM.

The ARIMA model utilized the auto.arima function to deliver the p, d, q values. In

default mode, auto.arima uses approximations to increase the speed of the model search.

To improve model accuracy approximation in the function argument is set to false in

order to avoid approximations and stepwise is set to false in order to search a larger

model space. To check the accuracy of the auto.arima function in delivering parameters

conforming to stationarity, both ”Ljung-Box” and ”Box-Pierce” tests are conducted.

A stationarity test on the prediction for January 30th at 12:00 AM yielded a value of
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Input

Figure. 4.11 Proposed hybrid forecasting framework

0.8701 for both Ljung-Box and Box-Pierce test. A similar test conducted for August

30th, generated a high value of 0.9585 for an arima model (4,1,1). The larger p-value

from the portmanteau tests indicates the randomness of arima residuals, confirming no

correlations are left after arima modeling. Another method to test the characteristics of

the arima model is to plot the inverse roots [72]. The inverse root characteristics for the

ARIMA model (4,1,1) tests the characteristics, as shown in Figure 4.14. The four red

dots on the left denote the inverse root of the AR part, while the red dots on the right

represent the inverse of the MA. The root values inside the unit circle denote stability,

however, if the root values are close to the unit circle may result in numerical instability,
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Figure. 4.12 Forecast data points in each month

Figure. 4.13 Rolling window approach used for forecasting

which would not be acceptable for forecasting.

RF regression is performed using the RandomForest function in R. This function

uses Breiman’s RF algorithm for regression and classification [75]. RF is an aggregation

method in which the results from multiple decision trees are used, after randomizing the

data into chunks. In this example, the number of decision trees, or the ntree argument,

is set to the default value of 500, and the number of features sampled at each split mtry

is set at 3. The recommended value is p/3 for regression where p is the number of

predictors. The importance parameter is set to True, in order to enable the algorithm

to determine variable importance. In the case of SVR, the ksvm function is utilized
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Figure. 4.14 Inverse root characteristics of the ARIMA model (4,1,1)

for the regression problems and can be used for both the classification and regression

problems. This function also uses John Platt’s SMO algorithm for most of the SVM

QP formulation [77]. The default mode in regression eps− svr (epsilon support vector

regression) is used to model the problem, which uses the accurate approximation of the

ε− insensitive loss function [78]. The radial basis kernel rbfdot is used as the kernel

function in all forecast iterations.

The GLM forecasting method utilized the glm function, with family, link and method

parameters set to the default value of gaussian, identity, and glm.fit, respectively. In

the case of GAM, the gam function from the mgcv package is employed. Gaussian is

used for the family parameter and GCV.Cp is used as the smoothing parameter esti-

mation method. This method uses Generalized Cross Validation (GCV) when the scale

parameters are unspecified and Un-Biased Risk Estimator (UBRE) when it is specified.

These smooth functions were implemented using penalized regression splines and ap-

plied basis functions for these splines. All of the hybrid methods used combinations of

the above methods.
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Table 4.2 Performance of forecasting models on December 30, 12:00 AM for a six hour
ahead forecast

RMSE MAE MAPE

Arima 0.299728 0.241168 1.564211

SVM 0.446007 0.38859 2.485144

RF 0.291568 0.234951 1.515214

GLM 0.622082 0.575298 3.711939

GAM 1.304824 1.094148 7.028599

Arima-SVM 0.305738 0.247433 1.60467

Arima-RF 0.299553 0.240562 1.560299

GLM-SVM 0.292583 0.238021 1.541233

GLM-RF 0.524813 0.466921 3.015538

Predictions made using all of the above mentioned forecasting methodologies for

December 30th at 12:00AM to create a six-hour ahead forecast utilizing 29 days of

training data, for all three error metrics, is shown in Table 4.2. From Table 4.2, we

can see that the highest performing methodology is RF followed closely by Arima.

The GLM and GAM methodologies had the lowest performance. The hybrid methods

of Arima and GLM yielded accuracies higher than their non-hybrid counterparts. The

conclusions assumed from the above table and applying the RF to all future wind gener-

ation datasets may not deliver the same level of performance. The actual values in each

day of the month have a large variance, illustrating how wind power generation does

not follow a pattern similar to system load or solar energy generation, as seen in Fig-

ure 4.12,. In the case of system load, the shape of the curve generally follows a ”duck

curve” pattern, while solar energy generation exhibits a parabolic shape, increasing in

the day time and decreasing at night).

Applications of these forecasting techniques on a rolling window approach for each

of the 12 months are shown in figures 4.15 to 4.26. In the month of January as shown
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Figure. 4.15 Performance of forecasting models in January

in Figure 4.15, GLM displayed the most consistent results among non-hybrid methods,

closely followed by GAM and ARIMA. The hybrid method GLM-SVM shows greater

performance when compared to the other three hybrid methods and has better results

than GLM, except for the first six iterations. Eventhough, GLM-SVM and GLM gen-

erated consistent results, none of the nine methods delivered acceptable accuracy levels

for the 30th of January. For the month of February, as illustrated in 4.16, GAM and

GLM-RF displayed similar performance and GLM-SVM had greater performance than

GAM and GLM-RF, except for the first six iterations. In March, shown in Figure 4.17,

GLM-RF had the advantage over other methods in delivering consistent results. All of

the other methods had high RMSE values towards the end of the day, but GLM-RF was

able to generate fairly accurate results throughout the day.

In the month of April as shown in Figure 4.18, GLM-SVM gave consistent results.

Similarly in May (Figure 4.19) GLM-SVM had the most consistent results throughout

the day, however, in June GLM and GLM-RF had better performance. For the month of

July, GLM-SVM and GLM had the most accurate results. For the month of August and

September GLM-SVM and SVM had accurate performance. The month of October
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Figure. 4.16 Performance of forecasting models in February
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Figure. 4.17 Performance of forecasting models in March
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Figure. 4.18 Performance of forecasting models in April
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Figure. 4.19 Performance of forecasting models in May
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Figure. 4.20 Performance of forecasting models in June

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Time (hrs)

0

2

4

6

8

A
cc

u
ra

cy
 (

R
M

S
E

)

Arima

SVM

RF

GLM

GAM

Arima-SVM

Arima-RF

GLM-SVM

GLM-RF

Figure. 4.21 Performance of forecasting models in July
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Figure. 4.22 Performance of forecasting models in August
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Figure. 4.23 Performance of forecasting models in September
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Figure. 4.24 Performance of forecasting models in October
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Figure. 4.25 Performance of forecasting models in November
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Figure. 4.26 Performance of forecasting models in December

is an anomaly with arima, arima-SVM and arima-RF showing more accurate results

than GLM based methods. GLM-RF and GLM were more consistent for the month of

November and in December GLM had the most accurate performance.

We have restricted our experiments to short-term forecasts of wind power gener-

ation. Short-term forecasts can vary from 30 minutes to 6 hours depending on the

functionality. The performance of these methods for different forecast horizons and

training data size on December 30th is performed. Predictions of 6, 12 and 24-hours

ahead utilizing 28,14 and 7 days of training data are shown in the tables 4.3 to 4.5.

Forecasting error was increasing with a longer duration for the prediction. Arima had

a RMSE of 0.609 for a 6-hour ahead prediction and increased to 9.453 for a 24-hour

prediction. The RF approach had a RMSE of 0.838 for a 6-hour prediction, rising to

9.142 for a 24-hour prediction. The amount of training data required to generate the

best prediction also varied depending on the regression method. ARIMA generated the

best results for a 6-hour prediction with a 7-day training dataset, while RF had the best

results for the same forecast horizon with a 14-day training dataset. A study on the

predictor importance calculated using linear regression for varying forecast horizons is
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shown in the Tables 4.6 and 4.7. Wind speeds and historic values of wind power were

found to be the two most significant covariates in wind generation forecasting.

4.7 Observations and Conclusion

We present a comprehensive performance evaluation of five different forecasting method-

ologies in addition to four proposed hybrid approaches when predicting wind power

generation. The performance of these forecasting techniques is illustrated using the

NREL wind generation data with six predictor variables and a resolution of five min-

utes. Our study was restricted to short-term predictions of wind generation lasting six

hours, utilizing 29 days of historic data and employing all five predictor variables. Fore-

casts were carried out for all 12 months of the year, with 19 one-hour ahead iterations

of the six-hour ahead prediction.

Several conclusions can be drawn from this study. ARIMA is able to deliver accept-

able results in certain iterations but prone to over-fitting. RF, SVM and GAM behave

similarly to ARIMA in delivering acceptable results, but are more robust towards vari-

ations. GLM and its hybrid methods outperform others in delivering consistent results

and GLM-SVM is able to provide respectable accuracy with more consistency than

other methods analyzed. Applying forecasting methods to a small portion of wind gen-

eration data is not sufficient to conclude the accuracy of one prediction method over

the other; therefore, the methods need to be tested on data from different geographical

locations and time duration.
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Table 4.3 Performance of forecasting methodologies for variable forecast horizon and
training dataset

Method Training
data

Forecast
Horizon

RMSE MAE MAPE

Arima

28 days 6HA

1.418 0.996 6.995

SVM 4.948 3.311 23.194

RF 0.911 0.653 4.570

GLM 2.230 2.172 14.346

GAM 1.444 1.159 7.696

Arima-SVM 1.402 0.986 6.924

Arima-RF 1.402 0.986 6.924

GLM-SVM 2.947 2.298 15.847

GLM-RF 1.780 1.700 11.313

Arima

14 days 6HA

1.344 0.959 6.720

SVM 2.902 2.244 15.406

RF 0.838 0.594 4.161

GLM 2.041 1.760 12.049

GAM 7.750 6.370 43.214

Arima-SVM 1.347 0.961 6.738

Arima-RF 1.346 0.963 6.749

GLM-SVM 0.900 0.690 4.721

GLM-RF 2.454 1.786 12.440

Arima

7 days 6HA

0.609 0.361 2.583

SVM 0.938 0.820 5.391

RF 1.091 0.744 5.244

GLM 3.451 3.107 21.135

GAM 5.591 4.465 29.799

Arima-SVM 2.303 2.180 14.702

Arima-RF 2.289 2.156 14.553

GLM-SVM 3.360 2.724 18.779

GLM-RF 3.496 2.835 19.522

75



Table 4.4 Performance of forecasting methodologies for variable forecast horizon and
training dataset

Method Training
data

Forecast
Horizon

RMSE MAE MAPE

Arima

28 days 12HA

8.311 5.441 NaN

SVM 3.998 2.256 NaN

RF 7.653 4.991 NaN

GLM 8.578 6.245 NaN

GAM 13.935 12.240 NaN

Arima-SVM 8.319 5.449 NaN

Arima-RF 8.327 5.458 NaN

GLM-SVM 5.206 3.526 NaN

GLM-RF 8.696 5.898 NaN

Arima

14 days 12HA

8.430 5.507 NaN

SVM 6.279 3.933 NaN

RF 7.735 5.056 NaN

GLM 9.259 7.095 NaN

GAM 9.858 8.097 NaN

Arima-SVM 8.429 5.507 NaN

Arima-RF 8.445 5.522 NaN

GLM-SVM 7.725 4.600 NaN

GLM-RF 9.182 5.817 NaN

Arima

7 days 12HA

8.439 5.525 NaN

SVM 6.275 3.727 NaN

RF 7.744 5.069 NaN

GLM 10.803 8.182 NaN

GAM 17.098 13.769 NaN

Arima-SVM 8.436 5.522 NaN

Arima-RF 8.447 5.533 NaN

GLM-SVM 9.622 6.460 NaN

GLM-RF 10.253 6.539 NaN
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Table 4.5 Performance of forecasting methodologies for variable forecast horizon and
training dataset

Method Training
data

Forecast
Horizon

RMSE MAE MAPE

Arima

28 days 24HA

9.453 7.717 NaN

SVM 8.637 6.424 NaN

RF 9.142 7.254 NaN

GLM 11.675 9.887 NaN

GAM 21.224 18.163 NaN

Arima-SVM 9.439 7.704 NaN

Arima-RF 9.454 7.721 NaN

GLM-SVM 10.197 8.154 NaN

GLM-RF 10.328 8.106 NaN

Arima

14 days 24HA

9.566 7.810 NaN

SVM 6.265 4.583 NaN

RF 9.436 7.681 NaN

GLM 14.285 12.795 NaN

GAM 27.036 23.562 NaN

Arima-SVM 9.568 7.811 NaN

Arima-RF 9.571 7.816 NaN

GLM-SVM 9.639 7.926 NaN

GLM-RF 11.779 9.973 NaN

Arima

7 days 24HA

9.484 7.740 NaN

SVM 7.854 6.049 NaN

RF 9.422 7.681 NaN

GLM 15.713 14.345 NaN

GAM 10.512 7.910 NaN

Arima-SVM 9.492 7.746 NaN

Arima-RF 9.495 7.751 NaN

GLM-SVM 12.806 10.812 NaN

GLM-RF 12.341 10.201 NaN
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Table 4.6 Predictor importance calculated using linear regression for varying forecast
horizon

Forecast
Horizon speed power density temperature pressure direction

Jan

6H 0.1887 0.1911 0.0496 0.0820 0.0536 0.0031

12H 0.0575 0.0636 0.0325 0.0362 0.0587 0.0329

24H 0.0061 0.0044 0.0723 0.0627 0.0469 0.1027

Feb

6H 0.2278 0.2017 0.0196 0.0829 0.0782 0.0224

12H 0.0737 0.0602 0.0256 0.0075 0.1140 0.0173

24H 0.0737 0.0602 0.0256 0.0075 0.1140 0.0173

Mar

6H 0.1325 0.1053 0.0630 0.0514 0.0204 0.0017

12H 0.0025 0.0016 0.0290 0.0536 0.0220 0.0086

24H 0.0101 0.0149 0.0457 0.0610 0.0223 0.0042

Apr

6H 0.1852 0.1985 0.0515 0.0785 0.0214 0.0103

12H 0.0408 0.0539 0.0557 0.1154 0.0218 0.0174

24H 0.0116 0.0177 0.0905 0.0387 0.0163 0.0006

May

6H 0.1331 0.1239 0.0248 0.0385 0.0925 0.0138

12H 0.0280 0.0209 0.0142 0.0146 0.1209 0.0087

24H 0.0117 0.0068 0.0408 0.0209 0.0997 0.0033

Jun

6H 0.0871 0.0963 0.0720 0.0303 0.0160 0.0160

12H 0.0175 0.0334 0.0342 0.0395 0.0066 0.0067

24H 0.0047 0.0064 0.0254 0.0230 0.0055 0.0011

Jul

6H 0.1861 0.2125 0.0302 0.0602 0.0123 0.0131

12H 0.1013 0.1144 0.0169 0.0854 0.0348 0.0139

24H 0.0577 0.0511 0.0206 0.0306 0.1068 0.0218

Aug

6H 0.1962 0.1716 0.0114 0.0318 0.0165 0.0057

12H 0.0617 0.0525 0.0294 0.0602 0.0318 0.0119

24H 0.0176 0.0108 0.0313 0.0752 0.0551 0.0350

Sep

6H 0.1051 0.0909 0.0406 0.0196 0.1451 0.0058

12H 0.0169 0.0134 0.0570 0.0769 0.1739 0.0150

24H 0.0171 0.0158 0.0143 0.0127 0.0653 0.0568

Oct

6H 0.1903 0.1643 0.0138 0.0279 0.0288 0.0005

12H 0.0525 0.0224 0.0305 0.0255 0.0569 0.0001

24H 0.0270 0.0133 0.0585 0.1664 0.0311 0.0003
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Table 4.7 Predictor importance calculated using linear regression for varying forecast
horizon

Forecast
Horizon speed power density temperature pressure direction

Nov

6H 0.1285 0.1199 0.0241 0.0422 0.0226 0.0008

12H 0.0170 0.0135 0.0312 0.0454 0.0175 0.0350

24H 0.0651 0.0352 0.0154 0.0231 0.0449 0.0049

Dec

6H 0.2116 0.2221 0.0175 0.0343 0.0479 0.0075

12H 0.0719 0.0700 0.0198 0.0355 0.0534 0.0053

24H 0.0100 0.0063 0.0594 0.0183 0.0437 0.0686
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CHAPTER 5

Computational and numerical analysis of AC optimal power flow

formulations on large-scale power grids

5.1 Introduction

Optimal Power Flow (OPF) is a fundamental tool used in the power industry to en-

sure security and optimal operation of the grid. OPF is pervasive in the industry with

applications spanning across transmission and distribution, real-time and day-ahead op-

erations, and short-term and long-term planning. Grid operators are facing challenges in

operating the current grid securely and at the lowest cost possible due to the expanded

opportunity and availability of renewable energy resources. These challenges are in-

creased with the introduction of additional monitoring and control introduced by smart

grid initiatives as well as increased interaction between transmission and distribution.

With these increased complexities, OPF tools will need to be more robust and faster.

While the performance of power grid applications, such as OPF need to be im-

proved, one must also take into account the rapid growth and change in the computing

industry. The computing industry has grown exponentially since OPF was first de-

veloped in the 1960’s by Carpentier et al. [79, 80], and has experienced many eras

of computing history, such as mainframe computers, distributed memory clusters with

single core nodes, clusters with multicore nodes, and now distributed memory clusters
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with heterogeneous nodes with multiple processors and accelerators. The current evo-

lution in the computing industry is on the heavy usage of hardware accelerators, such as

Graphical Processing Units (GPUs), which has been spurred on by the gaming indus-

try and machine-learning applications. This new technology has dramatically improved

computational performance, but at the same time has imposed new constraints on how

mathematical models can be effectively implemented. Under such a changing comput-

ing environment, it is prudent to revisit and assess power grid applications and the new

ways to adapt them to these newer architectures.

This work attempts at assessing these fundamental building blocks for the AC op-

timal power flow (AC-OPF) application. We provide an in-depth comparison of three

different formulations for AC-OPF – power-balance with polar voltages, power-balance

with Cartesian voltages, and current-balance with Cartesian voltages – and compare

their structure and characteristics. In addition, we present the numerical and compu-

tational performance of these formulations to highlight their differences, point to the

most efficient formulation, and provide benchmark comparison metrics on very-large

networks. The significant contributions can be summarized as follows

• An in-depth comparison of the AC-OPF model for three formulations:Presenting

the different characteristics of power balance polar, power balance Cartesian volt-

ages,and current balance Cartesian voltages.

• Comparison of the structural differences in terms of the number of variables,

constraints and non-zeros in Jacobian and Hessian matrices.

• Numerical and computational performance evaluation for the AC-OPF formula-

tions on nine different test cases including large-scale synthetic U.S. networks.

The results from the three model formulations will be compared and validated with
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MATPOWER [81], which utilizes the power balance polar formulation for the AC-OPF

model.

5.2 AC-OPF literature review

The Optimal Power Flow (OPF) ensures a secure operation of electric power plants for

a given transmission network with, typically, the objective of minimizing generation

cost subjected to operational and security constraints in the network [82]. It is one of

the most important tools used by engineers for power system operation and planning.

AC-OPF is an optimization model that considers the full AC power flow equations. It

is the most accurate representation of power flow in a network assuming the model

parameters are correct. Compared to a DC optimal power flow, the benefits of AC-

OPF are increased accuracy, inclusion of reactive power, current, voltage and losses in

the network (e.g. transmission losses, active and reactive power load loss)[83]. AC-

OPF plays a critical role in the operation of Independent System Operator (ISO) power

markets [84]. It is utilized in every important stage of a power system operation and

planning such as expansion planning [85], grid management [86], day ahead markets

[87], and also for real-time control [88]. AC-OPF is performed yearly for capacity

expansion, daily for day-ahead markets, and, in some cases, even for every 5 minutes.

An extensive review on the application of AC-OPF in distributed generation planning

and operation is provided in [89].

However, AC-OPF remains a computationally complex problem, lacking a rapid and

robust solution after 50 years of formulation. The problem is getting more complicated

with the introduction of distributed and large scale renewable energy sources [90, 91,

92]. The current approach is to utilize decomposition, approximations and assumptions
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for a fast and acceptable solution [93]. Researchers have explored different methods

such as linear approximation [94, 95, 96, 97], conic formulation [98, 99], semidefinite

programming [100, 101], quadratic convex relaxation [102], decomposition [103, 104]

for a faster solution. A detailed study on the effect of inexact convex relaxation in AC-

OPF feasibility is given in [105]. The approaches of approximations and assumptions

cost the companies in millions of dollars in operational cost, damage to the environment

from unnecessary emissions and energy waste. Even a small improvement in dispatch

efficiency can save billions of dollars [94]. The authors of [84] have calculated and

estimated savings of over twenty billion dollars in the US market with an improvement

of 5% in AC-OPF [84].

Much of the AC-OPF literatures utilize the polar power - voltage formulation first

introduced by Carpentier in the 1960’s. The other two main formulations of OPF are

rectangular power-voltage and rectangular current-voltage formulations. Researchers

have also explored other formulations of OPF such as current injection and a mix of

polar and rectangular coordinates [106, 107]. The hybrid method in [106] used rect-

angular forms of voltage and current, current mismatch equations for power balance

and numerical stability is ensured by PV buses. The equivalent current injection based

method also utilized a decoupled optimization for faster processing. M. Jereminov et

al. [107] proposed a solution methodology for AC-OPF using equivalent circuit formu-

lation. The AC-OPF is represented as a non-linear equivalent circuit in which generator

model is represented by conductance and susceptance state variables, and network con-

straints are handled by the generator admittance state variables. The proposed method

solves the convergence problem in the current balance Cartesian formulation.

In [96], authors present a linear approximation method to solve AC-OPF in power
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balance polar formulation using the Mixed Integer Linear Programming (MILP) ap-

proach. This method of binary expansion discretisation is used to convert the non-

linear AC-OPF in to linear problem without losing accuracy. This method also has the

advantage of obtaining reactive power and voltage profile at the same time but faced ex-

ponential increase in execution time with cplex solver. An approximation of AC-OPF

in power balance polar formulation utilizing Langrangian dual is proposed in [90]. A

Supervised Deep Learning model with rectified linear unit (ReLU) activation function

is modeled to make the generator set-points. The proposed approximation method had

a better accuracy and a faster processing time than DC-OPF.

Y. Tang et al. in [108] proposed a real-time AC-OPF based on quasi-Newton meth-

ods using the current balance Cartesian formulation. The approach utilised the second-

order information to provide sub-optimal solutions for real-time applications. A small

correction term is used to track the optimal solution assuming a single-phase power

flow. The superiority of linear approximation of AC-OPF in current balance Cartesian

over traditional quadratic power flow formulation is stated in [109]. It proposes the idea

of using AC-OPF in current balance form and its approximations for practical applica-

tions for its improved computational performance. A continuation method (homotopy)

is used in [110] to covert the DC OPF solution in to AC-OPF by slowly increasing the

non-linearities in equality and inequaltiy constraints. The proposed method achieved

robust solution with a reasonable computational overhead.

A comparative analysis of different power flow methodologies is performed in [111],

but on Power Flow (PF) problem. The authors tested the performance of these formu-

lations on well-conditioned and ill-conditioned networks. A 118, 300 and 730 bus

systems were used to test these methods and for well-conditioned networks all three
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methodologies showed almost similar performance. The slight performance improve-

ment in power balance polar and current balance Cartesian methods are noted in the

work. In the case of ill-conditioned networks rectangular based formulations had better

convergence properties. A comparison of three different solvers over different power

flow formulations are implemented in [112]. The performance of KNITRO, MAT-

POWER’s MIPS (MATPOWER Interior Point Solver) and FMINCON (Find minimum

of constrained nonlinear multivariable function) methods over different bus systems and

formulations is studied in this paper. In [113], authors performed a comparative anal-

ysis of three different AC-OPF formulation with different generator capability curves,

solvers and initial conditions. The evaluations are done on 118 and 2736 bus systems.

In the studies, power balance polar and current balance Cartesian performed better in

terms of computational time. In case of solvers IPOPTH and KNITRO performed the

best and for initial conditions midpoint and flat start as the best choice for AC-OPF.

5.3 Problem formulations

General form for an ACOPF formulation is shown in equations (5.1) to (5.4). It is an

optimization model with a minimization objective subjected to a set of equality and

inequality constraints. The objective function in AC-OPF can be modelled for the min-

imization cost, minimization of losses, maintaining constant voltage profile, transmis-

sion planning or a combination of objectives.

min
x

f(x) (5.1)

subject to

g(x) = 0 (5.2)
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h(x) ≤ 0 (5.3)

xmin ≤ x ≤ xmax (5.4)

Here, f(x) denotes the objective function for minimizing the generation cost. g(x)

represents the nodal power flow balance equations, the inequality constraint h(x) mod-

els the branch flow limits and the bounds in equation (5.4) limits the voltage magnitudes,

generator power injections and reference bus angles [114, 83].

5.3.1 Power Balance Polar Formulation

Here, AC-OPF does a minimization of the generation cost and the objective function

used in the formulation is shown in equation (5.5). The generation cost is assumed to

be a second order polynomial function.

C =

ng∑
k=1

αkP
2
Gk

+ βkPGk
+ γk (5.5)

This formulation employs the polar representation of voltage with voltage magni-

tude at bus i is Vi and angle θi. The equality constraints are shown in equations (5.6)

and (5.7) and the inequality constraints in equations (5.8) to (5.10) [111, 96].

∑
Abr(f,t)=1

(Gff (V
2
f ) + VfVt(Gft cos(θf − θt)

+Bft sin(θf − θt))−
∑

AG(f,k)=1

PGk

+
∑

AL(f,j)6=0

PDj = ∆Pf = 0

(5.6)
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∑
Abr(f,t)=1

(−Bff (V
2
f ) + VfVt(Gft sin(θf − θt)

−Bft cos(θf − θt))−
∑

AG(f,k)6=0

QGk

+
∑

AL(f,j)=1

QDj = ∆Qf = 0

(5.7)

V −i ≤ Vi ≤ V +
i (5.8)

P−Gk ≤ PGk ≤ P+
Gk (5.9)

Q−Gk ≤ QGk ≤ Q+
Gk (5.10)

0 ≤ S2
f ≤ (S+

ft)
2 (5.11)

0 ≤ S2
t ≤ (S+

ft)
2 (5.12)

The equations (5.8) to (5.10), represents the bounds on the voltage magnitude, active

power and reactive power injection at each bus. The bounds on the apparent power flows

in the network are shown in equations (5.11) and (5.12). For the model, the reference

angle is held constant (θref = θref0).

Sf =
√
P 2
ft +Q2

ft (5.13)

St =
√
P 2
tf +Q2

tf (5.14)

Pft = Gff (V
2
f ) + Vf (GftVt cos(θf − θt)

+ VtBft sin(θf − θt))
(5.15)
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Qft = −Bff (V
2
f ) + Vf (GftVt sin(θf − θt)

− VtBft cos(θf − θt))
(5.16)

Ptf = Gtt(V
2
t ) + Vt(GtfVf cos(θt − θf )

+ VfBtf sin(θt − θf ))
(5.17)

Qtf = −Btt(V
2
t ) + Vt(GtfVf sin(θt − θf )

− VfBtf cos(θt − θf ))
(5.18)

The equations (5.13) to (5.18) model the apparent power flows in the network.

5.3.2 Power Balance Cartesian

In this formulation, the voltage at each bus takes the Cartesian form, the real and imag-

inary part of the voltage are represented by VRi,VIi respectively (V̄i = VRi +
√
−1VIi).

The objective function to be minimized remains the same as in equation (5.5). The

constraints are listed in equations (5.19) to (5.21), (5.24) and (5.25).

∑
Abr(f,t)=1

(Gff (V
2
Rf + V 2

If ) + VRf (GftVRt −BftVIt)

+VIf (BftVRt +GftVIt))−
∑

AG(f,k)=1

PGk

+
∑

AL(f,j)6=0

PDj = ∆Pf = 0

(5.19)
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∑
Abr(f,t)=1

(−Bff (V
2
Rf + V 2

If ) + VIf (GftVRt −BftVIt)

−VRf (BftVRt +GftVIt))−
∑

AG(f,k)6=0

QGk

+
∑

AL(f,j)=1

QDj = ∆Qf = 0

(5.20)

(V −i )2 ≤ V 2
i = V 2

Ri + V 2
Ii ≤ (V +

i )2 (5.21)

P−Gk ≤ PGk ≤ P+
Gk (5.22)

Q−Gk ≤ QGk ≤ Q+
Gk (5.23)

0 ≤ S2
f ≤ (S+

ft)
2 (5.24)

0 ≤ S2
t ≤ (S+

ft)
2 (5.25)

where the maximum flow S+ is either the normal, short-term, or emergency rating of

the line. The apparent power flows Sf and St at the from and to ends of the line are

given by equations (5.26) to (5.31).

Sf =
√
P 2
ft +Q2

ft (5.26)

St =
√
P 2
tf +Q2

tf (5.27)

Pf = Gff (V
2
Rf + V 2

If ) + VRf (GftVRt −BftVIt)

+ VIf (BftVRt +GftVIt)

(5.28)

Qf = −Bff (V
2
Rf + V 2

If ) + VIf (GftVRt −BftVIt)

− VRf (BftVRt +GftVIt)

(5.29)
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Pt = Gtt(V
2
Rt + V 2

It) + VRt(GtfVRf −BtfVIf )

+ VIt(BtfVRf +GtfVIf )

(5.30)

Qt = −Btt(V
2
Rt + V 2

It) + VIt(GtfVRf −BtfVIf )

− VRt(BtfVRf +GtfVIf )

(5.31)

5.3.3 Current Balance Cartesian

This formulation employs a set of equations within current injection equations written

in rectangular coordinates [111, 115]. The objective function remains the same as in

equation (5.5) and the constraints are listed in equations equations (5.32) to (5.34),

(5.37) and (5.38). The equations for apparent power takes the form as shown previously

in equations (5.26) to (5.31).

∑
Abr(f,t)=1

(GftVRt −BftVIt)− (
∑

AG(f,k)=1

PGk

−
∑

AL(f,j)6=0

PDj)VRf/(V
2
Rf + V 2

If )

−(
∑

AG(f,k)=0

QGk −
∑

AL(f,j)6=1

(QDj)

VIf/(V
2
Rf + V 2

If ) = 0

(5.32)
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∑
Abr(f,t)=1

(GftVIt +BRtVIt)− (
∑

AG(f,k)=1

PGk

−
∑

AL(f,j)6=0

PDj)VIf/(V
2
Rf + V 2

If )

+(
∑

AG(f,k)=0

QGk −
∑

AL(f,j)6=1

QDj)

VRf/(V
2
Rf + V 2

If ) = 0

(5.33)

(V −i )2 ≤ V 2
i = V 2

Ri + V 2
Ii ≤ (V +

i )2 (5.34)

P−Gk ≤ PGk ≤ P+
Gk (5.35)

Q−Gk ≤ QGk ≤ Q+
Gk (5.36)

0 ≤ S2
f ≤ (S+

ft)
2 (5.37)

0 ≤ S2
t ≤ (S+

ft)
2 (5.38)

Table 5.1 AC-OPF Formulation Comparison

Power balance
Polar

Power balance
Cartesian

Current balance
Cartesian

Variables |vi| , θi, PG, QG,
P , Q

VR, VI , PG, QG,
P , Q

VRi, VIi,PG, QG,
IR, II

No. of variables 2nb + 2nbr + 2ng 2nb + 2nbr + 2ng 2nb + 2nbr + 2ng

Network con-
straints

2nb Nonlinear 2nb Quadratic 2nb locally nonlin-
ear

Network Jacobian Nonlinear Linear locally nonlinear

Voltage magnitude
constraints

Variable limit
Non-convex
quadratic
inequalities

Non-convex
quadratic
inequalities

No. of equations

(Equality)
2nb + 4nbr
(Inequality)
2nb + 4nbr + 4ng

(Equality)
2nb + 4nbr
(Inequality)
2nb + 2nbr + 4ng

(Equality)
2nb + 2nbr
(Inequality)
2nb + nbr + 4ng
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5.3.4 Model Comparison

The table 5.1 lists the model parameters from the three formulations of AC-OPF [84].

All the three formulation have the same number of variables in the optimization model.

In case of power balance polar representation, it has a set of 2nb non-linear equal-

ity constraints with sine and,-cosine functions as well as quadratic terms that apply

throughout the grid. The formulation has a non-linear network Jacobian and variable

limit on the voltage magnitude. The power balance Cartesian formulation models the

system with 2nb non-linear equality constraints with quadratic terms. The system has

non-convex quadratic inequalities at bus and non-convex inequalities at each set of con-

nected buses. The current balance Cartesian formulation employs locally linear equality

and non-convex inequalities at each bus.

5.4 Test Cases

The three formulations of AC-OPF are tested on 9 different bus systems. The case

1 is a 9-bus, 3 generator model based on the data from [116]. The case 2, the 39-

bus New England system with generator types of fossil, hydro, nuclear and network

interconnections [117]. The IEEE 118 and IEEE 300 bus system models are the 4th and

5th test case. The 500-bus system network is a synthetic model to mimic the 138 and

300 kV transmission network in the northwestern part of South Carolina. The synthetic

2000-bus case is a representation of the 161, 230 and, 500 kV transmission network in

the state of Texas [118]. The 3120-bus system is a representation of the Polish system

during the morning peak in the summer of 2008. A synthetic representation of a part

of the Western Electricity Coordinating Council (WECC) system transmission network

with 115, 138, 161, 230, 345, 500, and 765 kV lines is modelled in the 10,000 bus
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system case. The synthetic 25,000-bus system case is a representation of the North-

East Mid-Atlantic region transmission network in the US [118]. The table 5.2 lists the

features of the 9 different test cases used.

Table 5.2 The different bus systems utilized for the analysis

Test Case No. of Buses No. of branches No. of generators

1 9 9 3

2 39 46 10

3 118 186 54

4 300 411 69

5 500 597 90

6 2000 3206 544

7 3120 3693 505

8 10000 12706 2485

9 25000 32230 4834

5.5 Numerical and Computational Performance

The OPF application code developed in this work is written in C language using the

numerical computing library PETSc [119, 120]. The optimization problem is solved

using the Ipopt library [121]. Ipopt is a widely-used open source software library for

solving large-scale non-linear optimization problems. It utilizes primal-dual interior

point and line search filter based methods to find the solution. All the performance tests

were done in a Macintosh environment with 2.6 GHz Intel Core i7 processor, 8 GB

1600 MHz DDR3 RAM, NVIDIA GeForce GT 650M 1024 MB and Intel HD Graphics

4000 1536 MB graphics card.
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The formulation of a problem plays a key role in determining the solution method-

ology and processing time. This section compares the system model characteristics of

the three formulation of AC-OPF. The number of variables in the ACOPF formulation

of the different bus systems are shown in Figure 5.1, which illustrates the complexity

associated with the ACOPF problem. As an example of this complexity, a 9-bus system

only has 24 variables while a 25,000-bus system have 59,668 variables in the optimiza-

tion model. For a test system, the number of variables remains the same for all three

AC-OPF formulations.

Figure. 5.1 Number of variables in the formulation

The equality and inequality constraints in the Polar and Cartesian formulation are

depicted in the figures 5.2 and 5.3. The graphs are plotted in logarithmic scale to show

the variation from smaller bus systems. The line flow limits in the case of 118 and 300-

bus systems are very high and limits will not be exceeded irrespective of the optimized
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value. Therefore the line flow constraints can be excluded in polar formulations as

shown in Figure 5.2.
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Figure. 5.2 Number of constraints in the power balance Polar formulation.

The number of iterations for the code run to get the solution are shown in figure 5.4.

The power balance Cartesian formulation outperforms the other two in smaller bus sys-

tems, such as 9,118, and 500-bus, but the current balance Cartesian formulation requires

approximately the same number of iterations for larger bus systems, such as the 10,000

or 25,000-bus. Figure 5.6 details the iteration numbers for the three formulations with

current balance Cartesian values normalized to 1. The optimization code run-time is

shown in figure 5.5, illustrating how the power balance polar form has greater perfor-

mances in smaller bus system while current balance Cartesian formulation has a lower

run time with the largest bus systems analyzed, such as in the case of a 25,000-bus sys-

tem. The improved performance for the current balance Cartesian form for larger bus
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Figure. 5.3 Number of constraints in the power balance Cartesian formulation

system can be clearly seen in Figure 5.6. The performance grows with an increasing

number of buses in the network, or with increasing complexity. To understand the mod-

eling framework in a bit more detail, the Jacobian and Hessain values in the formulation

are also noted. The values are shown in Table 5.4 and the figure with current balance

values normalized to 1 is plotted in Figure 5.8. The acronym Equality (P) stands for the

equality constraint Jacobian in power balance Polar formulation, Equality (C) denote

equality constraint Jacobian in power balance Cartesian form and similarly for the In-

equality terms. The power balance Cartesian and current balance Cartesian show equal

or very similar values but power balance polar has lesser values in most cases. The Ta-

ble 5.4 lists all the values for the the formulations. An extension of this work to SCOPF

is also carried out and is shown in Tables 5.6 and 5.7

The results from the code are compared with MATPOWER simulation to check
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Figure. 5.4 Iterations required to complete the code run

the validity of the results. MATPOWER is an open-source simulations package that

provides power flow, OPF, AC-OPF and other tools targeted towards researchers and

students [81, 122]. MATPOWER is run in a GNU Octave environment for the power

flow simulation with all the cases tested and compared with final objective value [123].

MATPOWER utilizes the MIPS [124] and in polar balance formulation for the analysis.

The results are shown in table 5.3, the final objective value from both the executed code

and MATPOWER simulations match, up to the first decimal value.

5.6 Observations and Conclusion

This work presented the computational and performance evaluation of three different

AC-OPF formulations: power balance polar, power balance Cartesian and current bal-

ance Cartesian. The formulations were tested with a wide variety of bus systems, rang-
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Figure. 5.5 Run time comparison

ing from smaller systems, such as a 9-bus,to larger systems,such as a 25,000-bus. A

steady increase in problem complexity as in the number of variables and constraints,

with increasing bus number, can be identified from the model. The three formulations

converged to the same final solution even though with varying number of iterations and

run-time.

Power balance polar form showed the best computational time for smaller bus sys-

tems while the current balance Cartesian form showed improvement in computational

time with increasing problem complexity, outperforming the other two formulation for

the 25,000 bus system case. The results show a similar pattern for power balance po-

lar, having the least iteration number for smaller bus systems, while current balance

Cartesian performed the least iteration number for the 25,000-bus system.

The validity of the results is tested in matpower for all cases. The values of non-
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Figure. 5.6 No. of Iterations with current balance iterations normalized to 1

zeros in equality constraint Jacobian, inequality constraint Jacoboian and LaGrangian

Hessian in the problem formulation are noted to evaluate the formulations. The current

balance Cartesian formulation had the largest number of non-zeros in the equality and

inequality constraint Jacobian matrix closely followed by the power balance Cartesian

formulation. In the case of non-zeros in Hessian matrix, all three formulations had the

same number of non-zero values.
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Figure. 5.7 Run-time with current balance run-time normalized to 1
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Figure. 5.8 Number of non-zeros in Jacobian with Current balance Cartesian values
normalized to 1.
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Table 5.3 Objective value comparison with MATPOWER.

Bus System MATPOWER Code

9 5296.69 5297.406

39 41864.18 41864.177

118 129660.7 129660.684

300 719725.11 719725.098

500 72578.3 72578.295

2000 1.2288 ∗ 106 1.2288 ∗ 106

3120 2.1427 ∗ 106 2.1427 ∗ 106

10000 2.4858 ∗ 106 2.4858 ∗ 106

25000 6.0178 ∗ 106 6.0178 ∗ 106
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Table 5.4 Number of non-zeros in Jacobian and Hessian

Test case No. of non-zeros
Power

balance
polar

Power
balance

Cartesian

Current
balance

Cartesian

9 Bus
System

Equality constraint Jacobian 114 116 122

Inequality constraint Jacobian 72 90 90

Lagrangian Hessian 96 96 96

39 Bus
System

Equality constraint Jacobian 544 546 566

Inequality constraint Jacobian 368 446 446

Lagrangian Hessian 415 415 415

118 Bus
System

Equality constraint Jacobian 2012 2014 2122

Inequality constraint Jacobian 0 236 236

Lagrangian Hessian 2408 2408 2408

300 Bus
System

Equality constraint Jacobian 4610 4612 4750

Inequality constraint Jacobian 0 600 600

Lagrangian Hessian 3591 3591 3591

500 Bus
System

Equality constraint Jacobian 6852 6854 7034

Inequality constraint Jacobian 4776 5776 5776

Lagrangian Hessian 4826 4826 4826

2000 Bus
System

Equality constraint Jacobian 30424 30426 31524

Inequality constraint Jacobian 25648 29648 29648

Lagrangian Hessian 24552 24552 24552

3120 Bus
System

Equality constraint Jacobian 42962 42964 43974

Inequality constraint Jacobian 29448 35688 35688

Lagrangian Hessian 35923 35923 35923

10000 Bus
System

Equality constraint Jacobian 142706 142708 147678

Inequality constraint Jacobian 81952 101952 101952

Lagrangian Hessian 119755 119755 119755

25000 Bus
System

Equality constraint Jacobian 350548 350550 360218

Inequality constraint Jacobian 186640 236640 236640

Lagrangian Hessian 269342 269342 269342
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Table 5.5 AC-OPF Results

Test case Parameters
Power

balance
polar

Power
balance

Cartesian

Current
balance

Cartesian

9- Bus
system

Objective value 5297.406 5297.406 5297.406

Iterations 18 15 22

Time (secs) 0.016 0.033 0.019

39-Bus
system

Objective value 41864.177 41864.177 41864.177

Iterations 25 29 90

Time (secs) 0.042 0.114 0.162

118-Bus
system

Objective value 129660.68 129660.68 129660.68

Iterations 26 20 119

Time (Secs) 0.058 0.166 0.325

300-Bus
system

Objective value 719725.1 719725.1 719725.1

Iterations 27 30 99

Time (Secs) 0.128 0.519 0.494

500 Bus
system

Objective value 72578.295 72578.295 72578.295

Iterations 566 507 636

Time (Secs) 9.284 15.396 10.338

2000 Bus
system

Objective value 1.23 ∗ 106 1.23 ∗ 106 1.23 ∗ 106

Iterations 1005 999 752

Time (Secs) 95.121 150.327 108.77

3120 Bus
System

Objective value 2.1427 ∗ 106 2.1427 ∗ 106 2.1427 ∗ 106

Iterations 1326 2500 1566

Time (secs) 125.93 490.638 193.714

10,000 Bus
System

Objective value 2.4858 ∗ 106 2.4858 ∗ 106 2.4858 ∗ 106

Iterations 4063 4185 4210

Time (secs) 4824.988 2118.738 1719.023

25,000 Bus
System

Objective value 6.017 ∗ 106 6.017 ∗ 106 6.017 ∗ 106

Iterations 7276 5105 5048

Time (secs) 6672.571 8102.079 5565.438
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Table 5.6 SCOPF Results

Parameters
Power

Balance
Polar

Power
balance

cartesian

Current
balance

cartesian

9- Bus
system

Objective value 1299.52 1299.52 1299.52

Iterations 41 65 95

Time (secs) 0.232 1.345 0.685

Variables 224 234 234

Equality constraints 180 190 190

Inequality constraints 192 282 282

Equality constraints Jacobian 1046 1106 1160

Inequality constraints Jacobian 700 900 900

Lagrangian Hessian 867 927 927

39-Bus
system

Objective value 37054.7 37054.7 37054.7

Iterations 94 101 209

Time (secs) 1.547 4.082 3.927

Variables 970 980 980

Equality constraints 780 790 790

Inequality constraints 1004 1394 1394

Equality constraints Jacobian 5376 5436 5636

Inequality constraints Jacobian 3816 4616 4616

Lagrangian Hessian 4090 4150 4150

118-Bus
system

Objective value 4646.04 4646.04 4646.04

Iterations 20 35 50

Time (Secs) 0.972 3.633 1.943

Variables 3428 3438 3438

Equality constraints 2360 2370 2370

Inequality constraints 485 1665 1665

Equality constraints Jacobian 19962 20122 21200

Inequality constraints Jacobian 970 3330 3330

Lagrangian Hessian 23845 24065 24065
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Table 5.7 SCOPF Results (Continued)

Parameters
Power

Balance
Polar

Power
balance

cartesian

Current
balance

cartesian

300-Bus
system

Objective value 46433.9 46433.9 46433.9

Iterations 22 25 32

Time (Secs) 1.358 4.763 2.212

Variables 7370 7380 7380

Equality constraints 6000 6010 6010

Inequality constraints 621 3621 3621

Equality constraints Jacobian 46052 46112 47492

Inequality constraints Jacobian 1242 7242 7242

Lagrangian Hessian 35850 35910 35910

500-Bus
system

Objective value 26576.2 26576.2 26576.2

Iterations 982 320 363

Time (Secs) 245.896 126.307 94.086

Variables 11100 11110 11110

Equality constraints 10000 10010 10010

Inequality constraints 12442 17442 17442

Equality constraints Jacobian 67782 67842 68952

Inequality constraints Jacobian 48720 58760 58760

Lagrangian Hessian 44400 44460 44460
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CHAPTER 6

Conclusions and Future Directions

6.1 Conclusions

The electric grid system is undergoing a transitional phase with an increased market

penetration of renewable energy sources, increased sales of electric vehicles, the in-

troduction of a time-of-use pricing scheme for consumers, and advancement in high-

performance computing. There has also been significant increase in the installation of

RES in the US, the largest percentage of which belongs to the wind energy industry

setting records in the US with a record high of 56.16% in Electric Reliability Council

of Texas (ERCOT) and 71.3% in Southwest Power Pool (SPP). A similar trend can be

seen in EVs with a sales growth of 79% in 2018. Operational methods such as economic

dispatch and optimal power flow perform key roles in the stability and economic oper-

ation of changing grid demands. We investigated four key areas of the grid operation:

microgrid decomposition, EV scheduling, wind forecasts and ACOPF formulation.

6.1.1 Microgrid decomposition

Microgrid decomposition, or determining community structures within an electric grid

is important for the optimal management of the transmission system. Different clus-

tering techniques were employed to generate microgrids from the larger electric grid
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system and a linear programming based ED model was developed to find the most

economic microgrid systems. The proposed novel approach of the NGGN clustering

scheme generated the best results in MAED for a microgrid system.

6.1.2 EV Scheduling

The number of EVs in the system load of a utility is increasing, with demand growing

as the EVs become more affordable. Most consumers who own EVs are likely to begin

charging at a time that coincides with peak load in the electric grid, which the utilities

strive to mitigate. This mitigation ultimately helps with the integration of RES and the

reduction of generation cost, and necessitates the need for an EV scheduling scheme to

reduce the cost for consumers and peak load in the system. A novel linear programming

based EV scheduling scheme model is proposed, which takes in to account consumer

preferences, household demand, forecasted EV demand, and community load. A repre-

sentative dataset of a modern residential community with 200 households and 348 EVs

were utilized to model the scheduling scheme. The proposed strategy will reduce the

energy costs for consumers as an incentive for buy in, along with a reduction in peak

load from the residential community.

6.1.3 Wind power generation forecasting

To increase the percentage of RES in the generation mix of utility power generation,

forecasting plays a critical role. We have investigated the performance of five differ-

ent forecasting methodologies along with four proposed hybrid approaches in handling

wind power generation using, the NREL wind integration dataset with six predictors

variables and a data resolution of five minutes. A short-term prediction of wind gener-

ation within 6 hours was performed, utilizing 29 days of historic data and employing
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all predictor variables. Forecasts were deployed in a rolling window approach for all

12 months of the year, with 19 one-hour ahead iterations of the 6-hour ahead predic-

tions. Instead of relying on a small portion of the dataset, we utilized a rolling window

approach to investigate the most accurate forecasting approacheses. The GLM based

hybrid approaches, GLM-SVM and GLM-RF, were able to deliver consistent results for

the varying datasets.

6.1.4 ACOPF formulation

ACOPF is one of the key operation for the stability and security of the grid. It is the

most accurate representation of power flows in a network, assuming model parameters

are correct. Operators rely on assumptions and approximations to generate the best pos-

sible accuracy for ACOPF, even a minor improvement in ACOPF accuracy or run-time

is beneficial in the integration of RES with millions of dollars in potential cost saving.

We investigated the computational and numerical performance of ACOPF formulations

on large-scale networks, investigating the three formulations of ACOPF: power balance

polar, power balance Cartesian and current balance Cartesian. The formulations were

tested on networks ranging from a 9-bus to a 25,000 bus system to study variations

from small-scale networks to large-scale networks. All three formulations arrived at

the same solution, and the results were validated using Matpower. The power balance

polar formulation performed well with smaller networks, but the current balance carte-

sian displayed improvement with increasing network complexity. The current balance

cartesian formulation had a 16.59% improvement in computational time when com-

pared to power balance formulation, and a 31.31% improvement when compared to

power balance cartesian formulation on a 25,000 bus system.
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6.2 Future Work

Multiple microgrids working in tandem is the ideal state for the future electric grid. The

network is expected to have high EV and RES market penetration. The proposed clus-

tering scheme for the economic decomposition of electric grid systems was evaluated on

IEEE 118 and 300-bus systems, which need to be expanded to large scale test systems.

One of the key benefit of using microgrids is the ability to isolate the system in times of

electric grid disturbances. The performance of these clustered microgrids needs to be

evaluated during electrical disturbances, such as tie-line failures and generation loss.

The proposed EV scheduling utilized data for a high-end community with all house-

holds owning connected EVs. The dataset does not specify the EV variant of the owner,

which can influence the scheduling scheme. The idea of vehicle-to-grid (V2G) and

vehicle-to-home (V2H) can be incorporated in the scheduling scheme for the benefit of

both consumers and utilities. The power flow from V2G during peak load can help the

utilities in peak-shaving. Most of the households in the dataset are having multiple EVs,

so the idea of vehicle-to-vehicle (V2V) can also be investigated. The effects of these

schemes on battery life and cost to customers during maintenance need to be explored

to convince users to buy in to these technologies.

The wind power forecasts were focused on the short-term analysis of wind power

generation with 6 hour ahead predictions. Short-term forecasts can vary from 30 min-

utes to 6 hour depending on the functionality. For future work, the performance of these

methods for different forecast horizons needs to be evaluated. The prediction methods

made use of all available covariates but the concept of feature selection can be used to

further improve the forecast accuracy. The idea of hyperparameter tuning for RF and
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SVM can also be employed to improve accuracy. An emerging topic in wind generation

forecast is the application of NN based methods, with necessary testing of the different

approaches in their ability to handle varying wind generation data.

The AC OPF task increases the accuracy of current-balance formulation over the

other two models, power balance polar and power balance cartesian, on large scale test

grids. The formulations were tested on bus systems upto a 25,000-bus case, but even

larger network models such as the 75,000-bus system can be explored for validation.

The 75,000-bus system was not evaluated in our study due to excessive computational

time on commodity hardware. The performance of these models needs to be evaluated

on a high-performance framework, and the ability of these models for parallel comput-

ing also needs to be explored.
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Appendix A

ED based on grid clustering

1. 118 Bus system A-GN Clustering (MOD File)

s e t GEN; # G e n e r a t o r
s e t Loads ; # Loads
s e t GEN Area1 ; #Gens i n Area 1
s e t GEN Area2 ; #Gens i n Area 2
s e t GEN Area3 ; #Gens i n Area 3
s e t GEN Area4 ; #Gens i n Area 4
s e t GEN Area5 ; #Gens i n Area 5
s e t GEN Area6 ; #Gens i n Area 6
s e t GEN Area7 ; #Gens i n Area 7
s e t GEN Area8 ; #Gens i n Area 8
s e t GEN Area9 ; #Gens i n Area 9
s e t GEN Area10 ; #Gens i n Area 10
s e t GEN Area11 ; #Gens i n Area 11
s e t Load Area1 ; # Loads i n Area 1
s e t Load Area2 ; # Loads i n Area 2
s e t Load Area3 ; # Loads i n Area 3
s e t Load Area4 ; # Loads i n Area 4
s e t Load Area5 ; # Loads i n Area 5
s e t Load Area6 ; # Loads i n Area 6
s e t Load Area7 ; # Loads i n Area 7
s e t Load Area8 ; # Loads i n Area 8
s e t Load Area9 ; # Loads i n Area 9
s e t Load Area10 ; # Loads i n Area 10
s e t Load Area11 ; # Loads i n Area 11
s e t T i e L i n e s ; # Tie l i n e s b /w a r e a s
s e t T i e L i n e s A 1 t ; # Tie l i n e s t o t h e a r e a 1
s e t T i e L i n e s A 2 t ; # Tie l i n e s t o t h e a r e a 2
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s e t T i e L i n e s A 3 t ; # Tie l i n e s t o t h e a r e a 3
s e t T i e L i n e s A 4 t ; # Tie l i n e s t o t h e a r e a 4
s e t T i e L i n e s A 5 t ; # Tie l i n e s t o t h e a r e a 5
s e t T i e L i n e s A 6 t ; # Tie l i n e s t o t h e a r e a 6
s e t T i e L i n e s A 7 t ; # Tie l i n e s t o t h e a r e a 7
s e t T i e L i n e s A 8 t ; # Tie l i n e s t o t h e a r e a 8
s e t T i e L i n e s A 9 t ; # Tie l i n e s t o t h e a r e a 9
s e t T i e L i n e s A 1 0 t ; # Tie l i n e s t o t h e a r e a 10
s e t T i e L i n e s A 1 1 t ; # Tie l i n e s t o t h e a r e a 11
s e t T i eL inesA1f ; # Tie l i n e s from t h e a r e a 1
s e t T i eL inesA2f ; # Tie l i n e s from t h e a r e a 2
s e t T i eL inesA3f ; # Tie l i n e s from t h e a r e a 3
s e t T i eL inesA4f ; # Tie l i n e s from t h e a r e a 4
s e t T i eL inesA5f ; # Tie l i n e s from t h e a r e a 5
s e t T i eL inesA6f ; # Tie l i n e s from t h e a r e a 6
s e t T i eL inesA7f ; # Tie l i n e s from t h e a r e a 7
s e t T i eL inesA8f ; # Tie l i n e s from t h e a r e a 8
s e t T i eL inesA9f ; # Tie l i n e s from t h e a r e a 9
s e t T ieL inesA10f ; # Tie l i n e s from t h e a r e a 10
s e t T ieL inesA11f ; # Tie l i n e s from t h e a r e a 11

param GenMax {GEN} ; # G e n e r a t o r c a p a c i t y
param GenMin {GEN} ; #Min g e n e r a t i o n v a l u e

param TieLineFlowMax { T i e L i n e s } ; # G e n e r a t o r c a p a c i t y
param TieLineFlowMin { T i e L i n e s } ; #Min g e n e r a t i o n v a l u e

param LoadValue{Loads } ; # Value o f a l l t h e l o a d s i n t h e
sys tem

param Load >=0; # T o t a l Load i n t h e sys tem
param a {GEN} ; # ’ a ’ p a r a m e t e r f o r t h e c o s t f u n c t i o n
param b {GEN} ; # ’b ’ p a r a m e t e r f o r t h e c o s t f u n c t i o n
param c {GEN} ; # ’ c p a r a m e t e r f o r t h e c o s t f u n c t i o n

v a r G e n e r a t i o n {GEN} >= 0 ; # Power from GEN t o
t h e LOAD

v a r TieLineFlow { T i e L i n e s } ;
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minimize Gen Cost : sum { g i n GEN} ( a [ g ]∗ G e n e r a t i o n [ g ]∗
G e n e r a t i o n [ g ]+ b [ g ]∗ G e n e r a t i o n [ g ]+ c [ g ] ) + sum { t i n
T i e L i n e s } 0 .01∗ TieLineFlow [ t ] ;

s u b j e c t t o GenValue {g i n GEN} : #
G e n e r a t i o n l i m i t i n e q u a l i t y c o n s t r a i n t

GenMin [ g ] <= G e n e r a t i o n [ g ] <= GenMax [ g ] ;

s u b j e c t t o Area1 :
sum {g i n GEN Area1 } G e n e r a t i o n [ g ] − sum { t i n

T ieL inesA1f } TieLineFlow [ t ] + sum { t i n T i e L i n e s A 1 t }
TieLineFlow [ t ]= sum { l i n Load Area1 } LoadValue [ l ] ;

s u b j e c t t o Area2 :
sum {g i n GEN Area2 } G e n e r a t i o n [ g ] − sum { t i n

T ieL inesA2f } TieLineFlow [ t ] + sum { t i n T i e L i n e s A 2 t }
TieLineFlow [ t ] = sum { l i n Load Area2 } LoadValue [ l ] ;

s u b j e c t t o Area3 :
sum {g i n GEN Area3 } G e n e r a t i o n [ g ] − sum { t i n

T ieL inesA3f } TieLineFlow [ t ] + sum { t i n T i e L i n e s A 3 t }
TieLineFlow [ t ]= sum { l i n Load Area3 } LoadValue [ l ] ;

s u b j e c t t o Area4 :
sum {g i n GEN Area4 } G e n e r a t i o n [ g ] − sum { t i n

T ieL inesA4f } TieLineFlow [ t ] + sum { t i n T i e L i n e s A 4 t }
TieLineFlow [ t ]= sum { l i n Load Area4 } LoadValue [ l ] ;

s u b j e c t t o Area5 :
sum {g i n GEN Area5 } G e n e r a t i o n [ g ] − sum { t i n

T ieL inesA5f } TieLineFlow [ t ] + sum { t i n T i e L i n e s A 5 t }
TieLineFlow [ t ] = sum { l i n Load Area5 } LoadValue [ l ] ;

s u b j e c t t o Area6 :
sum {g i n GEN Area6 } G e n e r a t i o n [ g ] − sum { t i n

T ieL inesA6f } TieLineFlow [ t ] + sum { t i n T i e L i n e s A 6 t }
TieLineFlow [ t ]= sum { l i n Load Area6 } LoadValue [ l ] ;

s u b j e c t t o Area7 :
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sum {g i n GEN Area7 } G e n e r a t i o n [ g ] − sum { t i n
T ieL inesA7f } TieLineFlow [ t ] + sum { t i n T i e L i n e s A 7 t }
TieLineFlow [ t ]= sum { l i n Load Area7 } LoadValue [ l ] ;

s u b j e c t t o Area8 :
sum {g i n GEN Area8 } G e n e r a t i o n [ g ] − sum { t i n

T ieL inesA8f } TieLineFlow [ t ] + sum { t i n T i e L i n e s A 8 t }
TieLineFlow [ t ]= sum { l i n Load Area8 } LoadValue [ l ] ;

s u b j e c t t o Area9 :
sum {g i n GEN Area9 } G e n e r a t i o n [ g ] − sum { t i n

T ieL inesA9f } TieLineFlow [ t ] + sum { t i n T i e L i n e s A 9 t }
TieLineFlow [ t ]= sum { l i n Load Area9 } LoadValue [ l ] ;

s u b j e c t t o Area10 :
sum {g i n GEN Area10 } G e n e r a t i o n [ g ] − sum { t i n

T ieL inesA10f } TieLineFlow [ t ] + sum { t i n T i e L i n e s A 6 t }
TieLineFlow [ t ]= sum { l i n Load Area10 } LoadValue [ l ] ;

s u b j e c t t o Area11 :
sum {g i n GEN Area11 } G e n e r a t i o n [ g ] − sum { t i n

T ieL inesA11f } TieLineFlow [ t ] + sum { t i n T i e L i n e s A 1 1 t
} TieLineFlow [ t ]= sum { l i n Load Area11 } LoadValue [ l ] ;

s u b j e c t t o G e n e r a t i o n B a l a n c e :
sum {g i n GEN} G e n e r a t i o n [ g ] = sum { l i n Loads} LoadValue

[ l ] ;

s u b j e c t t o T i e L i n e F l o w C o n s t r a i n t { t i n T i e L i n e s } :
TieLineFlowMin [ t ] <= TieLineFlow [ t ] <= TieLineFlowMax [ t ] ;
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Appendix B

EV Scheduling

1. EV Scheduling (MOD File)

s e t Hours o r d e r e d ; #Time s l o t s (24 h o u r s )
s e t EVs o r d e r e d ; # E l e c t r i c v e h i c l e s
s e t Household o r d e r e d ; #House h o l d s
s e t C l u s t e r o r d e r e d ; # S e t o f c l u s t e r o f h ou se s
# s e t ChargerType ;
s e t EVHousehold {Household } w i t h i n EVs ;

#EV a s s o c i a t e d wi th each consumer
s e t C l u s t e r H o u s e { C l u s t e r } w i t h i n Household ;

# Consumers i n each c l u s t e r

param Demand {EVs } ; # F o r e c a s t e d
demand of t h e EV

param DemandHousehold {Household } ;
# F o r e c a s t e d demand of t h e h o u s e h o l d

param SOC Final {EVs } ; # Consumer p r o v i d e d S t a t e
o f Charge (SOC)

param Charge r {EVs } ;

param E n e r g y p r i c e {Hours } ; #Day−Ahead en e r gy p r i c e

param Consumer {EVs , Hours } ;
# Consumer p r e f e r r e d t i m i n g f o r c h a r g i n g

v a r S c h e d u l e { EVs , Hours} >= 0 ;
# S c h e d u l e f o r each EV

# Minimize t h e c o s t o f c h a r g i n g f o r a l l t h e EVs
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minimize Cos t :
sum { j i n EVs , k i n Hours} S c h e d u l e [ j , k ]∗ E n e r g y p r i c e [

k ] ;

# Consumer p r e f e r r e d t i m i n g
s u b j e c t t o C o n s u m e r P r e f e r e n c e { j i n EVs , k i n Hours } :
S c h e d u l e [ j , k ] <= ( i f Consumer [ j , k ] = 1 t h e n Demand [ j ]

e l s e 0 ) ;

# Meet ing t h e EV demand
s u b j e c t t o Equipment Demand { j i n EVs } :

sum {k i n Hours} S c h e d u l e [ j , k ] >= SOC Final [ j ]∗Demand [ j
] ;

#EV r a t i n g c o n s t r a i n t
s u b j e c t t o E V R a t i n g C o n s t r a i n t { j i n EVs , k i n Hours } :
S c h e d u l e [ j , k ] <= ( i f Demand [ j ] = 0 t h e n 0 e l s e ( i f

Cha rge r [ j ]=1 t h e n 1 . 9 2 e l s e i f Cha rge r [ j ]= 2 t h e n 6 . 6
e l s e 8 . 5 2 ) ) ;

# R e s t r i c t i n g t h e c o n n e c t e d EVs from a s i n g l e consumer i n
each hour

s u b j e c t t o H o u s e h o l d C a p a c i t y {h i n Household , k i n Hours
} :

sum { j i n EVHousehold [ h ]} S c h e d u l e [ j , k ] <= 0 . 2 5∗ (
DemandHousehold [ h ] ) ;

# R e s t r i c t i n g t h e c o n n e c t e d EVs from a consumer c l u s t e r
s u b j e c t t o C l u s t e r C a p a c i t y {c i n C l u s t e r , k i n Hours } :
sum {h i n C l u s t e r H o u s e [ c ] , j i n EVHousehold [ h ]} S c h e d u l e [

j , k ] <= 0 . 2 ∗ ( sum {h i n C l u s t e r H o u s e [ c ]} DemandHousehold
[ h ] ) ;
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Appendix C

Wind Power Generation Forecasting

l i b r a r y ( f o r e c a s t )
l i b r a r y ( d p l y r )
l i b r a r y ( x t s )
l i b r a r y ( g g p l o t 2 )
l i b r a r y ( XLConnect )
l i b r a r y ( t s e r i e s )
l i b r a r y ( s e a s o n a l )
l i b r a r y ( f i t d i s t r p l u s )
l i b r a r y ( l u b r i d a t e )

# dev . o f f ( ) # To c l e a r a l l t h e p r e v i o u s graphs

# se twd (”E : /UND/ OneDrive /UND / Research / Data /MN/ 2010”)

setwd ( ”C : / Users / EE User / OneDrive /UND/ R e s e a r c h / Data /MN/
2010 ” )

d a t a s e t <− read . csv ( ”MNWind2010 . csv ” )
head ( d a t a s e t )
d a t a s e t $ DateTime <− as . POSIXct ( d a t a s e t $ DateTime , format=

”%m/%d /%y %H:%M” )
head ( d a t a s e t )
t a i l ( d a t a s e t )
# Arima Hybr id methods

l i b r a r y ( r a n d o m F o r e s t )
l i b r a r y ( k e r n l a b )
l i b r a r y ( mgcv )
c o u n t e r =0
Date t o t a l = data . frame ( )
R e s u l t t o t a l = data . frame ( )
f o r ( n i n 0 : 1 8 ) {

# n <− 11
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c o u n t e r = c o u n t e r + 1
# # T r a i n i n g d a t a s e t

Date1 <− as . POSIXct ( ” 01 / 30 / 10 0 : 0 ” , format=”%m/%d /%y %H
:%M” )

Date2 <− as . POSIXct ( ” 02 / 27 / 10 23 :55 ” , format=”%m/%d /%y
%H:%M” )

Date3 <− as . POSIXct ( ” 02 / 28 / 10 0 : 0 ” , format=”%m/%d /%y %H
:%M” )

Date4 <− as . POSIXct ( ” 02 / 28 / 10 5 :55 ” , format=”%m/%d /%y %
H:%M” )

Date1 <− Date1+n∗ h o u r s ( 1 )
Date2 <− Date2+n∗ h o u r s ( 1 )
Date3 <− Date3+n∗ h o u r s ( 1 )
Date4 <− Date4+n∗ h o u r s ( 1 )
p a s t s e t <− s u b s e t ( d a t a s e t , d a t a s e t $ DateTime >= Date1 and

d a t a s e t $ DateTime <= Date2 )
p r i n t ( head ( p a s t s e t ) )
p r i n t ( t a i l ( p a s t s e t ) )
nrow ( p a s t s e t )
f o r e c a s t s e t <− s u b s e t ( d a t a s e t , d a t a s e t $ DateTime >=

Date3 and d a t a s e t $ DateTime <= Date4 )
p r i n t ( head ( f o r e c a s t s e t ) )
p r i n t ( t a i l ( f o r e c a s t s e t ) )
nrow ( f o r e c a s t s e t )
DateTime <− p a s t s e t $ DateTime
Yts <− as . x t s ( p a s t s e t $power , order . by = DateTime ,

frequency = 288)
YtsPower . 1 <− as . x t s ( p a s t s e t $power . 1 , order . by =

DateTime , frequency = 288)
Y t s D i r e c t i o n . 1 <− as . x t s ( p a s t s e t $ d i r e c t i o n . 1 , order . by

= DateTime , frequency = 288)
YtsSpeed . 1 <− as . x t s ( p a s t s e t $ speed . 1 , order . by =

DateTime , frequency = 288)
Y t s T e m p e r a t u r e . 1 <− as . x t s ( p a s t s e t $ t e m p e r a t u r e . 1 , order

. by = DateTime , frequency = 288)
Y t s P r e s s u r e . 1 <− as . x t s ( p a s t s e t $ p r e s s u r e . 1 , order . by =

DateTime , frequency = 288)
Y t s D e n s i t y . 1 <− as . x t s ( p a s t s e t $ d e n s i t y . 1 , order . by =

DateTime , frequency = 288)
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Xreg <− cbind ( YtsPower . 1 , Y t s D i r e c t i o n . 1 , YtsSpeed . 1 ,
Y t s T e m p e r a t u r e . 1 , Y t s P r e s s u r e . 1 , Y t s D e n s i t y . 1 )

DateTime <− f o r e c a s t s e t $ DateTime
YtsPower <− as . x t s ( f o r e c a s t s e t $power , order . by =

DateTime , frequency = 288)
YtsPower . 1 <− as . x t s ( f o r e c a s t s e t $power . 1 , order . by =

DateTime , frequency = 288)
Y t s D i r e c t i o n . 1 <− as . x t s ( f o r e c a s t s e t $ d i r e c t i o n . 1 , order

. by = DateTime , frequency = 288)
YtsSpeed . 1 <− as . x t s ( f o r e c a s t s e t $ speed . 1 , order . by =

DateTime , frequency = 288)
Y t s T e m p e r a t u r e . 1 <− as . x t s ( f o r e c a s t s e t $ t e m p e r a t u r e . 1 ,

order . by = DateTime , frequency = 288)
Y t s P r e s s u r e . 1 <− as . x t s ( f o r e c a s t s e t $ p r e s s u r e . 1 , order .

by = DateTime , frequency = 288)
Y t s D e n s i t y . 1 <− as . x t s ( f o r e c a s t s e t $ d e n s i t y . 1 , order . by

= DateTime , frequency = 288)
Zreg <− cbind ( YtsPower . 1 , Y t s D i r e c t i o n . 1 , YtsSpeed . 1 ,

Y t s T e m p e r a t u r e . 1 , Y t s P r e s s u r e . 1 , Y t s D e n s i t y . 1 )
# f i t <− au to . arima ( Yt s , x r eg = Xreg , s e a s o n a l = FALSE ,

s t e p w i s e = FALSE , a p p r o x i m a t i o n = FALSE )

f i t <− a u t o . a r ima ( Yts , x r eg = Xreg )
I n i t i a l i z e d M o d e l<− Arima ( Yts , order= a r i m a o r d e r ( f i t ) , x r eg

=Xreg )
P r e d i c t i o n <− f o r e c a s t ( I n i t i a l i z e d M o d e l , h=72 , x reg =Zreg

)
a c c u r a c y <− a c c u r a c y ( P r e d i c t i o n $mean , f o r e c a s t s e t $power

)
p r i n t ( a c c u r a c y )
mape=mean ( abs ( f o r e c a s t s e t $power − P r e d i c t i o n $mean ) /

f o r e c a s t s e t $power ) ∗100
p r i n t ( mape )
RMSE0 <− a c c u r a c y [ , 2 ]
MAPE0 <− a c c u r a c y [ , 5 ]
r e s <− I n i t i a l i z e d M o d e l $ r e s i d u a l s
p r i n t ( a r i m a o r d e r ( f i t ) )
# c h e c k r e s i d u a l s ( r e s )

# a u t o p l o t ( I n i t i a l i z e d M o d e l )

# p r i n t ( Box . t e s t ( res , t y p e = ”Ljung−Box ”) )
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r e s i d u a l s . t s <− as . numeric ( r e s )
r e s i d u a l . data <− cbind ( p a s t s e t , r e s i d u a l s . t s )
a t t a c h ( f o r e c a s t s e t )

# Hybr id Arima−SVM

svm . model <− ksvm ( r e s i d u a l s . t s ˜ power . 1+ d i r e c t i o n .1+
speed .1+ t e m p e r a t u r e .1+ p r e s s u r e .1+ d e n s i t y . 1 , data =
r e s i d u a l . data , k e r n e l = ” r b f d o t ” )

svm . p red <− p r e d i c t ( svm . model , newdata =data . frame (
power . 1 , d i r e c t i o n . 1 , speed . 1 , t e m p e r a t u r e . 1 , p r e s s u r e . 1 ,
d e n s i t y . 1 , data= f o r e c a s t s e t ) )

wind . f o r e c a s t 2 <− P r e d i c t i o n $mean + svm . p red
a c c u r a c y 2 <− a c c u r a c y ( t s ( wind . f o r e c a s t 2 ) , f o r e c a s t s e t $

power )
p r i n t ( a c c u r a c y 2 )
mape2=mean ( abs ( wind . f o r e c a s t 2 − f o r e c a s t s e t $power ) /

f o r e c a s t s e t $power ) ∗100
p r i n t ( mape2 )
RMSE2 <− a c c u r a c y 2 [ , 2 ]
MAPE2 <− a c c u r a c y 2 [ , 5 ]

# Hybr id Arima−RF

r f . model <− r a n d o m F o r e s t ( r e s i d u a l s . t s ˜ power . 1+
d i r e c t i o n .1+ speed .1+ t e m p e r a t u r e .1+ p r e s s u r e .1+ d e n s i t y
. 1 , data = r e s i d u a l . data , i m p o r t a n c e = TRUE, n t r e e
=500 , mtry = 2)

r f . p r ed <− p r e d i c t ( r f . model , newdata =data . frame ( power
. 1 , d i r e c t i o n . 1 , speed . 1 , t e m p e r a t u r e . 1 , p r e s s u r e . 1 ,
d e n s i t y . 1 , data= f o r e c a s t s e t ) )

wind . f o r e c a s t 3 <− P r e d i c t i o n $mean + r f . p r ed
a c c u r a c y 3 <− a c c u r a c y ( t s ( wind . f o r e c a s t 3 ) , f o r e c a s t s e t $

power )
p r i n t ( a c c u r a c y 3 )
mape3=mean ( abs ( wind . f o r e c a s t 3 − f o r e c a s t s e t $power ) /

f o r e c a s t s e t $power ) ∗100
p r i n t ( mape3 )
RMSE3 <− a c c u r a c y 3 [ , 2 ]
MAPE3 <− a c c u r a c y 3 [ , 5 ]
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# Hybr id Arima−GAM

gam . model <− gam ( r e s i d u a l s . t s ˜ s ( power . 1 ) +s ( d i r e c t i o n
. 1 ) +s ( speed . 1 ) +s ( t e m p e r a t u r e . 1 ) +s ( p r e s s u r e . 1 ) +s (
d e n s i t y . 1 ) , data = r e s i d u a l . data )

gam . p red <− p r e d i c t ( gam . model , newdata =data . frame (
power . 1 , d i r e c t i o n . 1 , speed . 1 , t e m p e r a t u r e . 1 , p r e s s u r e . 1 ,
d e n s i t y . 1 , data= f o r e c a s t s e t ) )

wind . f o r e c a s t 4 <− P r e d i c t i o n $mean + gam . p red
a c c u r a c y 4 <− a c c u r a c y ( t s ( wind . f o r e c a s t 4 ) , f o r e c a s t s e t $

power )
p r i n t ( a c c u r a c y 4 )
mape4=mean ( abs ( wind . f o r e c a s t 4 − f o r e c a s t s e t $power ) /

f o r e c a s t s e t $power ) ∗100
p r i n t ( mape4 )
RMSE4 <− a c c u r a c y 4 [ , 2 ]
MAPE4 <− a c c u r a c y 4 [ , 5 ]

# Hybr id Arima−GLM

glm . model <− glm ( r e s i d u a l s . t s ˜ power . 1+ d i r e c t i o n .1+
speed .1+ t e m p e r a t u r e .1+ p r e s s u r e .1+ d e n s i t y . 1 , data =
r e s i d u a l . data )

glm . p r ed <− p r e d i c t ( glm . model , newdata =data . frame (
power . 1 , d i r e c t i o n . 1 , speed . 1 , t e m p e r a t u r e . 1 , p r e s s u r e . 1 ,
d e n s i t y . 1 , data= f o r e c a s t s e t ) )

wind . f o r e c a s t 5 <− P r e d i c t i o n $mean + glm . p r ed
a c c u r a c y 5 <− a c c u r a c y ( t s ( wind . f o r e c a s t 5 ) , f o r e c a s t s e t $

power )
p r i n t ( a c c u r a c y 5 )
mape5=mean ( abs ( wind . f o r e c a s t 5 − f o r e c a s t s e t $power ) /

f o r e c a s t s e t $power ) ∗100
p r i n t ( mape5 )
RMSE5 <− a c c u r a c y 5 [ , 2 ]
MAPE5 <− a c c u r a c y 5 [ , 5 ]
detach ( f o r e c a s t s e t )
R e s u l t T a b l e <− data . frame ( c o u n t e r , Date3 , RMSE0, MAPE0,

RMSE2, MAPE2, RMSE3, MAPE3, RMSE4, MAPE4, RMSE5, MAPE5)
R e s u l t t o t a l <− rbind ( R e s u l t t o t a l , R e s u l t T a b l e )

}
R e s u l t t o t a l
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w r i t e W o r k s h e e t T o F i l e ( ”C : / Users / EE User / OneDrive /UND/
R e s e a r c h / Data /MN/ 2010 / R e s u l t /
A r i m a H y b r i d P r e d i c t i o n s R e s u l t . x l s x ” , R e s u l t t o t a l , s h e e t
= ” Feb ” )

# GLM F o r e c a s t i n g

c o u n t e r =0
Date t o t a l = data . frame ( )
R e s u l t t o t a l = data . frame ( )
f o r ( n i n 0 : 1 8 ) {

# n <− 0

c o u n t e r = c o u n t e r + 1
# # T r a i n i n g d a t a s e t

Date1 <− as . POSIXct ( ” 01 / 30 / 10 0 : 0 ” , format=”%m/%d /%y %H
:%M” )

Date2 <− as . POSIXct ( ” 02 / 27 / 10 23 :55 ” , format=”%m/%d /%y
%H:%M” )

Date3 <− as . POSIXct ( ” 02 / 28 / 10 0 : 0 ” , format=”%m/%d /%y %H
:%M” )

Date4 <− as . POSIXct ( ” 02 / 28 / 10 5 :55 ” , format=”%m/%d /%y %
H:%M” )

Date1 <− Date1+n∗ h o u r s ( 1 )
Date2 <− Date2+n∗ h o u r s ( 1 )
Date3 <− Date3+n∗ h o u r s ( 1 )
Date4 <− Date4+n∗ h o u r s ( 1 )
p a s t s e t <− s u b s e t ( d a t a s e t , d a t a s e t $ DateTime >= Date1 and

d a t a s e t $ DateTime <= Date2 )
p r i n t ( head ( p a s t s e t ) )
p r i n t ( t a i l ( p a s t s e t ) )
nrow ( p a s t s e t )
f o r e c a s t s e t <− s u b s e t ( d a t a s e t , d a t a s e t $ DateTime >=

Date3 and d a t a s e t $ DateTime <= Date4 )
p r i n t ( head ( f o r e c a s t s e t ) )
p r i n t ( t a i l ( f o r e c a s t s e t ) )
nrow ( f o r e c a s t s e t )
DateTime <− p a s t s e t $ DateTime
a t t a c h ( f o r e c a s t s e t )
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glm . model <− glm ( power ˜ power . 1+ d i r e c t i o n .1+ speed .1+
t e m p e r a t u r e .1+ p r e s s u r e .1+ d e n s i t y . 1 , data = p a s t s e t )

# p r i n t ( summary ( glm . model ) )

glm . p r ed <− p r e d i c t ( glm . model , newdata =data . frame (
power . 1 , d i r e c t i o n . 1 , speed . 1 , t e m p e r a t u r e . 1 , p r e s s u r e . 1 ,
d e n s i t y . 1 , data= f o r e c a s t s e t ) )

a c c u r a c y <− a c c u r a c y ( glm . pred , f o r e c a s t s e t $power )
p r i n t ( a c c u r a c y )
mape=mean ( abs ( glm . p r ed − f o r e c a s t s e t $power ) / f o r e c a s t s e t

$power ) ∗100
p r i n t ( mape )
RMSE0 <− a c c u r a c y [ , 2 ]
MAPE0 <− a c c u r a c y [ , 5 ]

r e s <− glm . model$ r e s i d u a l s
r e s i d u a l s . t s <− as . numeric ( r e s )
r e s i d u a l . data <− cbind ( p a s t s e t , r e s i d u a l s . t s )

# Hybr id GLM−SVM

svm . model <− ksvm ( r e s i d u a l s . t s ˜ power . 1+ d i r e c t i o n .1+
speed .1+ t e m p e r a t u r e .1+ p r e s s u r e .1+ d e n s i t y . 1 , data =
r e s i d u a l . data , k e r n e l = ” r b f d o t ” )

svm . p red <− p r e d i c t ( svm . model , newdata =data . frame (
power . 1 , d i r e c t i o n . 1 , speed . 1 , t e m p e r a t u r e . 1 , p r e s s u r e
. 1 , d e n s i t y . 1 , data= f o r e c a s t s e t ) )

wind . f o r e c a s t 2 <− glm . p r ed + svm . p red
a c c u r a c y 2 <− a c c u r a c y ( t s ( wind . f o r e c a s t 2 ) , f o r e c a s t s e t

$power )
p r i n t ( a c c u r a c y 2 )
mape2=mean ( abs ( wind . f o r e c a s t 2 − f o r e c a s t s e t $power ) /

f o r e c a s t s e t $power ) ∗100
p r i n t ( mape2 )
RMSE2 <− a c c u r a c y 2 [ , 2 ]
MAPE2 <− a c c u r a c y 2 [ , 5 ]

# Hybr id GLM−RF

r f . model <− r a n d o m F o r e s t ( r e s i d u a l s . t s ˜ power . 1+
d i r e c t i o n .1+ speed .1+ t e m p e r a t u r e .1+ p r e s s u r e .1+
d e n s i t y . 1 , data = r e s i d u a l . data , i m p o r t a n c e = TRUE,
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n t r e e =500 , mtry = 2)
r f . p r ed <− p r e d i c t ( r f . model , newdata =data . frame (

power . 1 , d i r e c t i o n . 1 , speed . 1 , t e m p e r a t u r e . 1 , p r e s s u r e
. 1 , d e n s i t y . 1 , data= f o r e c a s t s e t ) )

wind . f o r e c a s t 3 <− glm . p r ed + r f . p r ed
a c c u r a c y 3 <− a c c u r a c y ( t s ( wind . f o r e c a s t 3 ) , f o r e c a s t s e t

$power )
mape3=mean ( abs ( wind . f o r e c a s t 3 − f o r e c a s t s e t $power ) /

f o r e c a s t s e t $power ) ∗100
RMSE3 <− a c c u r a c y 3 [ , 2 ]
MAPE3 <− a c c u r a c y 3 [ , 5 ]
detach ( f o r e c a s t s e t )
R e s u l t T a b l e <− data . frame ( c o u n t e r , Date3 , RMSE0,

MAPE0, RMSE2, MAPE2, RMSE3, MAPE3)
R e s u l t t o t a l <− rbind ( R e s u l t t o t a l , R e s u l t T a b l e )

}
R e s u l t t o t a l
w r i t e W o r k s h e e t T o F i l e ( ”C : / Users / EE User / OneDrive /UND/

R e s e a r c h / Data /MN/ 2010 / R e s u l t / GLMHybridResult . x l s x ” ,
R e s u l t t o t a l , s h e e t = ” Feb ” )

# GLM Hybrid method F o r e c a s t i n g

c o u n t e r =0
Date t o t a l = data . frame ( )
R e s u l t t o t a l = data . frame ( )
f o r ( n i n 0 : 1 8 ) {

# n <− 0

c o u n t e r = c o u n t e r + 1
# # T r a i n i n g d a t a s e t

Date1 <− as . POSIXct ( ” 01 / 30 / 10 0 : 0 ” , format=”%m/%d /%y %H
:%M” )

Date2 <− as . POSIXct ( ” 02 / 27 / 10 23 :55 ” , format=”%m/%d /%y
%H:%M” )

# F o r e c a s t day January 3 s t 1−6 hours ( Wi n t e r )

Date3 <− as . POSIXct ( ” 02 / 28 / 10 0 : 0 ” , format=”%m/%d /%y %H
:%M” )

Date4 <− as . POSIXct ( ” 02 / 28 / 10 5 :55 ” , format=”%m/%d /%y %
H:%M” )
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Date1 <− Date1+n∗ h o u r s ( 1 )
Date2 <− Date2+n∗ h o u r s ( 1 )
Date3 <− Date3+n∗ h o u r s ( 1 )
Date4 <− Date4+n∗ h o u r s ( 1 )
p a s t s e t <− s u b s e t ( d a t a s e t , d a t a s e t $ DateTime >= Date1 and

d a t a s e t $ DateTime <= Date2 )
f o r e c a s t s e t <− s u b s e t ( d a t a s e t , d a t a s e t $ DateTime >=

Date3 and d a t a s e t $ DateTime <= Date4 )
DateTime <− p a s t s e t $ DateTime
a t t a c h ( f o r e c a s t s e t )
glm . model <− glm ( power ˜ power . 1+ d i r e c t i o n .1+ speed .1+

t e m p e r a t u r e .1+ p r e s s u r e .1+ d e n s i t y . 1 , data = p a s t s e t )
# p r i n t ( summary ( glm . model ) )

glm . p r ed <− p r e d i c t ( glm . model , newdata =data . frame (
power . 1 , d i r e c t i o n . 1 , speed . 1 , t e m p e r a t u r e . 1 , p r e s s u r e . 1 ,
d e n s i t y . 1 , data= f o r e c a s t s e t ) )

a c c u r a c y <− a c c u r a c y ( glm . pred , f o r e c a s t s e t $power )
p r i n t ( a c c u r a c y )
mape=mean ( abs ( glm . p r ed − f o r e c a s t s e t $power ) / f o r e c a s t s e t

$power ) ∗100
p r i n t ( mape )
RMSE0 <− a c c u r a c y [ , 2 ]
MAPE0 <− a c c u r a c y [ , 5 ]
r e s <− glm . model$ r e s i d u a l s
r e s i d u a l s . t s <− as . numeric ( r e s )
r e s i d u a l . data <− cbind ( p a s t s e t , r e s i d u a l s . t s )

# Hybr id GLM−SVM

svm . model <− ksvm ( r e s i d u a l s . t s ˜ power . 1+ d i r e c t i o n .1+
speed .1+ t e m p e r a t u r e .1+ p r e s s u r e .1+ d e n s i t y . 1 , data =
r e s i d u a l . data , k e r n e l = ” r b f d o t ” )

svm . p red <− p r e d i c t ( svm . model , newdata =data . frame (
power . 1 , d i r e c t i o n . 1 , speed . 1 , t e m p e r a t u r e . 1 , p r e s s u r e . 1 ,
d e n s i t y . 1 , data= f o r e c a s t s e t ) )

wind . f o r e c a s t 2 <− glm . p r ed + svm . p red
a c c u r a c y 2 <− a c c u r a c y ( t s ( wind . f o r e c a s t 2 ) , f o r e c a s t s e t $

power )
p r i n t ( a c c u r a c y 2 )
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mape2=mean ( abs ( wind . f o r e c a s t 2 − f o r e c a s t s e t $power ) /
f o r e c a s t s e t $power ) ∗100

p r i n t ( mape2 )
RMSE2 <− a c c u r a c y 2 [ , 2 ]
MAPE2 <− a c c u r a c y 2 [ , 5 ]

# Hybr id GLM−RF

r f . model <− r a n d o m F o r e s t ( r e s i d u a l s . t s ˜ power . 1+
d i r e c t i o n .1+ speed .1+ t e m p e r a t u r e .1+ p r e s s u r e .1+ d e n s i t y
. 1 , data = r e s i d u a l . data , i m p o r t a n c e = TRUE, n t r e e
=500 , mtry = 2)

r f . p r ed <− p r e d i c t ( r f . model , newdata =data . frame ( power
. 1 , d i r e c t i o n . 1 , speed . 1 , t e m p e r a t u r e . 1 , p r e s s u r e . 1 ,
d e n s i t y . 1 , data= f o r e c a s t s e t ) )

wind . f o r e c a s t 3 <− glm . p r ed + r f . p r ed
a c c u r a c y 3 <− a c c u r a c y ( t s ( wind . f o r e c a s t 3 ) , f o r e c a s t s e t $

power )
p r i n t ( a c c u r a c y 3 )
mape3=mean ( abs ( wind . f o r e c a s t 3 − f o r e c a s t s e t $power ) /

f o r e c a s t s e t $power ) ∗100
p r i n t ( mape3 )
RMSE3 <− a c c u r a c y 3 [ , 2 ]
MAPE3 <− a c c u r a c y 3 [ , 5 ]
detach ( f o r e c a s t s e t )
R e s u l t T a b l e <− data . frame ( c o u n t e r , Date3 , RMSE0, MAPE0,

RMSE2, MAPE2, RMSE3, MAPE3)
R e s u l t t o t a l <− rbind ( R e s u l t t o t a l , R e s u l t T a b l e )

}
R e s u l t t o t a l
w r i t e W o r k s h e e t T o F i l e ( ”C : / Users / EE User / OneDrive /UND/

R e s e a r c h / Data /MN/ 2010 / R e s u l t / GLMHybridResult . x l s x ” ,
R e s u l t t o t a l , s h e e t = ” Feb ” )
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