5,130 research outputs found

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the first six months. The project aim is to scale the Erlang’s radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the effectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    On the tailoring of CAST-32A certification guidance to real COTS multicore architectures

    Get PDF
    The use of Commercial Off-The-Shelf (COTS) multicores in real-time industry is on the rise due to multicores' potential performance increase and energy reduction. Yet, the unpredictable impact on timing of contention in shared hardware resources challenges certification. Furthermore, most safety certification standards target single-core architectures and do not provide explicit guidance for multicore processors. Recently, however, CAST-32A has been presented providing guidance for software planning, development and verification in multicores. In this paper, from a theoretical level, we provide a detailed review of CAST-32A objectives and the difficulty of reaching them under current COTS multicore design trends; at experimental level, we assess the difficulties of the application of CAST-32A to a real multicore processor, the NXP P4080.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal grant RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the rst six months. The project aim is to scale the Erlang's radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the e ectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    Evaluating Cache Coherent Shared Virtual Memory for Heterogeneous Multicore Chips

    Full text link
    The trend in industry is towards heterogeneous multicore processors (HMCs), including chips with CPUs and massively-threaded throughput-oriented processors (MTTOPs) such as GPUs. Although current homogeneous chips tightly couple the cores with cache-coherent shared virtual memory (CCSVM), this is not the communication paradigm used by any current HMC. In this paper, we present a CCSVM design for a CPU/MTTOP chip, as well as an extension of the pthreads programming model, called xthreads, for programming this HMC. Our goal is to evaluate the potential performance benefits of tightly coupling heterogeneous cores with CCSVM

    Phase-based tuning for better utilized performance-asymmetric multicores

    Get PDF
    The latest trend towards performance asymmetry among cores on a single chip of a multicore processor is posing new software engineering challenges for developers. A key challenge is that for effective utilization of these performance-asymmetric multicore processors, application threads must be assigned to cores such that the resource needs of a thread closely matches resource availability at the assigned core. Determining this assignment manually is tedious, error prone, and it significantly complicates software development. We contribute a transparent and fully-automatic program analysis, which we call phase-guided tuning, to solve this problem. Phase-guided tuning adapts an application to effectively utilize performance-asymmetric cores of a processor. Our technique does not require any changes in the compiler or operating system, thus it is easy to deploy in existing tool chains. It does not require any input from the programmer except the application. Furthermore, it is independent of the characteristics (performance-asymmetry) of the target multicore processor, which has two benefits. First, it avoids the need to create multiple customizations of the binary for each target architecture, and second it relieves the programmer of the burden of anticipating the target architecture. Last but not least, our technique significantly improves performance. Compared to the stock Linux scheduler, our best technique shows 215% improvement in throughput and 36% average process speedup, while maintaining fairness and with negligible overheads

    Phase-based Tuning for Better Utilized Multicores

    Get PDF
    The latest trend towards performance asymmetry among cores on a single chip of a multicore processor is posing new software engineering challenges for developers. A key challenge is that for effective utilization of these performance-asymmetric multicore processors, code sections of a program must be assigned to cores such that the resource needs of a section closely matches resource availability at the assigned core. Determining this assignment manually is tedious, error prone, and it significantly complicates software development. We contribute a transparent and fully-automatic program analysis, which we call phase-based tuning, to solve this problem. Phase-based tuning adapts an application to effectively utilize performance-asymmetric cores of a processor. Our technique does not require any changes in the compiler or operating system, thus it is easy to deploy in existing tool chains. It does not require any input from the programmer except the application. Furthermore, it is independent of the characteristics (performance-asymmetry) of the target multicore processor, which has two benefits. First, it avoids the need to create multiple customizations of the binary for each target architecture, and second it relieves the programmer of the burden of anticipating the target architecture. Last but not least, our technique significantly improves performance. Compared to the stock Linux scheduler, our best technique shows 36% average process speedup, while maintaining fairness and with negligible overheads

    Photonic integration enabling new multiplexing concepts in optical board-to-board and rack-to-rack interconnects

    Get PDF
    New broadband applications are causing the datacenters to proliferate, raising the bar for higher interconnection speeds. So far, optical board-to-board and rack-to-rack interconnects relied primarily on low-cost commodity optical components assembled in a single package. Although this concept proved successful in the first generations of optical-interconnect modules, scalability is a daunting issue as signaling rates extend beyond 25 Gb/s. In this paper we present our work towards the development of two technology platforms for migration beyond Infiniband enhanced data rate (EDR), introducing new concepts in board-to-board and rack-to-rack interconnects. The first platform is developed in the framework of MIRAGE European project and relies on proven VCSEL technology, exploiting the inherent cost, yield, reliability and power consumption advantages of VCSELs. Wavelength multiplexing, PAM-4 modulation and multi-core fiber (MCF) multiplexing are introduced by combining VCSELs with integrated Si and glass photonics as well as BiCMOS electronics. An in-plane MCF-to-SOI interface is demonstrated, allowing coupling from the MCF cores to 340x400 nm Si waveguides. Development of a low-power VCSEL driver with integrated feed-forward equalizer is reported, allowing PAM-4 modulation of a bandwidth-limited VCSEL beyond 25 Gbaud. The second platform, developed within the frames of the European project PHOXTROT, considers the use of modulation formats of increased complexity in the context of optical interconnects. Powered by the evolution of DSP technology and towards an integration path between inter and intra datacenter traffic, this platform investigates optical interconnection system concepts capable to support 16QAM 40GBd data traffic, exploiting the advancements of silicon and polymer technologies
    • …
    corecore