5 research outputs found

    DREGON: Dataset and Methods for UAV-Embedded Sound Source Localization

    Get PDF
    International audienceThis paper introduces DREGON, a novel publicly-available dataset that aims at pushing research in sound source localization using a microphone array embedded in an unmanned aerial vehicle (UAV). The dataset contains both clean and noisy in-flight audio recordings continuously annotated with the 3D position of the target sound source using an accurate motion capture system. In addition, various signals of interests are available such as the rotational speed of individual rotors and inertial measurements at all time. Besides introducing the dataset, this paper sheds light on the specific properties, challenges and opportunities brought by the emerging task of UAV-embedded sound source localization. Several baseline methods are evaluated and compared on the dataset, with real-time applicability in mind. Very promising results are obtained for the localization of a broad-band source in loud noise conditions, while speech localization remains a challenge under extreme noise levels

    Audio-Motor Integration for Robot Audition

    Get PDF
    International audienceIn the context of robotics, audio signal processing in the wild amounts to dealing with sounds recorded by a system that moves and whose actuators produce noise. This creates additional challenges in sound source localization, signal enhancement and recognition. But the speci-ficity of such platforms also brings interesting opportunities: can information about the robot actuators' states be meaningfully integrated in the audio processing pipeline to improve performance and efficiency? While robot audition grew to become an established field, methods that explicitly use motor-state information as a complementary modality to audio are scarcer. This chapter proposes a unified view of this endeavour, referred to as audio-motor integration. A literature review and two learning-based methods for audio-motor integration in robot audition are presented, with application to single-microphone sound source localization and ego-noise reduction on real data

    Estimation of the Direct-Path Relative Transfer Function for Supervised Sound-Source Localization

    Get PDF
    International audienceThis paper addresses the problem of binaural localization of a single speech source in noisy and reverberant environments. For a given binaural microphone setup, the binaural response corresponding to the direct-path propagation of a single source is a function of the source direction. In practice, this response is contaminated by noise and reverberations. The direct-path relative transfer function (DP-RTF) is defined as the ratio between the direct-path acoustic transfer function of the two channels. We propose a method to estimate the DP-RTF from the noisy and reverberant microphone signals in the short-time Fourier transform domain. First, the convolutive transfer function approximation is adopted to accurately represent the impulse response of the sensors in the STFT domain. Second, the DP-RTF is estimated by using the auto-and cross-power spectral densities at each frequency and over multiple frames. In the presence of stationary noise, an inter-frame spectral subtraction algorithm is proposed, which enables to achieve the estimation of noise-free auto-and cross-power spectral densities. Finally, the estimated DP-RTFs are concatenated across frequencies and used as a feature vector for the localization of speech source. Experiments with both simulated and real data show that the proposed localization method performs well, even under severe adverse acoustic conditions, and outperforms state-of-the-art localization methods under most of the acoustic conditions
    corecore