535 research outputs found

    Robust Positioning in the Presence of Multipath and NLOS GNSS Signals

    Get PDF
    GNSS signals can be blocked and reflected by nearby objects, such as buildings, walls, and vehicles. They can also be reflected by the ground and by water. These effects are the dominant source of GNSS positioning errors in dense urban environments, though they can have an impact almost anywhere. Non- line-of-sight (NLOS) reception occurs when the direct path from the transmitter to the receiver is blocked and signals are received only via a reflected path. Multipath interference occurs, as the name suggests, when a signal is received via multiple paths. This can be via the direct path and one or more reflected paths, or it can be via multiple reflected paths. As their error characteristics are different, NLOS and multipath interference typically require different mitigation techniques, though some techniques are applicable to both. Antenna design and advanced receiver signal processing techniques can substantially reduce multipath errors. Unless an antenna array is used, NLOS reception has to be detected using the receiver's ranging and carrier-power-to-noise-density ratio (C/N0) measurements and mitigated within the positioning algorithm. Some NLOS mitigation techniques can also be used to combat severe multipath interference. Multipath interference, but not NLOS reception, can also be mitigated by comparing or combining code and carrier measurements, comparing ranging and C/N0 measurements from signals on different frequencies, and analyzing the time evolution of the ranging and C/N0 measurements

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    GNSS Vulnerabilities and Existing Solutions:A Review of the Literature

    Get PDF
    This literature review paper focuses on existing vulnerabilities associated with global navigation satellite systems (GNSSs). With respect to the civilian/non encrypted GNSSs, they are employed for proving positioning, navigation and timing (PNT) solutions across a wide range of industries. Some of these include electric power grids, stock exchange systems, cellular communications, agriculture, unmanned aerial systems and intelligent transportation systems. In this survey paper, physical degradations, existing threats and solutions adopted in academia and industry are presented. In regards to GNSS threats, jamming and spoofing attacks as well as detection techniques adopted in the literature are surveyed and summarized. Also discussed are multipath propagation in GNSS and non line-of-sight (NLoS) detection techniques. The review also identifies and discusses open research areas and techniques which can be investigated for the purpose of enhancing the robustness of GNSS

    Intelligent GNSS Positioning using 3D Mapping and Context Detection for Better Accuracy in Dense Urban Environments

    Get PDF
    Conventional GNSS positioning in dense urban areas can exhibit errors of tens of meters due to blockage and reflection of signals by the surrounding buildings. Here, we present a full implementation of the intelligent urban positioning (IUP) 3D-mapping-aided (3DMA) GNSS concept. This combines conventional ranging-based GNSS positioning enhanced by 3D mapping with the GNSS shadow-matching technique. Shadow matching determines position by comparing the measured signal availability with that predicted over a grid of candidate positions using 3D mapping. Thus, IUP uses both pseudo-range and signal-to-noise measurements to determine position. All algorithms incorporate terrain-height aiding and use measurements from a single epoch in time. Two different 3DMA ranging algorithms are presented, one based on least-squares estimation and the other based on computing the likelihoods of a grid of candidate position hypotheses. The likelihood-based ranging algorithm uses the same candidate position hypotheses as shadow matching and makes different assumptions about which signals are direct line-of-sight (LOS) and non-line-of-sight (NLOS) at each candidate position. Two different methods for integrating likelihood-based 3DMA ranging with shadow matching are also compared. In the position-domain approach, separate ranging and shadow-matching position solutions are computed, then averaged using direction-dependent weighting. In the hypothesis-domain approach, the candidate position scores from the ranging and shadow matching algorithms are combined prior to extracting a joint position solution. Test data was recorded using a u-blox EVK M8T consumer-grade GNSS receiver and a HTC Nexus 9 tablet at 28 locations across two districts of London. The City of London is a traditional dense urban environment, while Canary Wharf is a modern environment. The Nexus 9 tablet data was recorded using the Android Nougat GNSS receiver interface and is representative of future smartphones. Best results were obtained using the likelihood-based 3DMA ranging algorithm and hypothesis-based integration with shadow matching. With the u-blox receiver, the single-epoch RMS horizontal (i.e., 2D) error across all sites was 4.0 m, compared to 28.2 m for conventional positioning, a factor of 7.1 improvement. Using the Nexus tablet, the intelligent urban positioning RMS error was 7.0 m, compared to 32.7 m for conventional GNSS positioning, a factor of 4.7 improvement. An analysis of processing and data requirements shows that intelligent urban positioning is practical to implement in real-time on a mobile device or a server. Navigation and positioning is inherently dependent on the context, which comprises both the operating environment and the behaviour of the host vehicle or user. No single technique is capable of providing reliable and accurate positioning in all contexts. In order to operate reliably across different contexts, a multi-sensor navigation system is required to detect its operating context and reconfigure the techniques accordingly. Specifically, 3DMA GNSS should be selected when the user is in a dense urban environment, not indoors or in an open environment. Algorithms for detecting indoor and outdoor context using GNSS measurements and a hidden Markov model are described and demonstrated

    The characterisation and modelling of the wireless propagation channel in small cells scenarios

    Get PDF
    “A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy”.The rapid growth in wireless data traffic in recent years has placed a great strain on the wireless spectrum and the capacity of current wireless networks. In addition, the makeup of the typical wireless propagation environment is rapidly changing as a greater percentage of data traffic moves indoors, where the coverage of radio signals is poor. This dual fronted assault on coverage and capacity has meant that the tradition cellular model is no longer sustainable, as the gains from constructing new macrocells falls short of the increasing cost. The key emerging concept that can solve the aforementioned challenges is smaller base stations such as micro-, pico- and femto-cells collectively known as small cells. However with this solution come new challenges: while small cells are efficient at improving the indoor coverage and capacity; they compound the lack of spectrum even more and cause high levels of interference. Current channel models are not suited to characterise this interference as the small cells propagation environment is vast different. The result is that overall efficiency of the networks suffers. This thesis presents an investigation into the characteristics of the wireless propagation channel in small cell environments, including measurement, analysis, modelling, validation and extraction of channel data. Two comprehensive data collection campaigns were carried out, one of them employed a RUSK channel sounder and featured dual-polarised MIMO antennas. From the first dataset an empirical path loss model, adapted to typical indoor and outdoor scenarios found in small cell environments, was constructed using regression analysis and was validated using the second dataset. The model shows good accuracy for small cell environments and can be implemented in system level simulations quickly without much requirements

    Modeling the Effects of the Local Environment on a Received GNSS Signal

    Get PDF
    There is an ongoing need in the GNSS community for the development of high-fidelity simulators which generate data that replicates what can truly be expected from a challenging environment such as an urban canyon or an indoor environment. The algorithm developed for use in the research in this dissertation, the Signal Decomposition and Parameterization Algorithm (SDPA), is presented in order to respond to this need. This algorithm is designed to decompose a signal received using a GNSS recording and playback system and output parameters that can be used to reconstruct the effects on the signal of the environment local to the receiver at the time of recording. The SDPA itself is presented and compared with what is believed to be the state-of-the-art in GNSS multipath parameterization, a Space Alternating Generalized Expectation Maximization (SAGE) algorithm. The development and characterization of a stopping criteria that can be used to halt the SDPA when parameterization of salient components within a recorded signal has been completed
    • …
    corecore