3,077 research outputs found

    TOUCHLESS: Demonstrations of Contactless Haptics for Affective Touch

    Get PDF
    A set of demonstrators of contactless haptic principles is described in this work. The technologies are based on electrostatic piloerection, chemical compounds and ultrasound. Additionally, applications related to affective touch are presented, ranging from storytelling to biosignal transfer, accompanied with a simple application to edit dynamic tactile patterns in an easy way. The demonstrators are the result of the Touchless project, which is a H2020 european collaborative project that integrates 3 universities and 3 companies. These demostrators are contactless haptic experiences and thus facilitate the come-and-interact paradigm, where users can approach the demo booth and directly experience the applications without having to wear devices, making the experience fast and hygienic

    Aerospace medicine and biology. A continuing bibliography with indexes, supplement 224

    Get PDF
    This bibliography lists 127 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1981

    MindTouch: Effect of Mindfulness Meditation on Mid-Air Tactile Perception

    Get PDF
    As we constantly seek to improve and expand upon the capabilities of technology, we frequently wonder whether we use technology to its fullest extent. Studies indicate that increasing our awareness and mindfulness of our senses may lead to a journey of unexplored experiences. In this paper, we focus on the perception of mid-air haptics stimuli and whether it can be improved through mindfulness meditation. We have conducted an experiment with 22 participants given the task to recognize digits 0 to 9 drawn on their palms using a mid-air haptic device under two conditions - with and without prior mindfulness meditation. Results show that for frequencies targeting both Meissner (40 Hz) and Pacinian (200 Hz) receptors, meditation significantly improves performance of the participants, as well as increases their confidence. This suggests that including a short meditation step in haptic user interfaces could lead to improved system performance and user satisfaction

    HapBead: on-skin microfluidic haptic interface using tunable bead

    Get PDF
    On-skin haptic interfaces using soft elastomers which are thin and flexible have significantly improved in recent years. Many are focused on vibrotactile feedback that requires complicated parameter tuning. Another approach is based on mechanical forces created via piezoelectric devices and other methods for non-vibratory haptic sensations like stretching, twisting. These are often bulky with electronic components and associated drivers are complicated with limited control of timing and precision. This paper proposes HapBead, a new on-skin haptic interface that is capable of rendering vibration like tactile feedback using microfluidics. HapBead leverages a microfluidic channel to precisely and agilely oscillate a small bead via liquid flow, which then generates various motion patterns in channel that creates highly tunable haptic sensations on skin. We developed a proof-of-concept design to implement thin, flexible and easily affordable HapBead platform, and verified its haptic rendering capabilities via attaching it to users’ fingertips. A study was carried out and confirmed that participants could accurately tell six different haptic patterns rendered by HapBead. HapBead enables new wearable display applications with multiple integrated functionalities such as on-skin haptic doodles, mixed reality haptics and visual-haptic displays

    Beyond mobile apps: a survey of technologies for mental well-being

    Get PDF
    Mental health problems are on the rise globally and strain national health systems worldwide. Mental disorders are closely associated with fear of stigma, structural barriers such as financial burden, and lack of available services and resources which often prohibit the delivery of frequent clinical advice and monitoring. Technologies for mental well-being exhibit a range of attractive properties, which facilitate the delivery of state-of-the-art clinical monitoring. This review article provides an overview of traditional techniques followed by their technological alternatives, sensing devices, behaviour changing tools, and feedback interfaces. The challenges presented by these technologies are then discussed with data collection, privacy, and battery life being some of the key issues which need to be carefully considered for the successful deployment of mental health toolkits. Finally, the opportunities this growing research area presents are discussed including the use of portable tangible interfaces combining sensing and feedback technologies. Capitalising on the data these ubiquitous devices can record, state of the art machine learning algorithms can lead to the development of robust clinical decision support tools towards diagnosis and improvement of mental well-being delivery in real-time

    TOUCHLESS: demonstrations of contactless haptics for affective touch

    Get PDF
    A set of demonstrators of contactless haptic principles is described in this work. The technologies are based on electrostatic piloerection, chemical compounds and ultrasound. Additionally, applications related to affective touch are presented, ranging from storytelling to biosignal transfer, accompanied with a simple application to edit dynamic tactile patterns in an easy way. The demonstrators are the result of the Touchless project, which is a H2020 european collaborative project that integrates 3 universities and 3 companies. These demostrators are contactless haptic experiences and thus facilitate the come-and-interact paradigm, where users can approach the demo booth and directly experience the applications without having to wear devices, making the experience fast and hygienic.Funded by EU Horizon 2020 research and innovation programme grant agreement No 101017746 TOUCHLESS

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    A fabric-based approach for wearable haptics

    Get PDF
    In recent years, wearable haptic systems (WHS) have gained increasing attention as a novel and exciting paradigm for human-robot interaction (HRI).These systems can be worn by users, carried around, and integrated in their everyday lives, thus enabling a more natural manner to deliver tactile cues.At the same time, the design of these types of devices presents new issues: the challenge is the correct identification of design guidelines, with the two-fold goal of minimizing system encumbrance and increasing the effectiveness and naturalness of stimulus delivery.Fabrics can represent a viable solution to tackle these issues.They are specifically thought “to be worn”, and could be the key ingredient to develop wearable haptic interfaces conceived for a more natural HRI.In this paper, the author will review some examples of fabric-based WHS that can be applied to different body locations, and elicit different haptic perceptions for different application fields.Perspective and future developments of this approach will be discussed
    • …
    corecore