18 research outputs found

    Consensus Paper: The Role of the Cerebellum in Perceptual Processes

    Get PDF
    Various lines of evidence accumulated over the past 30 years indicate that the cerebellum, long recognized as essential for motor control, also has considerable influence on perceptual processes. In this paper, we bring together experts from psychology and neuroscience, with the aim of providing a succinct but comprehensive overview of key findings related to the involvement of the cerebellum in sensory perception. The contributions cover such topics as anatomical and functional connectivity, evolutionary and comparative perspectives, visual and auditory processing, biological motion perception, nociception, self-motion, timing, predictive processing, and perceptual sequencing. While no single explanation has yet emerged concerning the role of the cerebellum in perceptual processes, this consensus paper summarizes the impressive empirical evidence on this problem and highlights diversities as well as commonalities between existing hypotheses. In addition to work with healthy individuals and patients with cerebellar disorders, it is also apparent that several neurological conditions in which perceptual disturbances occur, including autism and schizophrenia, are associated with cerebellar pathology. A better understanding of the involvement of the cerebellum in perceptual processes will thus likely be important for identifying and treating perceptual deficits that may at present go unnoticed and untreated. This paper provides a useful framework for further debate and empirical investigations into the influence of the cerebellum on sensory perception

    Consensus Paper: The Role of the Cerebellum in Perceptual Processes

    Full text link

    The involvement of the fronto-parietal brain network in oculomotor sequence learning using fMRI.

    Get PDF
    The basis of motor learning involves decomposing complete actions into a series of predictive individual components that form the whole. The present fMRI study investigated the areas of the human brain important for oculomotor short-term learning, by using a novel sequence learning paradigm that is equivalent in visual and temporal properties for both saccades and pursuit, enabling more direct comparisons between the oculomotor subsystems. In contrast with previous studies that have implemented a series of discrete ramps to observe predictive behaviour as evidence for learning, we presented a continuous sequence of interlinked components that better represents sequences of actions. We implemented both a classic univariate fMRI analysis, followed by a further multivariate pattern analysis (MVPA) within a priori regions of interest, to investigate oculomotor sequence learning in the brain and to determine whether these mechanisms overlap in pursuit and saccades as part of a higher order learning network. This study has uniquely identified an equivalent frontal-parietal network (dorsolateral prefrontal cortex, frontal eye fields and posterior parietal cortex) in both saccades and pursuit sequence learning. In addition, this is the first study to investigate oculomotor sequence learning during fMRI brain imaging, and makes significant contributions to understanding the role of the dorsal networks in motor learning

    Cognitive and anatomical correlates of neglect for peripersonal and extrapersonal space

    Get PDF
    Spatial neglect is a neurological disorder where patients typically fail to orient or respond to events on their left side. Moreover, recent studies suggest that the severity of neglect may depend specifically on whether stimuli are presented within or beyond arm's reach. However, the evidence for such a general functional dissociation between near and far space processing in the brain remains conflicting: The majority of research has been focussed on line bisection errors which reflect only one small aspect of neglect behaviour. In addition, some behavioural findings suggest a functional dissociation only if a motor response is required. Finally, to date, the critical areas involved in distance related space processing have not been identified.Thus, it remains not only unclear whether neglect in near and far space is a task- and response independent phenomenon but also which damaged brain areas impair distance related space processing. In order to answer these questions the present study compared line bisection and visual search performance and its anatomical correlates in near and far space by using a combined single case- and group study approach.The results showed that neglect restricted to near or far space can vary not only depending on the type of task but also on the type of response required. Visual search tasks were particularly sensitive in detecting the dissociation between those two space sectors. Anatomically, neglect for near space was mainly associated with occipito-parietal lesions and medio-temporal structures, including the posterior cingulate. Neglect for far space was found to result from focal damage of medial, ventro-temporal structures and the prefrontal cortex. In conclusion, neglect for near and far space does not seem to result from a general impairment in distance related processing but from a combination of factors related to specific task demands as well as the location and extent of the brain damage

    Linking brain and behaviour in motor sequence learning tasks

    Get PDF
    Sequence learning is a fundamental brain function that allows for the acquisition of a wide range of skills. Unlearned movements become faster and more accurate with repetition, due to a process called prediction. Predictive behaviour observed in the eye and hand compensates for the inherent temporal delays in the sensorimotor system and allows for the generation of motor actions prior to visual guidance. We investigated predictive behaviour and the brain areas associated with this processing in (i) the oculomotor system (Eye Only (EO): saccade vs. pursuit) and (ii) during eye and hand coordination (EH). Participants were asked to track a continuous moving target in predictable or random sequence conditions. EO and EH experiments were divided into 1) EO behavioural and 2) EO fMRI findings, and 3) EH behavioural and 4) EH fMRI findings. Results provide new insights into how individuals predict when learning a sequence of target movements, which is not limited to short--‐term memory capacities and that forms a link between shorter and longer--‐term motor skill learning. Furthermore, brain imaging results revealed distinct levels of activation within and between brain areas for repeated and randomized sequences that reflect the distinct timing threshold and adaptation levels needed for the two oculomotor systems. EH results revealed similar predictive behaviour in the eye and the hand, but also demonstrated enhanced coupling between the two motor systems during sequence learning. EH brain imaging findings have provided novel insights into the brain areas involved in coordination, and those areas more associated with sequence learning. Results show evidence of common predictive networks used for the eye and hand during learning

    Programming the cerebellum

    Get PDF
    It is argued that large-scale neural network simulations of cerebellar cortex and nuclei, based on realistic compartmental models of me major cell populations, are necessary before the problem of motor learning in the cerebellum can be solved, [HOUK et al.; SIMPSON et al.
    corecore