582 research outputs found

    Data-Driven Grasp Synthesis - A Survey

    Full text link
    We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.Comment: 20 pages, 30 Figures, submitted to IEEE Transactions on Robotic

    Autonomous task-based grasping for mobile manipulators

    Get PDF
    A fully integrated grasping system for a mobile manipulator to grasp an unknown object of interest (OI) in an unknown environment is presented. The system autonomously scans its environment, models the OI, plans and executes a grasp, while taking into account base pose uncertainty and obstacles in its way to reach the object. Due to inherent line of sight limitations in sensing, a single scan of the OI often does not reveal enough information to complete grasp analysis; as a result, our system autonomously builds a model of an object via multiple scans from different locations until a grasp can be performed. A volumetric next-best-view (NBV) algorithm is used to model an arbitrary object and terminates modelling when grasp poses are discovered on a partially observed object. Two key sets of experiments are presented: i) modelling and registration error in the OI point cloud model is reduced by selecting viewpoints with more scan overlap, and ii) model construction and grasps are successfully achieved while experiencing base pose uncertainty. A generalized algorithm is presented to discover grasp pose solutions for multiple grasp types for a multi-fingered mechanical gripper using sensed point clouds. The algorithm introduces two key ideas: 1) a histogram of finger contact normals is used to represent a grasp “shape” to guide a gripper orientation search in a histogram of object(s) surface normals, and 2) voxel grid representations of gripper and object(s) are cross-correlated to match finger contact points, i.e. grasp “size”, to discover a grasp pose. Constraints, such as collisions with neighbouring objects, are incorporated in the cross-correlation computation. Simulations and preliminary experiments show that 1) grasp poses for three grasp types are found in near real-time, 2) grasp pose solutions are consistent with respect to voxel resolution changes for both partial and complete point cloud scans, 3) a planned grasp pose is executed with a mechanical gripper, and 4) grasp overlap is presented as a feature to identify regions on a partial object model ideal for object transfer or securing an object

    Grasp plannind under task-specific contact constraints

    Get PDF
    Several aspects have to be addressed before realizing the dream of a robotic hand-arm system with human-like capabilities, ranging from the consolidation of a proper mechatronic design, to the development of precise, lightweight sensors and actuators, to the efficient planning and control of the articular forces and motions required for interaction with the environment. This thesis provides solution algorithms for a main problem within the latter aspect, known as the {\em grasp planning} problem: Given a robotic system formed by a multifinger hand attached to an arm, and an object to be grasped, both with a known geometry and location in 3-space, determine how the hand-arm system should be moved without colliding with itself or with the environment, in order to firmly grasp the object in a suitable way. Central to our algorithms is the explicit consideration of a given set of hand-object contact constraints to be satisfied in the final grasp configuration, imposed by the particular manipulation task to be performed with the object. This is a distinguishing feature from other grasp planning algorithms given in the literature, where a means of ensuring precise hand-object contact locations in the resulting grasp is usually not provided. These conventional algorithms are fast, and nicely suited for planning grasps for pick-an-place operations with the object, but not for planning grasps required for a specific manipulation of the object, like those necessary for holding a pen, a pair of scissors, or a jeweler's screwdriver, for instance, when writing, cutting a paper, or turning a screw, respectively. To be able to generate such highly-selective grasps, we assume that a number of surface regions on the hand are to be placed in contact with a number of corresponding regions on the object, and enforce the fulfilment of such constraints on the obtained solutions from the very beginning, in addition to the usual constraints of grasp restrainability, manipulability and collision avoidance. The proposed algorithms can be applied to robotic hands of arbitrary structure, possibly considering compliance in the joints and the contacts if desired, and they can accommodate general patch-patch contact constraints, instead of more restrictive contact types occasionally considered in the literature. It is worth noting, also, that while common force-closure or manipulability indices are used to asses the quality of grasps, no particular assumption is made on the mathematical properties of the quality index to be used, so that any quality criterion can be accommodated in principle. The algorithms have been tested and validated on numerous situations involving real mechanical hands and typical objects, and find applications in classical or emerging contexts like service robotics, telemedicine, space exploration, prosthetics, manipulation in hazardous environments, or human-robot interaction in general

    Modeling and grasping of thin deformable objects

    Get PDF
    Deformable modeling of thin shell-like and other objects have potential application in robot grasping, medical robotics, home robots, and so on. The ability to manipulate electrical and optical cables, rubber toys, plastic bottles, ropes, biological tissues, and organs is an important feature of robot intelligence. However, grasping of deformable objects has remained an underdeveloped research area. When a robot hand applies force to grasp a soft object, deformation will result in the enlarging of the finger contact regions and the rotation of the contact normals, which in turn will result in a changing wrench space. The varying geometry can be determined by either solving a high order differential equation or minimizing potential energy. Efficient and accurate modeling of deformations is crucial for grasp analysis. It helps us predict whether a grasp will be successful from its finger placement and exerted force, and subsequently helps us design a grasping strategy. The first part of this thesis extends the linear and nonlinear shell theories to describe extensional, shearing, and bending strains in terms of geometric invariants including the principal curvatures and vectors, and the related directional and covariant derivatives. To our knowledge, this is the first non-parametric formulation of thin shell strains. A computational procedure for the strain energy is then offered for general parametric shells. In practice, a shell deformation is conveniently represented by a subdivision surface. We compare the results via potential energy minimization over a couple of benchmark problems with their analytical solutions and the results generated by two commercial softwares ABAQUS and ANSYS. Our method achieves a convergence rate an order of magnitude higher. Experimental validation involves regular and freeform shell-like objects (of various materials) grasped by a robot hand, with the results compared against scanned 3-D data (accuracy 0.127mm). Grasped objects often undergo sizable shape changes, for which a much higher modeling accuracy can be achieved using the nonlinear elasticity theory than its linear counterpart. The second part numerically studies two-finger grasping of deformable curve-like objects under frictional contacts. The action is like squeezing. Deformation is modeled by a degenerate version of the thin shell theory. Several differences from rigid body grasping are shown. First, under a squeeze, the friction cone at each finger contact rotates in a direction that depends on the deformable object\u27s global geometry, which implies that modeling is necessary for grasp prediction. Second, the magnitude of the grasping force has to be above certain threshold to achieve equilibrium. Third, the set of feasible finger placements may increase significantly compared to that for a rigid object of the same shape. Finally, the ability to resist disturbance is bounded in the sense that increasing the magnitude of an external force may result in the breaking of the grasp

    Towards a Realistic and Self-Contained Biomechanical Model of the Hand

    Get PDF

    Manipulation of unknown objects to improve the grasp quality using tactile information

    Get PDF
    This work presents a novel and simple approach in the area of manipulation of unknown objects considering both geometric and mechanical constraints of the robotic hand. Starting with an initial blind grasp, our method improves the grasp quality through manipulation considering the three common goals of the manipulation process: improving the hand configuration, the grasp quality and the object positioning, and, at the same time, prevents the object from falling. Tactile feedback is used to obtain local information of the contacts between the fingertips and the object, and no additional exteroceptive feedback sources are considered in the approach. The main novelty of this work lies in the fact that the grasp optimization is performed on-line as a reactive procedure using the tactile and kinematic information obtained during the manipulation. Experimental results are shown to illustrate the efficiency of the approachPeer ReviewedPostprint (published version

    Multifingered grasping for robotic manipulation

    Get PDF
    Robotic hand increases the adaptability of grasping and manipulating objects with its system.But this added adaptability of grasping convolute the process of grasping the object. The analysis of the grasp is very much complicated and large number of configuration for grasping is to be investigated. Handling of objects with irregular shapes and that of flexible/soft objects by ordinary robot grippers is difficult. It is required that various objects with different shapes or sizes could be grasped and manipulated by one robot hand mechanism for the sake of factory automation and labour saving. Dexterous grippers will be the appropriate solution to such problems. Corresponding to such needs, the present work is towards the design and development of an articulated mechanical hand with five fingers and twenty five degrees-of-freedom having an improved grasp capability. In the work, the distance between the Thumb and Finger and the workspace generated by the hand is calculated so as to know about the size and shape of the object that could be grasped.Further the Force applied by the Fingers and there point of application is also being calculated so as to have a stable force closure grasp. The method introduced in present study reduces the complexity and computational burden of grasp synthesis by examining grasps at the finger level. A detailed study on the force closure grasping capability and quality has been carried out. The workspace of the five fingered hand has been used as the maximum spatial envelope. The problem has been considered with positive grips constructed as non-negative linear combinations of primitive and pure wrenches. The attention has been restricted to systems of wrenches generated by the hand fingers assuming Coulomb friction. In order to validate the algorithm vis-a-vis the designed five fingered dexterous hand, example problems have been solved with multiple sets of contact points on various shaped objects.Since the designed hand is capable of enveloping and grasping an object mechanically, it can be used conveniently and widely in manufacturing automation and for medical rehabilitation purpose. This work presents the kinematic design and the grasping analysis of such a hand
    corecore