50,157 research outputs found

    Environment-mediated structure, surface redox activity and reactivity of ceria nanoparticles

    Get PDF
    Nanomaterials, with potential application as bio-medicinal agents, exploit the chemical properties of a solid, with the ability to be transported (like a molecule) to a variety of bodily compartments. However, the chemical environment can change significantly the structure and hence properties of a nanomaterial. Accordingly, its surface reactivity is critically dependent upon the nature of the (biological) environment in which it resides. Here, we use Molecular Dynamics (MD) simulation, Density Functional Theory (DFT) and aberration corrected TEM to predict and rationalise differences in structure and hence surface reactivity of ceria nanoparticles in different environments. In particular we calculate reactivity 'fingerprints' for unreduced and reduced ceria nanoparticles immersed in water and in vacuum. Our simulations predict higher activities of ceria nanoparticles, towards oxygen release, when immersed in water because the water quenches the coordinative unsaturation of surface ions. Conversely, in vacuum, surface ions relax into the body of the nanoparticle to relieve coordinative unsaturation, which increases the energy barriers associated with oxygen release. Our simulations also reveal that reduced ceria nanoparticles are more active towards surface oxygen release compared to unreduced nanoceria. In parallel, experiment is used to explore the activities of ceria nanoparticles that have suffered a change in environment. In particular, we compare the ability of ceria nanoparticles, in an aqueous environment, to scavenge superoxide radicals compared to the same batch of nanoparticles, which have first been dried and then rehydrated. The latter show a distinct reduction in activity, which we correlate to a change in the redox chemistry associated with moving between different environments. The reactivity of ceria nanoparticles is therefore not only environment dependent, but is also influenced by the transport pathway or history required to reach the particular environment in which its reactivity is to be exploited. © 2013 The Royal Society of Chemistry

    The effect of ceria co-doping on chemical stability and fracture toughness of Y-TZP

    Get PDF
    The fracture toughness and ageing resistance of yttria, ceria-stabilized tetragonal zirconia polycrystals (Y, Ce-TZP) were evaluated as a function of grain size and ceria content. Very fine grained, fully dense materials could be produced by sinter forging at relatively low temperatures (1150–1200 °C). The ageing resistance in hot water (185 °C) of 2 mol% Y2O3-stabilized TZP is strongly enhanced by alloying with ceria. The ceria content necessary to avoid degradation completely, decreases with grain size. The toughness of fully dense Y, Ce-TZP is 7–9 MPa m1/2 for grain sizes down to 0.2 mgrm. No or very little transformation took place during fracturing and no clear variation with grain size was observed for the toughness at grain sizes up to 0.8 mgrm. Reversible transformation and crack deflection may explain the observed toughness values

    Tuning branching in ceria nanocrystals

    Get PDF
    Branched nanocrystals (NCs) enable high atomic surface exposure within a crystalline network that provides avenues for charge transport. This combination of properties makes branched NCs particularly suitable for a range of applications where both interaction with the media and charge transport are involved. Herein we report on the colloidal synthesis of branched ceria NCs by means of a ligand-mediated overgrowth mechanism. In particular, the differential coverage of oleic acid as an X-type ligand at ceria facets with different atomic density, atomic coordination deficiency, and oxygen vacancy density resulted in a preferential growth in the [111] direction and thus in the formation of ceria octapods. Alcohols, through an esterification alcoholysis reaction, promoted faster growth rates that translated into nanostructures with higher geometrical complexity, increasing the branch aspect ratio and triggering the formation of side branches. On the other hand, the presence of water resulted in a significant reduction of the growth rate, decreasing the reaction yield and eliminating side branching, which we associate to a blocking of the surface reaction sites or a displacement of the alcoholysis reaction. Overall, adjusting the amounts of each chemical, well-defined branched ceria NCs with tuned number, thickness, and length of branches and with overall size ranging from 5 to 45 nm could be produced. We further demonstrate that such branched ceria NCs are able to provide higher surface areas and related oxygen storage capacities (OSC) than quasi-spherical NCs

    Catalytic coatings on steel for low-temperature propane prereforming to solid oxide fuel cell (SOFC) application

    Get PDF
    Catalyst layers (4–20 lm) of rhodium (1 wt%) supported on alumina, titania, and ceria–zirconia (Ce0.5Zr0.5O2) were coated on stainless-steel corrugated sheets by dip-coating in very stable colloidal dispersions of nanoparticles in water. Catalytic performances were studied for low-temperature (6500 C) steam reforming of propane at a steam to carbon ratio equal to 3 and low contact time (0.01 s). The best catalytic activity for propane steam reforming was observed for titania and ceria–zirconia supports for which propane conversion started at 250 C and was more than three times better at 350 C than conversion measured on alumina catalyst. For all catalysts a first-order kinetics was found with respect to propane at 500 C. Addition of PEG 2000 in titania and ceria–zirconia sols eliminated the film cracking observed without additive with these supports. Besides, the PEG addition strongly expanded the porosity of the layers, so that full catalytic efficiency was maintained when the thickness of the ceria–zirconia and titania films was increased

    Ab initio thermodynamics of intrinsic oxygen vacancies in ceria

    Get PDF
    Nonstoichiometric ceria(CeO2−ή_{2-\delta}) is a candidate reaction medium to facilitate two step water splitting cycles and generate hydrogen. Improving upon its thermodynamic suitability through doping requires an understanding of its vacancy thermodynamics. Using density functional theory(DFT) calculations and a cluster expansion based Monte Carlo simulations, we have studied the high temperature thermodynamics of intrinsic oxygen vacancies in ceria. The DFT+UU approach was used to get the ground state energies of various vacancy configurations in ceria, which were subsequently fit to a cluster expansion Hamiltonian to efficiently model the configurational dependence of energy. The effect of lattice vibrations was incorporated through a temperature dependent cluster expansion. Lattice Monte Carlo simulations using the cluster expansion Hamiltonian were able to detect the miscibility gap in the phase diagram of ceria. The inclusion of vibrational and electronic entropy effects made the agreement with experiments quantitative. The deviation from an ideal solution model was quantified by calculating as a function of nonstoichiometry, a) the solid state entropy from Monte Carlo simulations and b) Warren-Cowley short range order parameters of various pair clusters

    A general framework for Noetherian well ordered polynomial reductions

    Get PDF
    Polynomial reduction is one of the main tools in computational algebra with innumerable applications in many areas, both pure and applied. Since many years both the theory and an efficient design of the related algorithm have been solidly established. This paper presents a general definition of polynomial reduction structure, studies its features and highlights the aspects needed in order to grant and to efficiently test the main properties (noetherianity, confluence, ideal membership). The most significant aspect of this analysis is a negative reappraisal of the role of the notion of term order which is usually considered a central and crucial tool in the theory. In fact, as it was already established in the computer science context in relation with termination of algorithms, most of the properties can be obtained simply considering a well-founded ordering, while the classical requirement that it be preserved by multiplication is irrelevant. The last part of the paper shows how the polynomial basis concepts present in literature are interpreted in our language and their properties are consequences of the general results established in the first part of the paper.Comment: 36 pages. New title and substantial improvements to the presentation according to the comments of the reviewer

    Surface faceting and reconstruction of ceria nanoparticles

    Get PDF
    The surface atomic arrangement of metal oxides determines their physical and chemical properties, and the ability to control and optimize structural parameters is of crucial importance for many applications, in particular in heterogeneous catalysis and photocatalysis. Whereas the structures of macroscopic single crystals can be determined with established methods, for nanoparticles (NPs), this is a challenging task. Herein, we describe the use of CO as a probe molecule to determine the structure of the surfaces exposed by rod-shaped ceria NPs. After calibrating the CO stretching frequencies using results obtained for different ceria single-crystal surfaces, we found that the rod-shaped NPs actually restructure and expose {111} nanofacets. This finding has important consequences for understanding the controversial surface chemistry of these catalytically highly active ceria NPs and paves the way for the predictive, rational design of catalytic materials at the nanoscale.Postprint (author's final draft
    • 

    corecore