
Autonomous Task-Based Grasping

for Mobile Manipulators

by

Michael Hegedus

MASc, University of Regina, 2009

BASc, University of Regina, 2006

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in the

School of Engineering Science

Faculty of Applied Sciences

© Michael Hegedus 2021

SIMON FRASER UNIVERSITY

Spring 2021

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

ii

Declaration of Committee

Name: Michael Hegedus

Degree: Doctor of Philosophy

Title: Autonomous Task-Based Grasping for Mobile
Manipulators

Committee: Chair: Michael Sjoerdsma
Senior Lecturer, Engineering Science

 Kamal Gupta
Co-Supervisor
Professor, Engineering Science

 Mehran Mehrandezh
Co-Supervisor
Professor, Industrial Systems Engineering
University of Regina

 Carlo Menon
Committee Member
Professor, Engineering Science

 Mirza Faisal Beg
Examiner
Professor, Engineering Science

 Hong Zhang
External Examiner
Professor, Computing Science
University of Alberta

iii

Abstract

A fully integrated grasping system for a mobile manipulator to grasp an unknown object

of interest (OI) in an unknown environment is presented. The system autonomously

scans its environment, models the OI, plans and executes a grasp, while taking into

account base pose uncertainty and obstacles in its way to reach the object. Due to

inherent line of sight limitations in sensing, a single scan of the OI often does not reveal

enough information to complete grasp analysis; as a result, our system autonomously

builds a model of an object via multiple scans from different locations until a grasp can

be performed. A volumetric next-best-view (NBV) algorithm is used to model an arbitrary

object and terminates modelling when grasp poses are discovered on a partially

observed object. Two key sets of experiments are presented: i) modelling and

registration error in the OI point cloud model is reduced by selecting viewpoints with

more scan overlap, and ii) model construction and grasps are successfully achieved

while experiencing base pose uncertainty.

A generalized algorithm is presented to discover grasp pose solutions for multiple grasp

types for a multi-fingered mechanical gripper using sensed point clouds. The algorithm

introduces two key ideas: 1) a histogram of finger contact normals is used to represent a

grasp “shape” to guide a gripper orientation search in a histogram of object(s) surface

normals, and 2) voxel grid representations of gripper and object(s) are cross-correlated

to match finger contact points, i.e. grasp “size”, to discover a grasp pose. Constraints,

such as collisions with neighbouring objects, are incorporated in the cross-correlation

computation. Simulations and preliminary experiments show that 1) grasp poses for

three grasp types are found in near real-time, 2) grasp pose solutions are consistent with

respect to voxel resolution changes for both partial and complete point cloud scans, 3) a

planned grasp pose is executed with a mechanical gripper, and 4) grasp overlap is

presented as a feature to identify regions on a partial object model ideal for object

transfer or securing an object.

Keywords: Grasp Planning, Object Modelling, Mobile Manipulators, Next Best View,

Point Cloud Processing, Unknown Environment, Grasping, Mechanical

Grippers, Autonomous Grasping, Robot-to-Human Transfer

iv

Dedication

To my parents (Lois and Darrol) and wife (Farnoush).

v

Acknowledgements

I extend my deepest appreciation and thanks to my senior supervisors, Dr. Kamal Gupta

and Dr. Mehran Mehrandezh. They continuously offered sincere guidance and insightful

advice throughout my PhD studies. Most importantly, they were always available if I had

questions or needed help.

I would like to thank my family and friends for their constant support. I am grateful to my

parents, Lois and Darrol, and wife, Farnoush, for supporting my educational journey and

being beacons of positivity in my life.

To my fellow peers and students in the lab, thank you. I appreciate all advice and

experiences shared about base navigation and tactile sensing throughout the years.

vi

Table of Contents

Declaration of Committee .. ii

Abstract .. iii

Dedication .. iv

Acknowledgements ... v

Table of Contents ... vi

List of Tables .. ix

List of Figures.. x

List of Acronyms .. xii

Nomeclature .. xiii

Chapter 1. Introduction .. 1

1.1. Related Works ... 1

1.1.1. Autonomous Mobile Manipulators .. 1

1.1.2. Object Modelling .. 2

1.1.3. Analytical Grasping Methods ... 4

1.1.4. Geometric Shape based Grasping Methods .. 5

1.1.5. Machine Learning and Heuristic Grasping Methods 5

1.2. Contributions ... 6

1.3. Thesis Overview .. 8

Chapter 2. Autonomous Motion Planning System ... 9

2.1. Problem Statement .. 9

2.2. Mobile Manipulator System ... 9

2.3. Base Pose Uncertainty Problem .. 10

2.4. System Overview ... 10

2.5. System Detailed Approach .. 12

2.5.1. Clear Room State Overview .. 13

2.5.2. Model State Overview .. 13

2.5.3. Pick State Overview... 14

2.5.4. Navigation State Overview... 15

2.6. Definitions and Notations ... 15

2.7. World Octree (𝓦) for Planning and Collision Avoidance 16

2.8. Object Octree (𝓜) for Object Modelling .. 18

2.8.1. Object Octomap-Specific Implementation .. 19

2.9. Base Pose Selection ... 19

2.9.1. Object Modelling Base Poses .. 19

2.9.2. Grasping Base Poses .. 21

2.10. Evaluation from Implementation .. 21

Chapter 3. Integrating NBV Modelling with Grasping .. 23

3.1. Problem Statement .. 23

3.2. Motivation .. 23

vii

3.3. NBV Modelling System Integration .. 24

3.4. NBV Object Modelling with Uncertainty ... 26

3.4.1. NBV Volumetric Representation .. 27

3.4.2. NBV Ranking ... 27

3.5. Registering Partial Scan with Uncertainty .. 30

3.6. Correcting Grasp Pose Uncertainty (Pose Correction) ... 31

3.6.1. Reservoir Sampling to Mitigate Grasp Pose Replanning 32

3.7. Experiments and Results ... 34

3.7.1. Implementation .. 34

3.7.2. Object Reconstruction by Varying Overlap .. 34

Transform Similarity ... 35

Registration Failure .. 36

3.7.3. Complete Object Reconstruction ... 37

3.7.4. Framework Performance ... 41

Chapter 4. Generalizing Grasping for Multiple Grasp Types 43

4.1. Problem Statement .. 43

4.2. Introduction .. 43

4.3. Motivation .. 44

4.4. System Overview ... 45

4.5. Grasp Planning Overview .. 47

4.5.1. Stage 1: Match Grasp Type Shape .. 47

4.5.2. Stage 2: Match Grasp Type Scale ... 48

4.6. Grasp Planning Details .. 48

4.6.1. Stage 1a: Surface Normal Histograms ... 48

4.6.2. Stage 1b: Matching Histograms ... 49

4.6.3. Stage 1c: Ranking Different Orientations ... 49

4.6.4. Stage 2a: Voxel Grid to Match Contacts .. 51

4.6.5. Stage 2b: Verifying Normals and Contacts .. 53

4.6.6. Additional Stages: Task-based Grasping ... 54

4.6.7. Calibrating (or Offsetting) a Gripper Frame for each Grasp Type 55

Heuristically Removing Grasp Poses Passing Through a Table Surface 56

4.7. Experimental Setup ... 58

4.7.1. Implementation .. 58

Hardware Limitations ... 58

4.7.2. Grasp Models and Parameters .. 58

4.8. Experimental Results ... 61

4.8.1. Grasping Algorithm Performance as Parameters Change 62

Experiment 1: Computation Time as Voxel Grid Size, Vres, Increases 62

Experiment 2: Pose Results for Simulated Objects and YCB Model Dataset 63

Experiment 3: Pose Results as Voxel Resolution Changes 66

Experiment 4: Pose Results from Incomplete Information 68

Experiment 5: Visualizing Task-Based Grasp Poses .. 69

4.8.2. Fully Integrated Grasping System Performance ... 72

viii

Experiment 6: Grasp Execution for Real Objects ... 72

Experiment 7: Complete Autonomous Modelling and Grasping Experiments 75

Chapter 5. Conclusions and Future Work .. 81

5.1. Conclusions ... 81

5.2. Future Work ... 82

References ... 83

Appendix A. Using Finger Patches for Grasping .. 90

Grasp Planning Phase with Uncertainty .. 90

Identifying Finger-Sized Contact Patches .. 90

Grasp Analysis for Finger-Sized Patches ... 91

Appendix B. ROS Node Mobile Manipulator Settings ... 92

Base Navigation Costmap Parameters .. 92

DWA Planner Parameters ... 93

World Octomap Server .. 94

Model Octomap Server ... 94

Point Cloud Registration .. 95

ix

List of Tables

Table 2.1: Lidar Sensor Truth Table for World Octree ... 18

Table 3.1: Comparison of GICP3P and GICP6P to Ground Truth. This table is
reprinted with permission from [52]... 35

Table 3.2: Framework Performance Summary. This table is reprinted with
permission from [52] ... 42

Table 4.1: Summary of Gripper Model and Grasping Algorithm Parameters for
Experiments ... 61

Table 4.2: Pose Generation Results for YCB Model Dataset¥ 65

Table 4.3: Experimental Trials to Grasp Objects with Different Grasp Types¥ 74

Table 4.4: Time Taken to Autonomously Model and Grasp an Unknown Object using
any Grasp Type.. 76

Table 4.5: Time Taken to Autonomously Model and Grasp of an Unknown Object
using a Power Grasp .. 76

x

List of Figures

Figure 2.1: Powerbot Sensors & Gripper in a Folded Configuration. 10

Figure 2.2: Three Phase Methodology to Grasp Planning .. 10

Figure 2.3: System State Diagram ... 12

Figure 2.4: Model State Diagram ... 13

Figure 2.5: Pick State Diagram .. 14

Figure 2.6: World Octree “Spatial” Notch Filters ... 16

Figure 2.7: World Octree Obstacle Perception (Before & After Sensors are Enabled)
 ... 17

Figure 2.8: Ray-Cube Intersection Visualization ... 19

Figure 2.9: Object Modelling Base Pose Generation .. 19

Figure 2.10: Grasping Base Pose Generation .. 21

Figure 3.1: Flow Diagram to Integrate Modelling with Grasping. This figure is
reprinted with permission from [52]... 24

Figure 3.2: NBV Frame Generation .. 25

Figure 3.3: Next Best View (NBV) Octree Representation. This figure is reprinted with
permission from [52] ... 27

Figure 3.4: Next Best View (NBV) Ranking Progression .. 29

Figure 3.5: GICP6P Incorporates Surface Normals for Improved Correspondence
Matching .. 30

Figure 3.6: Grasp plan generated for the OI. The manipulator moves the gripper to its
pre-grasp position (a) and a cartesian planner moves the gripper forward
to reach its final grasp pose (b & c) .. 31

Figure 3.7: Transforms for Final Grasp and Base Pose Correction. This figure is
reprinted with permission from [52]... 32

Figure 3.8: GICP3P (left) & GICP6P (middle) merged scans. Offline model (blue) and
GICP3P (pink) / GICP6P (green) point clouds overlayed (right). This figure
is reprinted with permission from [52] ... 36

Figure 3.9: NBV Ranks Before and After a Scan to Reveal Cylindrical Object (ω =
0.5)... 37

Figure 3.10: Mobile Robot Sequence Reconstructing a Tin Can Model, ω = 0.4
(Warmer coloured arrows have the highest ranks) 39

Figure 3.11: Tin Can Model Reconstruction Result, ω = 0.4 39

Figure 3.12: Mobile Robot Sequence Reconstructing Tin Can and Cordless Drill
Models, ω = 0.4 (Warmer coloured arrows have the highest ranks) 40

Figure 3.13: Tin Can and Cordless Drill Model Reconstruction Result, ω = 0.4 41

Figure 3.14: Object Modelling Progress while Avoiding Obstacles. This figure is
reprinted with permission from [52]... 41

Figure 4.1: Grasp Pose Pipeline Overview. .. 45

Figure 4.2: Stage 1 Example for Parallel Jaw to discover Gripper Orientation. 47

Figure 4.3: Stage 2 Example for Parallel Jaw to Discover Gripper Orientation. 48

xi

Figure 4.4: Surface Normal Histogram Data Structure. .. 49

Figure 4.5: Surface Normal Histogram Matching (Bin Resolution = π/7). 49

Figure 4.6: Voxel Grid Model for a 2-Contact Parallel Grip. 51

Figure 4.7: Removing Illogical Grasps when Surface and Contact Normals Mismatch.
Contact location (light green) examples for a Partially Scanned Box
(blue). ... 53

Figure 4.8: Task Selection based on Box Collisions ... 54

Figure 4.9: Shifting a Grasp Frame to tune Grasping ... 55

Figure 4.10: Gripper images for three grasp types (top row), voxel models for the
grasp types (middle row), and implemented voxel representation (bottom
row) .. 59

Figure 4.11: FFT-based Correlation Computation Time ... 62

Figure 4.12: Pose Results for a Simulated Pyramid and Cone† 63

Figure 4.13: Pose Examples from the YCB Dataset† (Vres: 1cm3, ∆αβγ : π/12) 64

Figure 4.14: Experimental Results while Scanning a Tin Can and Hand Drill† 66

Figure 4.15: Autonomous Grasp Examples that avoids Collisions with a Neighbouring
Object .. 67

Figure 4.16: Experimental Grasp Pose Task Rankings†҂ .. 69

Figure 4.17: YCB Grasp Pose Task Rankings†҂ ... 70

Figure 4.18: Executing Different Grasp Types with Pose Uncertainty: Blue (Assumed),
Green (Corrected). ... 73

Figure 4.19: Experimental Results Autonomously Grasping an Unknown Tin Can
Object† ... 76

Figure 4.20: Experimental Results Autonomously Grasping an Unknown Box Object†

 ... 79

Figure 4.21: Experimental Results Autonomously Grasping an Unknown Cone Object†

 ... 80

Figure 4.22: Experimental Results Autonomously Lifting and Holding Objects 80

xii

List of Acronyms

CGAL Computational Geometry Algorithms Library

CoM Center of Mass

CR Composite Rank (for NBV)

DOF Degrees of Freedom

ICP Iterative Closest Point Algorithm

IK Inverse Kinematics

FC Force Closure

FFT Fast Fourier Transform

FFTW Fastest Fourier Transform in the West

GICP Generalized Iterative Closest Point Algorithm

GWS Grasp Wrench Space

ML Machine Learning

MSG Messge

NBV Next Best View

PCA Principle Component Analysis

PC Point Cloud

PCL Point Cloud LIbrary

OI Object of Interest

ROS Robot Operating System

RRT Rapidly-Exploring Random Trees

SDH Schunk Dextrous Hand

SLAM Simultaneous Localization and Mapping

TWS Task Wrench Space

xiii

Nomeclature

{A} Manipulator’s Base Frame (or robot arm)

{B} Mobile Base Frame

{Bm} Mobile Base Frame for object modelling

{Bg} Mobile Base Frame for object grasping

{E} Eye-in-Hand Sensor Frame (i.e. Hokuyo laser scanner)

{G} Grasp / Gripper Frame

{Gf} Final Grasp Frame

{Gp} Pre-Grasp Frame

{O} Bounding Box Frame (surrounding objects)

{W} World Frame

n Normal Vector

p Point Vector (or position)

T Transform (or pose)

R Rotation Matrix (or orientation)

M Point Cloud Model (or image)

S Point Cloud Scan

Hg Grasp Type / Gripper Histogram

Ho Object Histogram

Vg Grasp Type / Gripper Voxel Grid

Vo Object Voxel Grid

i ith value or iteration

org Origin (of a frame, transform, or point)

‘ Prime (symbol) indicates a correction (of a frame, transform, or point)

_min/_max Minimum / Maximum value

1

Chapter 1.

Introduction

Autonomous mobile manipulation will be a central theme in the next generation of

robotics applications. Mobile robots are anticipated to serve critical functions as helpers

in homes, care centers, and varied circumstances where robots interact with humans.

For instance, a survey in the health care industry ranked picking objects off the floor or

shelf as the highest priority for people with disabilities[1]. Object retrieval, holding a tool,

and opening a door are essential tasks examples for self-care and completing activities

of daily living. A mobile robot retrieving medicine (or objects) could reduce the need for

caregivers’ assistance. For this to occur, autonomous systems need to be developed

that combine perception and mapping, navigation, motion planning, and grasp planning.

Our aim is to develop an autonomous system for a mobile robot to safely navigate an

unknown environment, model unknown objects, discover available grasps on these

objects, and execute different grasps depending on the task (i.e. fetch, carry, holding a

tool, etc.) requested.

1.1. Related Works

1.1.1. Autonomous Mobile Manipulators

This research builds from and adds to previous work from the Robotics, Algorithms, an

Motion Planning (RAMP) Lab to autonomously model an unknown object [2] and

navigate to it in an unknown environment [3]. The key difference from [2] is that our

modelling next best view (NBV) algorithm uses scan overlap as a key feature to improve

model reconstruction. Although model reconstruction is performed by [2], merging and

precisely registering scans is not explicitly evaluated; grasping is not involved. In [3], the

object geometry, grasp location, and a grasp plan is known a priori. This presented work

adds a significant capability by autonomously determining grasp poses for unknown

objects by scanning, building a point cloud model, and performing grasp execution.

Industry is investing tremendously to automate an object picking task. For example, the

Amazon Picking Challenge, formerly known as the Amazon Robotics Challenge, was

sponsored yearly until 2018 to pick objects from a shelf and place them into a bin. These

2

challenges promoted suction-based or clasp-base grippers to pick known objects in a

free environment [4]. However, an object dataset and layout of the environment is given

to contestants a priori [4, 5]. A key difference to our work is grasping is completed with

no object or environmental information known a priori. Grasping is accomplished without

a database for multiple grasp types.

Two works present a grasping system for autonomous mobile manipulators, but their

research solely focuses on grasping; issues associated to mobile manipulators, like base

pose uncertainty, collision avoidance, and trajectory planning for the base and

manipulator are not discussed [6, 7]. The grasping system presented in [6] uses stereo

cameras to model an object and created a cost function to discover object surfaces that

specifically fit their parallel jaw gripper. Modelling error was reduced by averaging

surface normal within a voxel [6]. Work from [7] does not model objects; instead, their

grasping system matches shape primitives to observed objects and executes known a

prior grasps defined for each shape primitive. For mobile manipulators, no level of

competence in research integrates autonomous object modelling with object grasping as

a whole system. Work we present autonomously models an object until suitable grasp

poses for multiple grasp types are discovered. Common issues that affect a mobile

manipulators, like safe planning and experiencing base pose uncertainty, are addressed.

Safe planning strategies for the base and manipulator are provided to navigate to scan

viewpoints and final grasp poses outside the system’s dextrous workspace.

1.1.2. Object Modelling

Within the field of data-driven grasping applied to unknown objects, two surveys

published by Bohg et al[8] and Lei et al[9] review grasp approaches in great detail. In

general, grasp strategies are executed in three sequential phases: i) Building an Object

Model (i.e. Object Modelling), ii) Grasp Planning/Analysis, and iii) Grasp Execution[8, 9].

Typically, the object modelling phase does not receive feedback from grasp planning to

continue modelling. Object modelling often assumes enough information is collected for

grasp planning. Grasp strategies are usually demonstrated with fixed base manipulators,

and as a result, key issues are avoided: i) assuming an eye-in-hand sensor, virtually no

base pose uncertainties are associated with the fixed base case; hence, integrating

scans from multiple viewpoints does not encounter problems associated with relatively

large base pose uncertainty in our case, ii) grasping outside the fixed base manipulator’s

3

workspace is not possible, and iii) safe planning (i.e. avoiding obstacles and unexplored

space) is simplified by assuming a region in the manipulator’s workspace is free;

planning is limited to a manipulator’s workspace instead of the much larger environment

of the mobile manipulator.

From a systems point of view, most works within data driven grasping decouples object

modelling from grasp planning. This implicitly treats a grasping task as an open-loop

system that assumes enough features exist in an object model to successfully plan a

grasp. Early examples of grasping an unknown object are demonstrated by Wang et

al[10] and Bone et al[11]. In these works, the modelling phase observes an object at pre-

determined viewing locations to capture a nearly complete model of an object. Object

modelling is not autonomous and scan registration does not consider uncertainty. Spatial

features have been extracted from household objects from a single viewpoint to be

classified into several different object primitives for grasping [7]. Uncertainty is not

addressed since it deals with a single scan, and hence, no scans are merged into a

single model; instead, a complete primitive shape is assumed from a partial model. A

gripper’s pre-grasp shape (or end effector configuration) is used to fit a gripper along the

surface of a partially complete point cloud[12, 13]. Works from [14-16] search for

cylindrical or c-shape grasps that fit the point cloud model. Successful grasps from a

single viewpoint have been demonstrated by extracting an object’s centroid and

orientation using principal component analysis (PCA)[17]. For these data driven

methods, object modelling leads to successful grasps only if the viewpoint contains

enough information to extract a grasp feature; further reconstructing the object until

enough grasp features exist (and issues with this approach) are not directly addressed.

A system should continue object modelling until a grasp is achievable.

Our proposed NBV modelling algorithm guides an eye-in-hand laser, mounted on a

mobile base, to take scans of objects from multiple view poses with uncertainty and

precisely register point cloud scans to build an object model. Most NBV algorithms,

whether applying volumetric or surface variations, strive to guarantee consecutive scan

overlap with previous ones, reveal new scan information, register/integrate scans with

each other, and self-terminate when modelling is complete[2, 18-22]. Few algorithms are

demonstrated with large uncertainty; a manipulator is generally fixed on a base in the

world frame, and as a result, scans from the manipulator’s sensor frame can be resolved

with precision[23, 24]. Vasquez-Gomez et al introduced an NBV algorithm to address

4

position uncertainty somewhat indirectly by incorporating a distance metric that

penalizes travel distance, and thus, reduces joint position uncertainty [25-27]. However,

their algorithm is primarily demonstrated through simulation. Vasquez-Gomez et al did

demonstrate their entire system using a real experiment and corrected odometry

between scans by assuming the initial object location was known[26]. Although work

from [22] compares [25] to others NBV algorithms with an experiment, position

uncertainty is not directly assessed. In [24, 28], NBV algorithms generate viewpoints

from an octree. Work from [24] adjusts a camera pose to avoid dynamics occlusions,

while [28] models without a bounding box around objects and avoids obstacles along a

ground plane. However, to aid simultaneous localization and mapping (SLAM) and

reduce uncertainty, [28] used coloured tape as landmarks in their scene.

1.1.3. Analytical Grasping Methods

Analytical grasping approaches tend to apply specific grasp types that use two to four

contact points. Some earlier works that present data-driven grasping from a point cloud

applied force closure to determine grasp quality [10, 11, 29]. These works improved the

computation time for force closure analysis by assuming a gripper pre-shape or

introduced a heuristic stage that avoids searching for all contact combinations. For

example, [29] showed three contact points form a triangular plane that can be

decomposed to a series of IF-THEN statements, using contact normals, to determine a

force closure grasp. The grasp planner presented in [10] reduced computation time for

force closure by adding a pose constraint to align the gripper’s palm with the object so all

fingers will touch the object simultaneously when closed. The planner presented in [11]

reduces computational time by searching for a parallel grasp; the grasp wrench would

only be estimated for contacts that geometrically matched a parallel jaw. All of these

works demonstrated grasping but these grasps are specialized and represent only one

grasp type (for one specific purpose).

Later works generalize force closure to n-contacts, but experiments are demonstrated

with randomly generated contacts or heuristics to consider a gripper’s physical shape

and constraints to match contact locations [30-32]. In contrast, our proposed grasping

algorithm discovers potential grasp locations for n-contacts, multiple grasp types, and

prioritized grasp poses for different tasks while satisfying a gripper’s physical constraints.

5

1.1.4. Geometric Shape based Grasping Methods

Spatial features have been extracted from household objects from a single viewpoint to

be classified into several different object primitives for grasping [7]. An object primitive

heuristically simplifies an object’s shape and represents it with a priori known geometric

shapes (e.g. cube, cylinder, or sphere) [33, 34]. An object is either represented with a

single primitive or can be decomposed into a group of sub-primitives [35-37]. Some

learning-based methods also explore primitive shapes and discover grasps using

simplified shapes [38-40] or similar objects [41, 42]. From these representations, either

an analytical or data-driven database method can identify grasp locations. Comparably,

object primitives can be viewed as a low resolution, quantized voxel grid setting applied

by our algorithm that form similar cubic shapes. A key difference is our algorithm does

not have prior geometric assumptions for an object model; their shape primitive can be

thought of as a special case of our algorithm that occurs when using low voxel resolution

to represent an object. An object’s shape is not the key methodology we apply for

grasping—representing the gripper shape and all corresponding grasp types is key.

1.1.5. Machine Learning and Heuristic Grasping Methods

More recently, machine-learning (ML) based approaches to grasp an object are

presented in research. Many ML based grasp planning systems plan one grasp type per

object (or object shape) [8, 9, 42-48]. Recently, [43] demonstrated a learning-based

approach able to perform grasps using two grasp types. This algorithm did not select

which type is most appropriate but demonstrated their framework can flexibly learn

different grasp types. Another method selects between suction and pinch grasp

modalities to retrieve objects from a container [49]. An approach, generalized to one

grasp type, successfully grasps partial point cloud represented objects utilizing a

convolution neural network trained with box-like and cylinder-like objects[46]. Force

closure analysis measured grasp quality, and although not necessary, force closure is

used to prune grasp pose results[46]. A key challenge for this approach, and similar

grasp template approaches, is generating synthetic data to further classify more objects

(i.e. sphere, toroid, cone, etc.).

Through human demonstration, earlier works demonstrated different grasp types to

grasp a single object [50]. Even earlier work demonstrated database driven grasping for

6

approximately 7256 objects associated with 238,737 grasps for several different grippers

[51]. These methods require large databases or significant training, which takes time to

develop, and similar data-driven approaches do not scale well with respect to changes.

For example, adding a new gripper or grasp type would significantly increase a

database’s size, and the grasp type added may become more difficult to discern from

others already embedded.

In contrast, our proposed grasping algorithm demonstrates that different grasp types can

be discovered in near real-time using conventional signal processing techniques, with no

training or large databases.

1.2. Contributions

Key contributions to this research are:

1. Object Modelling and Grasp Planning phases are integrated via feedback to fully

automate grasping from a potentially incomplete point cloud model. Furthermore,

during an OI’s point cloud model construction

a. scan overlap is used as a key feature to mitigate registration error and

guaranteeing correspondence between scans,

b. registration correspondence for any iterative closest point (ICP) algorithm

is improved by concatenating a 3D point with its respective 3D normal

2. Grasp planning is completely data-driven and can discover different grasp types

from a partial scanned object with no offline-training.

a. Added advantages are collision checks and planning a linear Cartesian

trajectory for a grasp pose are easily integrated within the correlation step

3. A new grasping approach is introduced by representing grasp types and partially

scanned objects using surface normal histograms and voxel grids

a. Grasping is scalable for n-contact points, various grasp types, and is

invariant to point cloud size

b. Grasp pose solutions are found for several unique grasp types

4. Grasp selection changes based on the task. Grasp selection can change whether

the task is defined as robot-to-human transfer or securing an object.

The material presented in this chapter is excerpted, reproduced, and modified with

permission from the following papers: [52, 53].

7

M. J. Hegedus, K. Gupta, and M. Mehrandezh, "Towards an Integrated Autonomous
Data-Driven Grasping System with a Mobile Manipulator," IEEE Int. Conf. on
Robotics and Automation (ICRA), pp. 1596-1600, May 20-24, 2019[52]

M. J. Davari, M. J. Hegedus, K. Gupta, and M. Mehrandezh, "Identifying multiple
interaction events from tactile data during robot-human object transfer," 28th
IEEE Int. Conf. on Robot and Human Interactive Communication (RO-MAN), pp.
1-6, Oct. 14-18, 2019.[53]

8

1.3. Thesis Overview

This thesis is organized as follows:

 Chapter 1 introduces the motivation and proposed work. Related works and expected

research contributions are presented.

 Chapter 2 presents the formal problem statement, mobile manipulator platform, and

system-level solution for the problem statement. All discussion is high-level and

focuses on the “world view” for planning, notation, and perception. Planning focuses

to generate collision-free plans for the manipulator and base to either reach an NBV

or final grasp pose. Notation introduces the mobile robot coordinate system and

definitions used in the following chapters. Perception explains how all sensors scan

the environment and update information planning.

 Chapter 3 presents a detailed approach to generate a point cloud model for unknown

object(s) using a next best view (NBV) algorithm.

 Chapter 4 presents a detailed approach to generate grasp poses for multiple grasp

types from a partial point cloud model. This section presents a method that generalizes

grasp pose generation for mechanical grippers using partial point clouds.

 Chapter 5 discusses conclusions and future work.

9

Chapter 2.

Autonomous Motion Planning System

2.1. Problem Statement

This work’s purpose is to automate a mobile manipulator to autonomously model and

grasp an unknown object within an unknown environment for an upcoming fetch and

robot-to-human transfer task. From either a partial or complete object model, grasp

poses representing various grasp types (i.e. pinch/lateral, tripodal, or power) are

appropriately determined to grasp and lift an object of interest (OI). This system avoids

collisions with obstacles and unobserved regions in the environment and assumes

unknown object(s) to be grasped are at rest, can move freely, and located on a table

within a known bounded region. Initially, the mobile robot faces towards the OI; a free

path to the OI must exist to reach a proposed grasp pose. Simultaneous Localization

and Mapping (SLAM) builds a map the mobile system navigates within[54], and

assumes the environment is generally static (i.e. the system restarts if the OI location

changes). Objects modelled and grasped are rigid and observable. Grasping actions

assume the object’s context (or purpose) is unknown. For example, this system cannot

determine if an object is too heavy, fused to a table, or slippery; the system will naively

grasp any location it determines is graspable using pre-defined grasp types.

2.2. Mobile Manipulator System

Our system hardware (i.e.Figure 2.1) comprises of a 3-DOF base (Powerbot), 6-DOF

manipulator (Schunk PowerCube arm), and 7-DOF 3-fingered Schunk Dextrous Hand

(SDH). One 3D and two 2D laser scanners are used for sensing. A Velodyne HDL-32E

performs 3D environmental scans to detect free space for arm navigation; it is mounted

1.80m high above the base footprint frame (i.e. robot base’s center). A SICK LMS100

mounted above the Powerbot’s front bumper is used for base localization and mapping

(i.e. 2D SLAM), and a Hokuyo URG-04LX is mounted on the manipulator’s wrist as an

eye-in-hand sensor. This sensor models objects and detects free space in the

environment. Optical encoders estimate odometry from the drivetrain. Gmapping[54]

implements SLAM because no inertial measuring unit (IMU) is installed in the Powerbot.

10

Figure 2.1: Powerbot Sensors & Gripper in a Folded Configuration.

2.3. Base Pose Uncertainty Problem

Mobile manipulator systems are susceptible to base pose uncertainty (i.e. the robot is

not located at its assumed base pose). In a real-life system, estimating and reaching a

base pose is affected by three factors: 1) 2D map quality generated from SLAM, 2) base

pose localization estimated by SLAM, and 3) navigation minimizing error to reach its

desired base pose goal (controlled using pose tolerances).

2.4. System Overview

Figure 2.2: Three Phase Methodology to Grasp Planning

A high-level overview for the proposed grasping system is shown in Figure 2.2. In this

figure, nodes represent stages while numbered branches indicate the system progression

to grasp an unknown object; solid branches represent success while dashed branches

Schunk PowerCube Arm

Powerbot Base

Velodyne HDL-32E

Hokuyo URG-04LX

Schunk Dextrous
Hand (SDH)

 SICK LMS100

Object
Modelling

Grasp
Planning

Safe
Navigation

Grasp
Execution

1a
1b

2

3

11

represent failure from the previous stage. Grasping an object is accomplished in three

major stages: 1) Object Modelling creates a point cloud representation for all objects

being scanned within a bounded region, 2) Grasp Planning determines if the object can

be grasped, and 3) Grasp Execution discovers a base pose that allows the manipulator

to reach and execute a collision-free grasp; this phase corrects base pose error that affects

guiding the gripper to its final goal. All stages utilize Safe Navigation. Safe Navigation is

unique because all perception focuses to analyze the global environment to determine

base poses that are collision-free for both the mobile base and manipulator. In contrast,

perception from the other stages focus to analyze object(s) within a local bounding box.

A key feature for this grasping system is Grasp Planning is integrated with Object

Modelling. Grasp Planning provides feedback to Object Modelling to temporarily pause

modelling if a grasp exists. Grasp Execution is needed to correct base pose uncertainty;

as the robot travels, base pose error propagates to the desired grasp pose in the world

frame. Prior to executing a grasp, base pose uncertainty is estimated to correct proposed

grasp poses to allow the gripper to reach its desired grasp pose.

12

2.5. System Detailed Approach

Figure 2.3: System State Diagram

The methodology shown in Figure 2.2 is implemented using a state machine presented

in Figure 2.3. Numbered branches in each figure correspond to each other and generally

indicate the system’s progression in chronological order. States presented on the left are

ordered in terms of decreasing priority (i.e. END State is lowest priority). Not shown, are

two sub-systems, detailed in later chapters, which determine the next best views for

Object Modelling and final grasp poses for Grasp Execution; the output from these sub-

systems are represented as messages (MSGs) in Figure 2.3 to trigger Model State and

Pick State within the state machine. From a system perspective, these messages

represent the NBV to scan the object(s) of interest (or OI), and final grasp pose to grasp

any object. The overall system (or state machine) is responsible for collision-free

planning to reach these positions if they are reachable.

Model State

Pick State

Navigation State

Clear Room

Check Messages

off

off

off

No

Yes

None

Received
Final Grasp
Poses MSG

Next Best View
(NBV) MSG

Pick=ON Model=ON

on

Clear Room=OFF

on

Reachable?

Yes

No

Success

Failure

Detailed Scan in front
of Mobile Robot

Find/Execute plan
to reach any NBV

Predict base poses

that reach NBV

Scan Object Success

Failure > Attempts

Reachable?
on

off

off

Navigation=OFF

Move Mobile Base Model=OFF
End=ON

on
Reachable?

Yes

No
Predict base poses that
reach grasp poses

Execute plan to
any grasp pose

Laser Servoing / Base

Pose correction

Failure Model=ON, Pick=OFF

Success

Failure

END STATE

Model
Complete?

No

on

Yes

Next

 LIFT

Failure
Success Navigation=ON

3

2

1a

1b

0

3

Initialization

Navigation=ON

13

2.5.1. Clear Room State Overview

The system begins with necessary initial conditions (i.e. Clear Room and Model State

active). Clear Room state actively scans the front of the mobile robot in detail using all

available laser scanners to observe free space within the environment for safe

navigation; any observed obstacle or unobserved space is treated as an obstacle to

avoid. This step is necessary to create and initialize all maps used by navigation.

2.5.2. Model State Overview

Figure 2.4: Model State Diagram

After Clear Room state completes, Model State checks if a list of NBVs are inside the

robot’s dexterous workspace. If any NBVs are potentially reachable without moving the

base, a collision-free plan for the manipulator is calculated; otherwise, the system

randomly samples base poses underneath NBV locations. At proposed base pose

locations, collision-free plans for the manipulator are estimated for the list of NBVs within

the robot’s workspace, and if a collision-free plan exists, the mobile base navigates to

that proposed base pose. If no plan is found, the next proposed base pose is sampled,

and this process repeats until a successful plan is predicted for a predicted base pose.

Two loops, shown in Figure 2.4, are needed to pass through Model State to execute an

object scan. The first loop triggers a base pose prediction that permits the manipulator to

reach an NBV. Navigation State is activated, the mobile base moves to the base pose

prediction, Navigation State is de-activated, and the second Model State loop begins.

Since NBVs are now within the manipulators dexterous workspace, a collision-free plan

for the manipulator is estimated for all reachable NBVs. If no valid plans are found (e.g.

the manipulator is blocked by an obstacle), base pose prediction is re-triggered, and

another Model State loop is repeated.

Model State

on
Reachable?

Yes

No
Success

Failure

Find/Execute plan
to reach any NBV

Predict base poses

that reach NBV

Scan Object Success

Failure > Attempts

 1a

Navigation=ON

Loop 1
Loop 2

Repeat

14

2.5.3. Pick State Overview

Figure 2.5: Pick State Diagram

Pick State activates when grasp poses to secure an object are discovered. A Final

Grasp Pose MSG is received, and this message contains two candidate lists: 1) a grasp

type (i.e. lateral, tripodal, or power) and 2) corresponding grasp poses to be attempted

on a partial object model. As shown in Figure 2.3, Pick State is prioritized over Model

State when active. Similar to Model State, grasp poses are executed if they are

reachable and exist within the manipulators dextrous workspace; if not, base poses are

randomly sampled around the modelled object(s), and collision-free plans for the

manipulator are esimated to reach any grasp pose from a sampled base pose. If a

collision-free plan exists, the mobile base navigates to the sampled base pose (i.e.

Figure 2.5 Loop 1). If no plan is found, Pick State is disabled, and the system continues

object modelling (i.e. Figure 2.5 Loop 2).

After the mobile base navigates to a new base pose, candidate grasp poses are within

its dexterous workspace. Pick State is repeated a second time to grasp and lift an object.

Lifting an object is executed in three consecutive steps. First, the eye-in-hand laser

scans the object(s) again (i.e. laser servoing) and corrects the current base pose relative

to the observed object(s). Second, a collision-free plan for the manipulator to reach any

grasp pose is estimated again because the current base pose changes after correction;

grasp poses may no longer be reachable due to how much base pose uncertainty

affects the system. If a collision-free plan exists, it is executed, and the gripper uniformly

closes all fingers at the final grasp pose to securely grasp an object. Thirdly, the

manipulator lifts the object vertically to show a secure grasp (i.e. Figure 2.5 Loop 3). If

any failure (i.e. laser servoing, trajectory planning, or trajectory execution) occurs during

these three steps, the system aborts, disables Pick State, and continues object

modelling (i.e. Figure 2.5 Loop 2).

Pick State

on
Reachable?

Yes

No
Predict base poses that

reach grasp poses

Execute plan to
any grasp pose

Laser Servoing / Base

Pose correction

Failure

Model=ON,
Pick=OFF

Success

Failure

 LIFT

Failure Success

Navigation=ON

Repeat

Loop 1 Loop 2

Loop 3

15

Failures are typically caused after base pose correction; the mobile base may no longer

be at its ideal predicted position and is too close (or far) to discover a new collision-free

plan to reach the final grasp pose. Theoretically, the mobile base could move to the

corrected base pose, but this is impractical because base pose uncertainty is

reintroduced while the mobile base navigates. Less commonly, the manipulator’s

trajectory may abort because joints do not precisely reach a waypoint within the planned

trajectory, or an obstacle blocking the trajectory may be observed erroneously. For these

cases, Pick State is aborted to not disturb any object.

2.5.4. Navigation State Overview

Navigation State receives a base pose list from Model or Pick State and navigates the

mobile base to a collision-free base pose. Prior to navigation, the robot’s manipulator is

folded within the robot’s base footprint to prevent it from colliding with obstacles. A base

pose is accepted for navigation if both the base footprint and volume above are free (i.e.

region is observed and no obstacles are observed). If all base poses are rejected,

Navigation State is disabled and Model State is repeated to sample new base pose

locations. A decoupled approach to navigation (i.e. manipulator and base move

separately) is chosen to ease implementation and reduce computational cost.

2.6. Definitions and Notations

Coordinate frames are represented using Denavit-Hartenberg notation[55]. Initially, the

world frame (W) and base frame (B) poses coalign. The base frame (B) is attached to

the base footprint and is primarily used to navigate to either a base frame pose for object

modelling (Bm) or base frame pose for grasping (Bg); subscripts ‘m’ and ‘g’ denote

modelling and grasping respectively. A manipulator (arm) is located on top of the mobile

base, and the manipulator’s base frame (A) attaches to the manipulator’s base, on top of

the mobile base. Trajectory planning, prediction, and the manipulator’s workspace is

relative to the manipulator’s base frame (A). Visually, this frame is seldom shown

because it is an intermediate transform to reach the world frame where most information

is shown and represented. An eye-in-hand Hokuyo sensor frame (E) is attached at the

end of the manipulator, above the wrist, and is orientated coplanar to the laser scanner’s

field of view. The SDH gripper also connects to the end of the manipulator. A general

16

grasp/gripper frame (G) is attached between all SDH fingers, near between distal joint

motors. The gripper frame (G) is meant to reach a pre-grasp frame (Gp) and move

towards the final grasp frame (Gf) to grasp an object; subscripts ‘p’ an ‘f’ denote a pre-

grasp and final grasp poses respectively.

Position (p, p∈ℝ4×1), rotation (R∈ℝ4×4), translation (t, t∈ℝ4×1) and pose/transformation

(T∈ℝ4×4) use superscript and subscript annotation to designate the reference/designation

and source coordinate frames respectively. Pose (T) is a homogenous transform,

i.e. TB
A

=(RB
A

, tB
A). All goal poses are visually shown in the world frame (W).

2.7. World Octree (𝓦) for Planning and Collision Avoidance

Figure 2.6: World Octree “Spatial” Notch Filters

For mapping and perception, an octomap octree encompasses the environment and

mobile manipulator[56, 57]. An octree is chosen because its 8-array tree structure can

efficiently represent an environment without consuming a large memory footprint[56]. An

octomap implements an octree structure as a volumetric, probabilistic 3D occupancy

map; tree leafs (or voxels) are updated by current laser range sensors combined with

prior observations to assign a low or high probabilistic values to indicate a leaf is empty

or occupied respectively. Probabilities are discussed using log-odds notation. Obstacles

(or occupied leafs) are coarsely represented (i.e. low voxel resolution) for collision

detection and avoidance. A key feature of this work is unobserved space is assumed to

be an obstacle to either be scanned or avoided.

Base Fooprint

Octree Notch Filter:
Object Bounding Box

Octree Notch Filter:
Base Footprint

Laser Notch Filter:
Mobile Base

Laser Notch Filter:
Manipulator & Gripper

Velodyne

Hokuyo

17

Initially, every leaf within the octree 𝓦 is initialized as an obstacle. Shown in Figure 2.6,

two filters, represented as dashdotted lines, free (i.e. clear) space within the octree 𝓦.

Each filter is kin to a “spatial” notch filter removes initialized obstacles within a bounded

region, and as such, we refer to them as a notch filter. One notch filter frees all

volumetric space above the mobile manipulator’s footprint to allow the manipulator

limited, collision-free, movement. A second notch filter frees space within the bounding

box surrounding the object of interest to be scanned; this second filter prevents scanned

objects to be considered as obstacles and is necessary to position a gripper for

grasping. After initialization, the octree 𝓦 is updated by laser readings from the

Velodyne sensor and Hokuyo eye-in-hand sensors. False-positive obstacles detection

due to the lasers self-scanning the mobile manipulator is avoided by a third laser notch

filter, represented as dotted lines; the Velodyne, shown as green, ignores any obstacles

within a bounding box attached at manipulator’s wrist frame, and the Hokuyo eye-in-

hand sensor, shown as blue, ignores any obstacles within a bounding box attached to

the robot’s base frame.

Figure 2.7: World Octree Obstacle Perception (Before & After Sensors are Enabled)

Figure 2.7 shows the octree 𝓦 initialized by an octomap server[57] prior to enabling lidar

sensors. Occupied octree leafs are represented as solid green voxels, and for

visualization, only surfaces of solid occupied leafs are displayed. When the octree 𝓦 is

initialized, the mobile manipulator sits within a free region surrounded by occupied leafs.

When lasers are enabled to update the octree 𝓦, free regions are updated, but a ‘cone’

of obstacles surround the robot because this region is not observed by lidar sensors.

Using pre-defined movements, the eye-in-hand sensor observes regions outside the

beamwidth of the Velodyne sensor. While controlling the eye-in-hand sensor pose, the

robot’s manipulator avoids collision with any occupied leaf in the octree 𝓦.

Octree Initialized
Lasers Disabled

Octree Initialized
Lasers Enabled

18

Error! Reference source not found. summarizes how self-scanning is additionally

mitigated by controlling when readings are accepted to update the world octree. In

general, if the mobile base is stationary and the manipulator is homed, the Velodyne

lidar is always on. The Velodyne is disabled when the manipulator moves, unless this

movement is pre-defined (i.e. panning the wrist to scan an object or rotating the arm to

scan the environment). If the mobile base is moving and manipulator is homed, both

sensors are on; the Velodyne scans the entire room while the eye-in-hand sensor scans

the floor in-front of the mobile robot. Due to the states defined in Figure 2.3, the mobile

manipulator cannot move its base and arm simultaneously.

Table 2.1: Lidar Sensor Truth Table for World Octree

Base
Stationary?

Manipulator
Moving?

Movement
Pre-Defined?

Velodyne
Status

Eye-in-Hand
Status

Comment

F F N/A ON ON Navigation
F T X OFF OFF Not Possible
T F N/A ON OFF Navigation Ended
T T F OFF OFF Moving Arm/Gripper
T T T ON ON Scanning

2.8. Object Octree (𝓜) for Object Modelling

Modelling is guided using an additional higher resolution octomap[57] octree that fills

object bounding box show in Figure 2.6. All object(s) surfaces are reconstructed within

this bounded region, and octree probabilities will classify leafs as free, occupied, or

unknown[18]. Initially, all object octree leafs are initialized as unknown. Afterwards, the

object octree is updated using the eye-in-hand sensor by copying raw laser data from

obstacle perception. An octomap is selected because probabilistic updates account for

sensor noise and dynamic changes in the environment. Our environment is static, but

odometry uncertainty propagates to a mobile manipulator’s scanning frame; modelling

while experiencing uncertainty can be viewed like changing the object pose between

scans. Information captured by the last scan is important because it accurately localizes

object features relative to the mobile manipulators base footprint frame. Information from

those recent features can reconstruct an object model, even while a robot experiences

large pose uncertainties.

19

2.8.1. Object Octomap-Specific Implementation

Figure 2.8: Ray-Cube Intersection Visualization

A ray-cube intersection algorithm detects when the eye-in-hand laser data passes

through octree 𝓜’s bounding box, and if this occurs, laser data is virtually terminated

along the bounding box’s border[58]. Shown in Figure 2.8, a ray intersects through two

planes of a cube, and given the ray pose (known from odometry), a laser hit is projected

along the plane furthest from the ray source. Practically, this step is necessary to update

the octomap octree because its current implementation only updates if a laser ‘hit’

occurs within its defined bounds.

2.9. Base Pose Selection

2.9.1. Object Modelling Base Poses

Figure 2.9: Object Modelling Base Pose Generation

Figure 2.9 visualizes object modelling base goal generation, denoted as Bm, randomly

sampled for any sensor scanning frame, denoted as {E}. Given the fully extended length

of a manipulator’s arm, denoted as dA, a circle is projected onto the ground plane below

{E}, shown as a solid circle. A parallel dashed circle is shown because the manipulator’s

base frame, denoted as {A}, is raised above the ground plane because it is attached

onto a mobile base. Trigonometry determines radius rA for every scanning pose E

pointing towards the object bounding box, i.e. E1, E2, etc. Within each projected circle,

Ray
Source

Ray

Termination Virtual

Termination
Object Bounding Box

Plane

Intersection

{E1 }

{E2}

Unknown Object
Bounding Box

Proposed

base goals Bm

Manipulator
Length

rA1

dA dA

{A}
{A}

rA2

{W}

{O}

20

the manipulator can reach the goal pose if it is fully extended. A circle’s radius changes

size for each scanning pose; for example, the circle becomes smaller as the goal is

elevated in the world frame because the manipulator needs to reach more vertically.

Proposed modelling base goal locations, Bm, are randomly sampled within a projected

circle’s radius. The Bm frame orientation is orthogonal to the bounding box’s during the

modelling phase. To select a candidate Bm, each scanning pose is projected (or

transformed) into the current manipulator’s frame using odometry, i.e. and inverse

kinematics (IK) determines if the manipulator’s sensor can reach frame Bm. The following

equation projects a scanning frame, i.e. {E’}, into the current manipulator frame {A} using

the robot’s current base frame {B} as an intermediate step:

T
E1

'
W = TA

W TB
A T

E1
'
B

 , where T
E1

'
B ≡ TE1

Bm

Control for the base and manipulator are decoupled; typically, the base moves with the

manipulator safely folded to a base pose goal for the manipulator to reach a scanning

pose, and once the base reaches its goal, the arm moves the eye-in-hand sensor along

a collision free trajectory from the folded configuration to scanning pose. To guarantee

these actions are safe, the manipulator is constrained to execute trajectories within

observed free regions within octree 𝓦. Prior to moving to any candidate base goal,

octree 𝓦 is queried to determine if a bounded region around the manipulator is free at

the candidate base goal within octree 𝓦. If this condition is true, the base goal is

selected and executed; while navigating, free space in the 2D costmap is assumed free

for both the base and manipulator.

21

2.9.2. Grasping Base Poses

Figure 2.10: Grasping Base Pose Generation

Given a set of potential grasp poses, random base positions around the OI are sampled

with the robot orientated facing the OI (i.e. the OI is 0° relative to the base frame).

Samples are bounded between an inside and outside circle; the inside circle is greater

than navigation’s inflation radius[59, 60] (to prevent collision) and outside circle is less

than the manipulator’s dexterous workspace (to reach the final goal). For each candidate

base pose, denoted as BG, the IK are numerically calculated to reach pre-grasp Gp and

final grasp Gf poses (see Figure 2.10). If the IK to reach Gp and Gf are successful and a

straight line path passes through each pose, the base pose’s rank is incremented. Each

base pose generated will check all final grasp poses, and a base pose that successfully

reaches most final grasp poses will be ranked the highest; after ranking, the mobile robot

moves to the base pose with the highest rank. If two base poses have the same rank,

the first base pose evaluated is selected. The manipulator executes a trajectory to Gp

with a closed gripper, and at Gp, the gripper opens for a Cartesian planner to execute a

forward trajectory to Gf. If the manipulator cannot complete a trajectory to Gp or discover

a Cartesian plan to Gf, the system aborts, executes another model scan and attempts

another grasp.

2.10. Evaluation from Implementation

During development, unrecorded system tests were performed to confirm navigation and

perception; no explicit evaluations are recorded to report. ROS MoveIt!’s interface[61] is

implemented for trajectory planning, and MoveIt!’s collision avoidance octomap[57],

accessed by MoveIt!’s planning scene class, is replaced with octree 𝓦. While integrating

Object

Bounding Box

Proposed

base goals BG
{W}

{Gf}

{Gp}
Straight

Line Path

 Inside:
 Outside:

Bounds

22

perception, pre-defined trajectories swung the arm back and forth within octree 𝓦‘s

observable free space. Afterwards, the trajectory is repeated with an obstacle inserted

along the trajectory’s planned path; motion execution failed. However, when the planner

was allowed to replan, a new trajectory is discovered to move the manipulator around

the obstacle to reach its final goal. In fact, Clear Room State describe in Section 2.5.1 is

needed to initiate autonomous planning because the system is initially surrounded by

obstacles and unobserved space.

Collision-models (i.e. defined to be slightly larger than physical dimensions) and

threshold parameters (i.e. joint and goal tolerances) are selected to prevent the

manipulator and base to collide into observable obstacles. These measures are

confirmed through simulation and impolitely evaluated during experiments reported for

object modelling and grasping objects using multiple grasp types, described in later

chapters. Implicit knowledge confirms the mobile manipulator does not collide into

obstacles, and the manipulator planner avoids collisions within octree 𝓦[61, 62].

23

Chapter 3.

Integrating NBV Modelling with Grasping

3.1. Problem Statement

An autonomous, fully-integrated, data-driven planning system is proposed for a mobile-

manipulator to grasp an unknown object in an unknown environment. Object modelling

with a wrist mounted lidar sensor, using a next best view (NBV) algorithm, is integrated

with grasp planning. The object of interest (OI) to be grasped is assumed rigid and inside

a known bounded region in the world frame; no other a priori knowledge about the OI is

assumed. Preliminary results is presented of a 9-DOF mobile manipulator (with a

gripper) autonomously scanning and modelling an OI, and from the partially constructed

model, a grasp is planned; if planning is successful, grasping the OI is executed, but

otherwise, further scans are taken to build a more complete model until grasping the OI

is achieved.

3.2. Motivation

A mobile manipulator provides more flexibility retrieving objects in a large workspace;

however, errors associated with localizing the base can propagate to the sensor frame

and adversely affect object modelling and grasp execution. Object modelling is affected

because consecutive scans need to correctly register for integration. This action is

typically performed using an Iterative Closest Point (ICP) algorithm[63]. ICP performs

well when the initial guess is accurate but can fail in the presence of large uncertainties.

A mobile manipulator’s registration error (i.e. distance between two overlapping scan)

can be larger than the width of the scanned object. Generally, NBV algorithms that

consider registration are not demonstrated to correct this issue[20, 21, 25, 27]. An

algorithm adaptation is necessary to treat scan overlap as a primary feature to

guarantee registration correspondence. Another key aspect of this work is our NBV

algorithm guides the eye-in-hand laser, mounted on a mobile base, to take scans of an

OI from multiple view poses with uncertainty and precisely register point cloud scans to

build an OI model.

24

3.3. NBV Modelling System Integration

Figure 3.1: Flow Diagram to Integrate Modelling with Grasping.
This figure is reprinted with permission from [52]

As discussed in Section 2.4, Object Modelling is integrated with Grasp Planning. A high

level flowchart of our integrated and autonomous system to grasp an OI is shown in

Figure 3.1. Initially, the robot begins the Modelling Phase; in this phase, a volumetric

NBV algorithm (see [22, 64]) evaluates and ranks potential view poses that surround the

OI. Shown in Figure 3.2, a global list of uniform randomly sampled view poses, within an

inner and outer ring around the bounding box, encompassing the OI is first created and

then ranked. Heuristically, a cylindrical shape is chosen to approximate a toroid,

representing the robot manipulator’s workspace if the base moves circularly around the

OI. If a portion of the ring is blocked by an obstacle, a mobile manipulator can travel to

other free locations to continue OI modelling. View poses surrounding the OI ensure

scans cover all sides of the object. The inside and outside ring radius provides depth for

the mobile manipulator to select a range of NBVs in case several are unreachable due to

obstacles. Ring height is similar to the manipulator’s dextrous workspace height.

25

Figure 3.2: NBV Frame Generation

NBV orientation, shown as frames in Figure 3.2, is represented by three vectors. Frame

vector axes are defined for world frame, W, as x̂
w

, ŷ
w

, ẑ
w

∈ℝ3×1 and sensor (or NBV)

frame, E, as x̂
E

, ŷ
E

, ẑ
E

∈ℝ3×1. A frame is attached to the object’s bounding box center,

denoted as {O}. Initially, a NBV’s x-axis is created by normalizing the difference between

the bounding box’s origin, i.e. PorgO
W

, and NBV frame’s origin, i.e. PorgE
W

. This vector

represents the sensor frame facing towards the OI. Next, the NBV’s y-axis is created by

taking the cross-product between the NBV’s x-axis and world frame’s z-axis, and the

cross-product between the NBV’s x-axis and y-axis. These steps are summarized below:

x̂
E =

PorgO
W − PorgE

W

‖ PorgO
W − PorgE

W ‖

ŷ
E

= x̂
E

× ẑ
w

ẑ
E

= x̂
E

× ŷ
E

The highest ranked view pose (or NBV) is selected to scan the OI (see ‘NBV Ranking’

for ranking criteria). For planning motions to reach the NBV, the Hierarchical and

Adaptive Mobile-manipulator Planner (HAMP) [3] would be ideal; however, we chose a

decoupled approach to ease implementation and reduce computational cost. Our

approach works as follows. The base plans within a 2D costmap[59], and at the base’s

goal, the arm plans within a global 3D octree [57] using Rapidly-exploring random trees

(RRT)[65].

Base poses, described in Section 2.9.1, are randomly sampled around the region of

base poses from where the NBV pose is reachable. Each sampled base pose is tested

to determine if a trajectory exists for the manipulator to reach the NBV. The robot moves

Unknown Object
Bounding Box

ẑ

x̂
ŷ

{E3}

{E
1
}

{E
2
}

{E
4
} {E

5
}

{E
6
}

{W} {Axis Example}

NBVs Randomly
Generated, pointed

towards the
Bounding Box

Ring Bounds
 Inside:
 Outside:

Origin PorgO
W

{O}

26

to the first available base pose if its location is collision free for both the base and arm.

Once the robot arrives at its base pose, the eye-in-hand sensor moves to the highest

ranked NBV; if this is unreachable (e.g. a new obstacle is discovered or the base stops

offset from its desired pose), the next highest rank NBV is chosen. Once at the NBV, the

eye-in-hand sensor initiates a scan. After a scan, three actions occur: i) the partial point

cloud representation of the OI is updated using a generalized iterative closest point

(GICP) algorithm[66], ii) all NBV rankings are updated, and iii) Grasp Planning/Analysis

discovers if a gripper shape fits along the partial OI model for all grasp types. If grasp

analysis discovers a match and generates grasp poses around the point cloud model,

grasp pose(s) are sent to the robot, and the robot initiates the Grasp Execution Phase;

otherwise, the robot moves to a new location for scanning, and the process repeats itself

until the model is complete. The number of contact points associated to the group is

determined by the grasp type attempted (e.g. two contact points for a pincer/parallel

grasp, three points for a tripod grasp, etc.). During the Grasp Execution Phase, the

manipulator moves into a pre-grasp position. From there, a Cartesian planner moves the

end effector along a straight line trajectory from the pre-grasp to final grasp pose.

3.4. NBV Object Modelling with Uncertainty

The NBV modelling algorithm is frontier-based (i.e. a frontier is the boundary between

free and unknown regions) and uses scan overlap as a key feature to reduce

uncertainty. It is inspired by existing methods with adaptions to emphasize scan overlap

from the previous scans[25, 64]. Scan overlap is used as a feature to mitigate

registration error because it guarantees a specific ratio of correspondence for

registration between consecutive scans. This overlap ratio is adjustable to improve

registration accuracy (i.e. more scan overlap when more uncertainty exists). A GICP

algorithm is used to merge current with previous scans, and in effect, GICP corrects

position uncertainty. This algorithm is not optimized to fill details in the model or scan

small occlusions. Our goal is to practically scan large, visible, and easily reachable

surface features so the OI can be quickly and easily grasped. Constraints, i.e. field of

view and viewing angle, are incorporated by ray casting from the sensor’s pose towards

octree 𝓜’s bounding box. Indirectly, occlusions within the bounding box are revealed by

selecting view poses that overlap information gained by the previous scan. View poses

27

that are obstructed by obstacles and do not have line-of-site to the OI within octree 𝓦

are also ignored.

3.4.1. NBV Volumetric Representation

Figure 3.3: Next Best View (NBV) Octree Representation.

This figure is reprinted with permission from [52]

Selecting viewpoints is accomplished by defining a bounding box around the OI and

representing it with an octree [57] to guide the NBV algorithm. Sensor data updates

these leafs using a Bayes filter to build a probabilistic occupancy map[57]. We assign

four states to represent leafs: i) free, ii) occupied, iii) unknown, and iv) frontier. They are

defined below, and a 2D representation is shown in Figure 3.3.

 A leaf is free if its occupancy is below a threshold, pmin

 A leaf is occupied if its occupancy is above a threshold, pmax

 A leaf is unknown if it is either not scanned, or it is scanned but contains an
occupancy probability value between pmin and pmax

 A frontier leaf is any unknown leaf adjacent to a free leaf’s faces

3.4.2. NBV Ranking

NBVs are ranked by comparing a percentage of occupied and frontier leafs within octree

𝓜. A positive weighting factor ω, ω ∈[0,1], creates a vector wd=(ω,1- ω) to represent the

desired overlap percentage for each scan. Let ηOCi and ηFRi represent the occupied count

and frontier count respectively for the ith viewpoint. ηOCi and ηFRi are derived for each

viewpoint by casting rays within the sensor’s field of view within the octomap; if a ray

28

terminates at either an occupied or frontier leaf, ηOCi or ηFRi will be incremented

respectively. Assuming a finite total of ‘n’ NBVs, where i={1, 2, …, n}, we define another

vector wi, whose components are the fractions of frontiers and occupied leafs observed

at the ith viewpoint is:

wi= (
ηFRi

max(ηFR | n)
 ,

ηOCi

max(ηOC | n)
)

CRi= {

wd

|wd|
∙

wi

|w
i
|
, ηFRi , ηOCi>thresh

 0 , otherwise

An NBV’s composite rank (CR) is given by the dot product of normalized wd and wi

vectors. CR scales between [0, 1] and is maximal when wi equals the desired overlap

wd. Each rank represents how similar a viewpoint 𝐚i matches a desired overlapping ratio

wd, and its value decreases as a view pose moves further away from a maximal CR. If

either ηOCi or ηFRi are below a minimal threshold, the NBV rank is set to zero due to not

enough information contributing to the CR. Ranking criterion purposely has an intuitive

and practical meaning for the user. For example, if ω = 0.5 (i.e. View B in Figure 3.3),

ranks favour an equal ratio of occupied and frontier leafs. As ω decreases, more overlap

is preferred.

Heuristically, CR is automatically set to zero if a ray cast from a view pose does not

terminate at an occupied or frontier leaf, leafs required to estimate CR. This heuristic

ignores sampled view poses that are occluded by world obstacles or view poses that do

not observe a leaf type needed to calculate CR. To ignore world obstacles, one ray cast

from a sampled view pose to OI is performed within octree 𝓦, and if the ray cast

terminates at any obstacle leaf before reaching the OI, the view pose is occluded by an

obstacle (and CR rank is set to zero). To verify information exists to calculate CR, a

second ray cast from a sampled view pose to OI is performed within octree 𝓜, and if the

ray cast does not terminate on an occupied or frontier leaf, the CR rank is set to zero.

These constraints quickly ignores view poses obstructed by obstacles or view poses that

do not contribute information to calculate CR.

Our NBV algorithm terminates when all NBV CRs equal zero. This occurs when the

number of frontiers is below a minimal viewing threshold with non-zero occupied leafs in

the octree (i.e. ηFRi<thresh and ηOCi≠0).

29

Figure 3.4: Next Best View (NBV) Ranking Progression

CR behaviour for NBVs is visualized in Figure 3.4. Initially, all NBVs are assigned equal

ranks, shown as navy blue. The mobile manipulator moves to a location where a group

of NBVs are reachable, shown in magenta, and randomly selects any available NBV to

perform the first scan. Once octree 𝓜 is update, CRs are updated to determine the next

scanning location. The mobile manipulator travels to the highest CR, shown in red, and

the process repeats until all CRs return back to zero rank. The number of zero ranks

diminish as scans proceed because more frontiers are revealed. Eventually, as more

frontiers are scanned and removed from octree 𝓜, zero ranks reappear and eventually

envelop the OI when fully scanned.

a) Initial Ranks b) 1st NBV Selected c) 1st Ranks Updated

d) 2nd NBV Selected e) 2nd Ranks Updated

LEGEND
Navy Blue:
Magenta:

Red:
Orange:
Lime:
Baby Blue:

Black:

Initial/Even Rank
Reachable NBVs

Highest Ranks

High Ranks
Low Ranks

Lowest Ranks

No Rank/Avoid

Octree 𝓜 Octree 𝓜

Octree 𝓜 Octree 𝓜

30

3.5. Registering Partial Scan with Uncertainty

Figure 3.5: GICP6P Incorporates Surface Normals for Improved Correspondence Matching

Consecutive scans, S, are registered using GICP. This algorithm improves the original

ICP’s performance by associating a covariance to each registered point, and updating its

covariance using a surface normal. GICP derives a transform that minimizes the

distance between target and source points lying along a similar surface plane[66].

Implicitly, (G)ICP algorithms guarantee convergence when registered scans fully

overlap; when scans partially overlap, convergence is not guaranteed because

correspondence between target and source points might not be correctly identified.

Correspondence between target and source points are determined using an L2 norm

which excludes points beyond a maximum distance, i.e. dmax, threshold[66]. A few issues

with this approach exist: i) small overlap between scans, relative to dmax, causes poor

registration because correspondence incorporates more non-overlapped points, and ii) if

uncertainty exists, dmax needs to be increased to incorporate more non-overlapping

points during registration.

Works generally add an additional stage to ICP to improve correspondence matching

[67, 68]. A branch and bound algorithm minimizes residual error from the L2 norm and

guides ICP to a globally convergent solution[67]. A point’s curvature and angle

differences between neighbouring normals are estimated to discern pairs of points for

registration[68]; in addition, the search space for correspondence is reduced through

feature extraction[69]. Our GICP algorithm (i.e. GICP6P) determines correspondence

using the L2 norm with a 6D feature created by concatenating a 3D point with its 3D

normal. Since a surface normal can be resolved in two opposing directions, the direction

facing the lidar’s view is chosen. Scale between translation (i.e. points) and orientation

(i.e. surface normal) can be adjusted using a scale factor. Applying the L2 norm to a 6D

feature vector improves correspondence because dissimilar normals increase the L2

Object Scan 1
(Points Only)

Scan 2
(Points Only)

GICP Correspondence Ambiguity
(Points Only)

or? + =

+ =

Scan 1
(Points & Surface Normals)

Scan 2
(Points & Surface Normals)

GICP6P Correspondence Matching
(Points & Surface Normals)

 ×
×

✓

31

norm distance, guiding correspondence to select physically close points with similar

normals. GICP’s O(Nlog(N)) complexity remains unchanged. Alternatively, GICP’s L2

norm correspondence metric can be replaced with inner product to measure distance; an

added scale factor would relatively weight point and normal distances. Empirically, we

observed GICP6P, using a scale factor equal to 1, registers points more accurately than

standard GICP. Figure 3.5 illustrates how concatenating points (i.e. dotted lines) with

surface normal information (i.e. arrows) improves correspondence matching. GICP6P

ignores initial transformations that align dissimilar surface normals that are acceptable

for GICP. Consequently, several local minima registration cases are avoided.

3.6. Correcting Grasp Pose Uncertainty (Pose Correction)

Figure 3.6: Grasp plan generated for the OI. The manipulator moves the gripper to its pre-grasp position (a)

and a cartesian planner moves the gripper forward to reach its final grasp pose (b & c)

Given a set of potential grasp poses, random base positions around the OI are sampled

with the robot facing the OI. For each base pose, the inverse kinematics (IK) are

numerically calculated for pre-grasp and final grasp poses, Gp and Gf, respectively; in

addition, a straight line trajectory is processed from Gp and Gf. If reaching a path to Gp,

Gf, and all waypoints between Gp and Gf are successful, the base pose’s rank is

incremented. As shown in Figure 3.6 the manipulator executes a trajectory to Gp with an

open gripper, and at Gp, a Cartesian planner executes a straight forward trajectory to Gf

and closes the gripper around the OI to trap it. When the robot reaches its base goal to

grasp, its world frame location is uncertain; errors from odometry and mapping during

the last base trajectory will alter the pose of the OI (relative to the base frame). To

mitigate this error, the eye-in-hand sensor scans the OI again to correct the final base

and grasp poses using the corrected transform derived by GICP.

a. b. c.

32

Figure 3.7: Transforms for Final Grasp and Base Pose Correction.

This figure is reprinted with permission from [52]

After every consecutive scan, GICP registers the OI’s point cloud to the most current

scan. Planned grasp goals can be registered with this transform because grasp poses

are relative to the OI’s surface features. Planning can derive a complete base and

manipulator trajectory to execute a final grasp goal, but once the mobile base moves to

a final base pose, uncertainty is reintroduced; the base will not reach its intended

planned base goal. However, if the OI is scanned again, GICP’s transform can correct

the planned base goal. As a result, no manipulator trajectory replanning is necessary;

the mobile manipulator moves a relatively short distance (i.e. uncertainty does not

accumulate significantly) to the corrected base pose to execute its original manipulator

trajectory to the final grasp goal.

As shown in Figure 3.7, G0 and B0 are planned poses for the gripper and base in the

world frame (W) to pick the OI. GICP yields TG1
G0

. The goal is to discover a corrected base

goal, B1, to reuse the same planned manipulator joint configuration to reach the

corrected gripper pose G1. B1 maintains the same pose relative to G1 using the

constraint T=G1
B1

TG0
B0

. The GICP transform within W with its rotation (zero translation)

denoted as TRG1
G0

, where T∈ℝ4×4. Pose of the G0 frame origin PG0
W

org
 and rotation TRG0

W

are corrected with the following:

PB1
W

org
= TG1

G0
PG0

W

org
− TRG1

G0
PG0

B0

org

TRB1
W = TRG1

G0
TRB0

W

3.6.1. Reservoir Sampling to Mitigate Grasp Pose Replanning

Base pose ranks described above prioritize a base pose that successfully reaches the

most final grasp poses. However, if experiencing large uncertainty, final grasp positions

could be corrected and offset a large physical distance away from prediction. The

{W}

{G
0
} {B0}

{B1}

{G1}
TG0

B0

T=G1
B1

TG0
B0

TG1
G0

Base pose (B0)
corrected after gripper

pose (G0) changes

33

system shown in Figure 3.1 permits replanning (i.e. selecting a new base pose to

regrasp), but planning, with uncertainty, can mitigate this action. The most significant

source of error for grasping is position uncertainty because a poorly positioned gripper

can bump or not even touch the OI to cause a failed grasp. When utilizing a trapping

strategy (i.e. closing a gripper around an object), successful grasps are shown to still be

possible with minor orientation error, i.e. less than 20°[70, 71].

To represent grasp position uncertainty, a box is defined around Gp. The box’s

dimensions are defined to represent expected uncertainty. The pre-grasp pose, Gp, is

cloned to fill the box at discrete intervals. Reservoir sampling[72] removes a percentage

of cloned poses. Base pose ranks are recalculated, as described in Section 3.6, for the

remaining cloned Gp poses. This new rank prioritizes a base pose that can be offset to

the most positions and can still successfully reach a final grasp goal.

34

3.7. Experiments and Results

3.7.1. Implementation

Framework implementation is developed within the Robot Operating System (ROS).

Within ROS, MoveIt!’s interface[61] is configured to implement RRT-Connect from the

Open Motion Planning Library[73] to guide our 6-DOF manipulator along collision-free

trajectories [65]. The goal and orientation tolerances for the end effector are set to 0.5cm

and 1° respectively. Manipulator joint tolerances are set to 0.28°. Base navigation,

utilizing ROS’ dynamic window approach planner[74], is performed with a base pose

tolerance of 15cm and 5°. Base translational and rotational velocities are limited to

0.7m/s and 57.3°/s respectively. During grasp execution, base pose goal tolerance is

reduced to 4cm and 5°; translation and rotational velocities are also reduced to 0.15m/s

and 14.3°/s to prevent the base from oscillating at the base goal.

Two octomap servers are launched. World octree 𝓦 is used for collision avoidance to

safely move the manipulator. Octree 𝓦 encompasses the room, has a resolution of

10cm and is updated by the Velodyne and Hokuyo sensors. Three hundred NBVs are

randomly generated between a radius of 1.0m and 1.5m from the OI. This range is

selected to permit the base to freely move around the OI. Octree 𝓜 surrounds the

unknown OI and updates NBV rankings to guide model reconstruction[57]. Object

modelling is guided using a 70cm x 70cm x 50cm octree 𝓜 surrounding the OI with its

resolution set to 0.8cm. Any object(s) set within this bounding box is processed for

modelling and grasping. A ray-cube intersection algorithm detects when the eye-in-hand

laser data passes through octree 𝓜’s bounding box, and if this occurs, laser data is

virtually terminated along the bounding box’s border[58]. Practically, this step is

necessary to update the octomap because its current implementation only updates if a

‘hit’ occurs within its defined bounds. Unorganized point clouds model the object and are

processed using the point cloud library (PCL)[75].

3.7.2. Object Reconstruction by Varying Overlap

To demonstrate our NBV algorithm, our system was first configured to autonomously

scan the OI after selecting five NBVs with ω = 0.3 to ω = 0.7 at 0.1 increments. The

scene and OI never changed during runs. A model of the OI was first constructed by

35

manually choosing 32 scans to create an approximate ground truth reference model

(MR) for validation. A model was created from real data because our simulation

environment, i.e. ROS Gazebo, is intended to model physics and represents objects with

meshes (without a ground truth point cloud). Initially, MR is registered to the first scan S0.

During the experiment, GICP registers subsequent scans (i.e. S1, S2, …Si) to reconstruct

the OI (Mi). Two variants of GICP are implemented with identical parameters, denoted as

GICP3P and GICP6P, when correspondence is estimated from 3D and 6D points

respectively (described at the beginning of Section 3.5). Three transforms are recorded

during each scan for comparison. The first two are: i) GICP3P transform (Ti
3P

) that

registers current scan Si with current model Mi-1, i.e. Si∪Mi-1, and ii) GICP6P transform

(Ti
6P

) that also registers Si∪Mi-1. The third transform (Ti
R

) registers Si∪MR and represents

the ‘ideal’ transform. All constructed models are down-sampled to 4mm resolution, and

two metrics evaluate their construction:

Transform Similarity

Table 3.1: Comparison of GICP3P and GICP6P to Ground Truth.
This table is reprinted with permission from [52]

ω

Registration Failure (Scan #) Ave. Transform Similarity (cm)
GICP3P GICP6P TS3P TS6P

0.3 N/A N/A 3.86 0.78

0.4 3 N/A 3.73 1.88

0.5 2 4 20.06 3.02

0.6 2 4 8.96 6.20

0.7 2 4 8.67 4.69

Transform similarity, TSi
nP

, is the difference in distance after applying the estimated

transforms Ti
nP

 and Ti
R to a point, Porg, located at the origin of the world frame. At the end

of five scans (i.e. k=5), the results are averaged.

TSi
nP

=
1

k
∑‖Ti

nP
Porg- Ti

R
Porg‖

n=3,6

k

i=1

36

Registration Failure

Figure 3.8: GICP3P (left) & GICP6P (middle) merged scans.

Offline model (blue) and GICP3P (pink) / GICP6P (green) point clouds overlayed (right).
This figure is reprinted with permission from [52]

Every consecutive scan will accumulate a small error over time. Empirically, we notice

registration typically fails when TSi
nP

 > 5cm, and we record it when this occurs. Table 3.1

summarizes registration results by modifying the overlap factor ω. As ω increases (i.e.

reducing desired overlap), average transform similarity decreases but not monotonically.

Poor TS
nP

, shown when ω = 0.5, is due to GICP3P registering a scan to create a model

that looks like Figure 3.8a, instead of being aligned like Figure 3.8b. Figure 3.8c

demonstrates the difference between magenta GICP3P and green GICP6P models

registering to the ground truth (shown in blue). This is caused by several factors, like little

correspondence or discernable features captured between scans. Regardless, poor

registration causes a failure to determine a valid grasp. By selecting an appropriate

overlap factor ω, registration failure can be mitigated as shown in Figure 3.8b.

Given sufficient overlap, registrations estimated from GICP3P and GICP6P are similar.

Referring to Table 3.1, GICP3P and GICP6P’s desired overlap can be selected as ω = 0.3

and ω = 0.4 respectively to avoid registration failure. Average TS6P is consistently less

than TS3P; GICP6P transforms are more similar to our approximate ground truth model.

Consistently, GICP6P registers scans more accurately (shown in Figure 3.8b and Table

3.1) and registration failures occur less frequently when concurrent scans have more than

50% overlap, ω < 0.5. This can be viewed in Figure 3.8c as poor registration causes the

GICP3P model (shown pink) to translate ~7cm away from the ground truth (shown blue).

 a. c. b.

37

Figure 3.9: NBV Ranks Before and After a Scan to Reveal Cylindrical Object (ω = 0.5)

(Warmer coloured arrows have the highest ranks).
This figure is reprinted with permission from [52]

Figure 3.9 visualizes NBV rankings when ω = 0.5 (i.e. 50% overlap is desired). In the left

image, the eye-in-hand laser scanned the object’s bottom and table surface. The point

cloud, shown as copper coloured points, is observed below octree 𝓜, shown as a green

voxelized box. Highest NBV ranks (shown as red arrows) orient towards the top of the

object because these orientations overlap with the previous scan. After selecting the

highest ranking NBV (i.e. scanning the object’s top), the right image shows how the

ranks change; red arrows migrate outwards because the object’s exposed sides have

scan overlap with the previous two scans, and more points from the copper coloured

point cloud are revealed. This behaviour repeats until the object is fully modelled. When

ω < 0.5, NBVs are ranked to orient closer to the previous scan. When ω < 0.3 or ω >

0.7, ranking behaviour from the NBVs is not discernable; when less than 0.3, ranks

prioritize viewpoints towards the last scan, and above 0.7, ranks prioritize viewpoints

towards the opposite side of the OI. Warmer coloured arrows indicate highest NBV ranks

and black arrows are ignored NBVs. Initially, all NBVs start and finish with equal ranks,

indicated by navy blue.

3.7.3. Complete Object Reconstruction

In simulation, a tin can is reconstructed until our NBV modelling algorithm self-terminates

(i.e. all CRs are zero), using a scan overlap setting ω = 0.4. At each scan location, NBV

ranks, travel distance, octree 𝓜, and underlying point cloud model are shown in Figure

3.10 and Figure 3.12. Scanning begins at Figure 3.10b and Figure 3.12a where the

38

mobile robot randomly selects a reachable NBV to begin object modelling, and

subsequent images depict the mobile manipulator scanning at the next NBV. The tin can

model and reconstructed point cloud model are observed in Figure 3.11. A more

complex scene including a tin can and cordless drill model reconstruction is observed in

Figure 3.13.

Figure 3.10 and Figure 3.12 show NBV ranking progression as the OI is revealed and

completely scanned. They also show base pose locations the system selects for

scanning. Black arrows indicate zero rank NBVs (i.e. view poses to ignore), described in

Section 3.4.2, because either not enough information exists to calculate a CR or the

object is occluded by an environmental obstacle. Warm colours, i.e. red arrows, indicate

NBV poses prioritized for scanning. Generally, after the first scan, warm NBVs prioritize

poses neighbouring the previous scan. Due to the nature of the frontier leaf’s definition

(i.e. a free leaf next to an unknown), few frontiers are discovered initially. As a result,

many NBVs that surround octree 𝓜 are ignored (and shown as black arrows), except for

view poses near the initial scan.

Iteratively, the mobile manipulator moves to neighbouring view poses and builds a

complete object model, shown in Figure 3.11 and Figure 3.13. The system does not

oscillate (i.e. make large movements) back and forth while scanning. As more scans

continue, zero ranked NBVs disappear because occupied and frontier leafs are

observable at most view poses. As more scans continue, frontier leafs are removed

because more unknown leaf locations are scanned. During this phase, zero ranked

NBVs reappear because all necessary information is gained (or frontiers cannot be

observed) at these view poses. Continued scans remove more frontiers from octree 𝓜,

creating more zero ranked NBVs, until octree 𝓜 is only comprised of free, occupied,

and unknown leafs. Unknown leafs exist, but they do not contribute to generating a

frontier because they are encapsulated by occupied leafs. When all frontiers are

removed, all NBVs will become zero ranked, and the algorithm self-terminates.

39

Figure 3.10: Mobile Robot Sequence Reconstructing a Tin Can Model, ω = 0.4

(Warmer coloured arrows have the highest ranks)

Figure 3.11: Tin Can Model Reconstruction Result, ω = 0.4

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Octree 𝓜
Point Cloud
Revealed

All object
sides scanned

Simulated Object Reconstructed
Point Cloud

40

Figure 3.12: Mobile Robot Sequence Reconstructing Tin Can and Cordless Drill Models, ω = 0.4

(Warmer coloured arrows have the highest ranks)

In both simulation, our modelling algorithm can reconstruct point cloud models and self-

terminate. The underlying point cloud models are initially observed after the third scan,

i.e. Figure 3.10d and Figure 3.12c. All object sides are scanned after eleven NBV poses

are selected, i.e. i.e. Figure 3.10h and Figure 3.12j. Modelling the tin can and cordless

(a) (b) (c) (d)

Octree 𝓜

Point Cloud
Revealed

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

All object
sides scanned

41

drill required five additional scans compared to modelling the tin can only; this is

expected because the cordless drill’s irregular shape self-occludes itself and the other

object. Both reconstructed point clouds, Figure 3.11 and Figure 3.13, resemble their

respective virtual models and show minor registration error.

Figure 3.13: Tin Can and Cordless Drill Model Reconstruction Result, ω = 0.4

3.7.4. Framework Performance

To demonstrate performance, three live experiments are performed to grasp the OI, a

can, while reconstructing its partial point cloud model. The OI’s surface is covered with

construction paper to create a Lambertian surface to improve the Hokuyo laser’s sensor

data quality. NBVs are ranked with ω = 0.40, and grasp successes (or failures) are

recorded.

Figure 3.14: Object Modelling Progress while Avoiding Obstacles.

This figure is reprinted with permission from [52]

To fully model an object with ω = 0.4, the robot needs to move between seven to twelve

view poses. Within five view poses (i.e. within fifteen minutes), the robot scans enough

Simulated Object Reconstructed Point Cloud

a. b.

c. d.

42

of the object to discover a grasp pose. The total time planning a trajectory to an NBV

ranges from 45s to 90s; planning a grasp ranges from 45s to 400s. Grasp planning time

increases as more grasp goals are searched or if the base corrects and replans its final

position. Grasp analysis completes within 45s. Figure 3.14 shows the progression to

model an object while avoiding environmental obstacles. These images show the base is

positioned to keep the manipulator free to scan the OI. By the sixth scan (i.e. Figure

3.14d), most of the object is revealed. Due to the overlap constraint specified for the

NBV ranks, scans merged well to perform grasp analysis.

Work presented in [76] suggests that an object’s principal axis can be used as a grasp

feature. In fact, [18] completes all grasps based only from a center of mass (CoM) and

principal axis estimates from a partial point cloud. We have encountered two issues

using the principal axis to guide a gripper’s pose: i) it works well for long, symmetric

objects but produces incorrect results for objects with an irregular shape (e.g. a cordless

drill) and ii) the principal axis does not stabilize when the OI is partially modelled.

Orientation tends to follow along the point cloud direction that contains the highest

density of points instead of the OI’s true pose, and the priciple axis tends to bias towards

the scanned sides of incomplete model. As our modelling phase guarantees overlap but

not uniform sampling, we avoided estimating the object’s principle axis.

Table 3.2: Framework Performance Summary.
This table is reprinted with permission from [52]

Model
Locations

Base Pose
Corrected?

Grasp Pose
Corrected?

L2 error to Goal
(uncorrected)

L2 error to Goal
(corrected)

1 2 No Yes 6.40cm 0.01cm
2 2 Yes Yes 4.05cm 0.06cm
3 1 No Yes 7.90cm <0.00cm

Table 3.2 summarizes results to autonomously grasp an OI. Desired grasp poses are

corrected, and the gripper reached its desired grasping goal. During the second run,

corrected grasp poses fell outside the robot’s dextrous workspace, and the base

repositioned its location to complete the final grasp. Although not recorded, if the base

pose correction is less than the goal tolerance of the base planner (<4cm radius), the

base will not correct its desired base goal because it is already within its base goal

threshold. While testing, more than one attempt at base correction has never been

observed.

43

Chapter 4.

Generalizing Grasping for Multiple Grasp Types

4.1. Problem Statement

We present a generalized grasping approach for mechanical grippers that permits

grippers with any number of fingers to discover poses for different grasp types. Grasp

type matching is performed in a computationally efficient two stage process. In the first

stage, a set of grasp type orientations that yield a “pure shape” match are discovered by

matching histograms between finger contacts’ (corresponding to a grasp type) and

objects’ surface normals. A pure shape match is when a gripper’s finger contact normal

distribution matches that observed among a set of object surface normals. In the second

stage, “size” of grasp type is matched by cross-correlating voxel grids representing the

gripper with partially viewed objects. Furthermore, collision constraints, e.g. the gripper

palm, can be accommodated in the second stage as one single step by introducing

negative penalties during cross-correlation. Due to decoupling matching shape from

scale, a grasp contact verification stage is added to verify grasp positioning after cross-

correlation; finger contacts may physically match an object surface but gripper contact

normals may not perfectly align with observed surface normals. A tolerance rejects

poses when the angle between any gripper contact and object surface normal becomes

too large.

Objects are assumed to be rigid, at rest, on a table, and their context is unknown. The

presented algorithm should generate grasp poses along an object surface that match a

grasp type to reasonably lift an object. Contextual information (i.e. objects are stacked,

are slippery, fused to the table, need to be retrieved in a specific order) is not

considered. Task information, (i.e. human-to-robot transfer or grasping securely) is

decoupled from pose generation and incorporated as a final stage to refine pose

generation results.

4.2. Introduction

Grasp planning and manipulation is fundamental in a variety of robotic domains, in

particular for assisted robotics to aid people to complete a wide variety of tasks. In

44

robotics literature, grasps are planned based on analytical and heuristic approaches to

securely grasp an object[8, 9]. For instance, force closure and caging works focus on

analytical methods that rely on an object’s geometry, kinematic, and/or dynamic

equilibrium[77-80]. A limitation for these methods is their design is typically for one

specific task wrench (such as resisting gravity) or grasp type (such as a two fingered

pinch grasp). As pointed out in [43], newer learning-based methods tend yield a single

grasp type per object for multi-finger grasps.

4.3. Motivation

Planning for a single grasp type is rather limiting because the grasp type itself is

determined from the task being accomplished, e.g. a power grasp to hold a tool, tripodal

to grasp a ball, or precision to hold a pen[43]. Determining a grasp itself is not simply

securing an object with parallel jaws, rather it is completing a practical task comprising of

multiple sub-tasks which may require different grasp types. Securing an object is only

one sub-task; other task types include object transfer, object manipulation, tool usage,

etc. The principle objective of our research is to simultaneously generate grasp poses for

different grasp types to accomplish a task.

A key feature of our work is discovering grasp candidates for multiple grasp types

without explicitly estimating an object’s grasp stability. A stability check is forgone

because our approach is designed to work with partial object information; such a stability

check would generally require complete object information. When quantifying grasp

robustness, a contact region (and not a point) can potentially provide stable grasps over

large perturbation between an object’s surface normal and grasp axis angle[81].

Capturing this behaviour is desired for systems experiencing uncertainty. We posit that a

grasp taxonomy’s grasp type[82, 83] is inherently stable if defined correctly, and our

algorithm is motivated by this observation. For example, a pinch (or parallel) grasp

applied by a human to a plate’s corner may not be stable due to torque allowing the

plate to rotate between each finger; however, this is a common grasp for humans (who

have soft fingers[84]) because more force can be applied at one’s fingertips to increase

friction and prevent rotation. Many newer multi-fingered grippers (e.g. Barrett, Schunk,

and Robotiq) have soft material enveloping their fingers that could resist torque similarly.

Discovering grasp candidates for a grasp type is not ‘optimized’; we argue optimizing (or

selecting) a grasp should be a final decision because any optimization is dictated by a

45

task—e.g., if a task is securing an object, force closure and caging are optimized to

restrict an object’s dynamic motion, but the consequence is the gripper contacts will

ideally surround an object. If the task changes to handover, a sub-optimal grasp (in

terms of minimizing dynamic motion) is desired to reveal more surface area for the

receiving person to grasp.

In grasping literature, there is an implicit theme to place importance on object shape.

Object shape requires an appropriate grasp taxonomy[82], but this leads to a significant

problem; an infinite number of shapes requires numerous grasp types. A human hand is

observed to have over thirty different grasp variations[82, 83, 85]. Computing all grasp

types for all objects would be an endless task. However, the search space for grasping

can be reduced if we focus to generalize grasp types rather than an object’s shape. The

key idea in our approach is to discover if a grasp type exists or “matches” to a set of

contacts on an object’s surface; we assume a grasp is achievable if it exists. If a grasp

type does not exist, that grasp cannot be executed. Even though over thirty grasp types

exist for a human hand, these types can be generalized to a smaller set for a mechanical

gripper to complete a task. (i.e. pinching, power, tripodal, parallel, ring, etc.)[85].

4.4. System Overview

Figure 4.1: Grasp Pose Pipeline Overview.

Simple Gripper
Point Cloud &
Normal Model

(p1,n1) (p2,n2)

(p3,n3)

Object
Point Cloud &
Normal Estimate

Gripper
Normal
Histogram

Hg
Object
Normal
Histogram

Ho
Gripper
Point
Voxel

Vg

Object
Point
Voxel

Vo

Rotate Gripper Pose: R(αg,βg,γg)

Rotate Gripper & Match Normal Histograms:

𝐑(αg, βg, γg)𝐇𝐠(βi, γiሻ ⊆ 𝐇𝐨(βi, γiሻ

Rank Gripper Pose

Hr(αg,βg,γg)]=∑Nlog[Ho(βi,γi)]

Contact Point Matching:

Vgo(αg,βg,γg) = R(αg,βg,γg)Vg ⋆ Vo

Sorted list of (αg,βg,γg)

Vgo(αg,βg,γg) ≥ N

∑Nng•no ≥ nth

Gripper Pose
Valid

Check Next
Gripper Type

Yes

Yes

No

No

S
ta

g
e
 1

S
ta

g
e
 2

V
e
rific

a
tio

n

46

Our system determines a grasp pose by cross-correlating a gripper’s grasp type shape

with an object’s surface. Grasp type shape is modelled by desired contact surface

normals. For example, a parallel jaw can be represented by either two or an array of

opposing contact normals. Grasp types selected for multi-fingered grippers is inspired by

human grasp taxonomy, and we investigate modelling power, tripodal, and lateral grasp

types[83]. We assume object(s) being modelled are represented by a point cloud, a

collection of points located on an object’s surface (obtained via a range sensor) and their

respective normal (estimated from the point cloud). Our algorithm’s flow diagram is shown

in Figure 4.1. A grasp plan for a single grasp type is completed in two stages using two

data structures: 1) surface normal histograms, denoted by Ho for object surface normals

and Hg for finger or grasp contact normals, and 2) 3D voxel grids, Vo for object voxel grid

and Vg for gripper voxel grid, computed from point clouds. Furthermore, by adding negative

penalties to the gripper voxel grid, a collision-free grasp and a “straight line path” to the

object can be predicted in one integrated step. A surface normal histogram discretizes

surface normals to their respective spherical coordinate angles, inserts them into bins,

and shows the surface normal frequency for an object. Grasp contact normals for any

grasp type are used to create Hg and are defined a priori. The advantage to using surface

normal histograms is that they are invariant to translation and rotation from any viewing

angle within the world frame. High frequency noise is filtered because quantizing surface

normals smooth these frequencies.

Computational efficiency for our system is achieved by decoupling shape matching

(using contact surface normals) from scale (using contact points). A similar matching

result may be achieved by cross-correlating gripper contact normals and points in 6-

dimensions (6D). However, the computation time to cross-correlate hypercubes in the

frequency domain is O(vDlog(v)), where ‘v’ is the number of voxels needed to create a

cube’s length, ‘D’ is the spatial dimension, and vD is the total number of voxels in the

hypercube [86]; a decoupled approach in 3D results in significant computational

efficiency.

47

4.5. Grasp Planning Overview

4.5.1. Stage 1: Match Grasp Type Shape

Figure 4.2: Stage 1 Example for Parallel Jaw to discover Gripper Orientation.

Stage 1 determines if a grasp type shape (not the scale) “matches” any part of viewed

unknown objects, i.e. a grasp type’s set of contact normals are observed on any

scanned object. A grasp type model is created using point normals to define desire

contact points on a gripper. A straightforward measure for “matching” shape is pairing

object surface normal bins to non-zero bin locations within the grasp histogram. A grasp

type’s contact normals used to create Hg, defined a priori, are rotated by the gripper’s

orientation using Euler angles. For each gripper rotation, a rank quantifies how many

object surface normals match desired gripper contacts. Heuristically, this step selects

and ranks grasp orientations (i.e. top-down, sideways, etc.) that match the grasp type’s

shape to any observed objects.

A Stage 1 example, shown in Figure 4.2, illustrates a parallel jaw gripper with two

contact points matching a partially observed box (in 2D). Two point normals represent

the gripper’s desired shape to contact the object. Constraints, i.e. a palm, are not

illustrated because they are a physical shape constraint (i.e. not represented by point

normals). In this example, the gripper model contact normals (shown as lines) align with

the observed object normals only when the gripper pose is rotated ±π/2; thereby,

rotating the finger contact normal by the same amount. Green lines are inverted gripper

contact normals. Blue lines are outer surface normals associated to the object. These

orientations will need further investigation to determine if the shape’s scale matches the

gripper in a subsequent stage.

Gripper Model
Point Cloud

Rotated
Gripper Model

Observed Object
Point Cloud

Result

R(0,0,-π/2)

R(0,0, π/2)

R(0,0, γ)

•
•
•

⊆

⊄

✓

✓

X

⊆

48

4.5.2. Stage 2: Match Grasp Type Scale

Figure 4.3: Stage 2 Example for Parallel Jaw to Discover Gripper Orientation.

Stage 2 determines if a grasp type’s contacts points “match” a set of observed surface

points on the object. Gripper orientations that satisfy Stage 1 are used to rotate a grasp

type’s point cloud model. Rotated points are then inserted into a gripper voxel grid (Vg)

and cross-correlated with the object’s voxel grid (i.e. Vgo=RVg⋆Vo), where ⋆ denotes a

cross-correlation operation and R is gripper orientation. Peaks from correlation greater

than or equal to the number of grasp type contacts identify potential grasp locations.

Stage 2 for the parallel jaw gripper is shown in Figure 4.3, where parallel jaw gripper’s

green contact points are cross-correlated to an object’s blue surface points; from cross-

correlation, an orange ‘X’ identifies potential positions where the parallel jaw matches

the object’s surface, i.e. correlation is high. Symbolic red points are constraints applied

to a region (with negative values) that should not collide with the object. Red points

physically represent the gripper’s palm and wrist. Lastly, a final step revisits potential

grasp locations, finds the gripper contact points closest to a surface point in the object

point cloud, and verifies each contact normal and object surface normal are in a “similar”

direction. If similar, the grasp type’s complete pose is inserted into a list for execution.

4.6. Grasp Planning Details

4.6.1. Stage 1a: Surface Normal Histograms

A surface normal histogram, shown in Figure 4.4, is created by representing a point

normal, n=(nx,ny,nz)T via two spherical angles: 1) elevation / pitch βi:[-π/2,π/2] and 2)

azimuth / yaw γi:[0,2π), where ‘i’ is a coordinate (βi, γi) within histogram H.

β
i
= acos(nzሻ, γ

i
= atan2(nx,ny) ,nz≠±1

RVg⋆Vo

Gripper Model
Point Cloud

Rotated Gripper

Model (RVg)

Partial Object

Point Cloud (Vo)

R(0,0, π/2)

Grasp Pose
Result

+1 +2 +2 +2 +2 +1
+1 +1 +1 +1

+1 +1 +1 +1 +1 +1

Vgo Voxel Grid

Correlation
Overlap

+1
+1

+1 +1 +1 +1

+1 +1 +1 +1 +1
+1

+1

+1

+1

-∞
-∞

-∞
-∞

-∞
-∞

-∞

-∞

-∞

V
g
 Voxel Grid

V
o
 Voxel Grid

49

Figure 4.4: Surface Normal Histogram Data Structure.

Angles are discretized into uniform bins and incremented. Due to gimble lock when a

normal is orientated at north or south poles, a unique solution to γ does not exist. For

these two cases, all azimuth bins for the polar elevation angle are incremented ∆γ/2π,

where ∆γ denotes bin size. Normals for the gripper represent the grasp type’s contact

orientation; their orientation faces opposite to an object’s surface normals so an inverted

normal is inserted into Hg, i.e. Hg[-n].

4.6.2. Stage 1b: Matching Histograms

All histograms share the same angle resolution. If all non-zero gripper bin locations

Hg(βi, γi) are also non-zero at the same object histogram bin location Ho(βi, γi), there

exists a possibility the grasp shape is on the object’s surface. However, this is only true

for one gripper orientation. To match a grasp type shape for all orientations, N gripper

contact normals n∈ℝ3×1 are rotated using Euler angles roll αg:[0,2π), pitch βg:[-π/2,π/2],

and yaw γg:[0,2π). A rotation transform is defined as Rzyx(γg, βg, αg)∈ℝ3×3. Rotated

normals are then mapped to a histogram index, and these indexes are referenced to the

object histogram to determine a rank. This method is fast because few gripper contacts

are needed to represent grasp type. Note that gripper rotations correspond to bins

shifting in Hg.

4.6.3. Stage 1c: Ranking Different Orientations

Figure 4.5: Surface Normal Histogram Matching (Bin Resolution = π/7).

Z

X Y

βi

γi

 n=(nx,ny,nz)

2π

β

γ 0

+1
(β

i, γi
)

π/2

-π/2

2π 0

+π/
2

-π/2

βi

γi

+2 +1

2π 0

+π/
2

-π/2

βi

γi

+5 +3 +9 +1 +1

Hg

Ho

Gripper Model

Partially Scanned Object

2π 0

+π/
2

-π/2

βg

γg

∑ logൣHo(β
i
,γ

i
)൧

N

i=1

R(0,0) :logሾ(5)(9ሻሿ ≈ 2

R(0,
π

2
) :logሾ(9)(5ሻሿ ≈ 2

Hr
2 2 0 0 0 0 0 0 0 0 0 0 0 0

50

Gripper orientation ranks are stored in a third surface normal histogram structure, i.e. a

histogram result Hr, whose structure is shown in Figure 4.4. For simplicity of

visualization, the axis corresponding to roll αg is not shown, but it is added to Hr as a

third axis to index ranks for all possible rotations R(αg, βg, γg). A bin in Hr(αg, βg, γg)

indexes a specific gripper orientation, and the rank value stored quantifies how well Hg

matches with Ho. Ranks for an N-contact grasp type are defined as:

Hr (αg,β
g
,γ

g
) = {

∑ logൣHo(β
i
,γ

i
)൧

N

i=1

, Ho ≥ R(αg, βg, γg)Hg ≥ 1

0, otherwise

Rank is a rough measure to indicate the combination of each finger contact normal

choosing a surface normal. If all normals match, the logarithmic product is performed at

all Ho bin locations that correspond to non-zero Hg bin locations. Surface normals do not

match when Hg(βi, γi) ≥ 1 and Hg(βi,γi) > Ho(βi,γi). This condition’s intuition is too few

object surface normals exist for the quantity of gripper contact normals requested. For

this condition, Hr(αg, βg, γg) is set to zero. Practically, thousands of surface normals can

represent an object, creating large values within Ho. Rank values can become extremely

large using high resolution models. To mitigate this problem and keep rank values small,

a log transformation is performed. Intuitively, rank maximizes when the most surface

normals exist for each grasp.

Figure 4.5 illustrates a 3D example to create Hr(βg, γg) using 2D rotation R(βg, γg). All

histograms have a resolution set to ∆γ = π/7 (~25.7°). In this example, only yaw R(0, γg)

is possible to rotate the gripper. If the gripper elevation angle changes, the same Hr

results would shift up/down along β-axis for Hr. Figure 4.5 demonstrates the logarithmic

product rank. By comparing histograms, bins in Hg align with Ho when γg = {0, π}. For all

other rotations, Hg bins do not match Ho and Hr(0,γg) = 0. Although Stage 1 determines if

a gripper orientation matches the grasp type shape to object surface, Stage 2

determines both the scale of the object shape and if it satisfies the gripper’s physical

constraints.

51

4.6.4. Stage 2a: Voxel Grid to Match Contacts

Figure 4.6: Voxel Grid Model for a 2-Contact Parallel Grip.

An object bounding box, Vo∈ℝ3, surrounds all object(s) being scanned, and a regular

grid discretizes space into voxels. Each voxel is addressed by indexes, I = (i,j,k)T, where

Vo(i,j,k) = 1 if it corresponds to a scanned location and Vo(i,j,k) = 0 if space is empty or

unscanned (because unscanned regions also include a point cloud’s subsurface that we

want free). Discussed in this section’s third paragraph, an additional palm contact added

to a grasp model prevents poses to generate in unscanned regions. Shown in Figure

4.6, a gripper bounding box, Vg∈ℝ3, surrounds the gripper’s grasp type being modelled

and discretizes space with the same resolution as Vo. Vg(i,j,k) = 1 to model a contact

point and its range of motion prior to contacting an object. This motion is defined by a

directional vector for our system with adjustable length and represents a finger contact’s

motion just prior to contact. This generalizes a grasp type for different object sizes.

Precise motion depends on the finger joint’s kinematics, which can be modelled

precisely. However, modelling straight line motion, i.e. a sliding joint, is computationally

more efficient and a reasonable approximation for a relatively small range of motion;

hence, we implemented this approximation for our system. We modelled rotational

motion as a trial, e.g. revolute finger joints, but in practice, no significant effect was

observed modelling an arc for rotational motion. Due to voxelization, an arc or chord

passes through similar voxels over short distances.

In Figure 4.6, two vectors, shown as arrows, point towards each other to model a parallel

gripper partially closing. A grasp contact assumes its location is graspable for every

point along the vector. Vector length generalizes the grasp type for different object sizes.

Long vector lengths correlate with more object size variation while short vector lengths

correlate with less object size variation (i.e. a grasp type becomes more size-specific).

However, too long a vector length may generate larger pose offsets from an object’s

X

Y {g}

+1 -255 +1 -255

-255
Vg Bounding Box

Wrist Constraint /
Cartesian Path Planner

Contact Point Path of Travel
(arrow shows direction)

Contact Point Limit

 +1 Contact: Favour Scanned Side of Object

(Optional)

52

primary axis; if closing a gripper uniformly, fingers will contact the object at different

times causing a sliding motion. Vg(i,j,k)=0 represents empty space. Vg(i,j,k)=-255 for

constraints. A grasp type’s contact points and constraints are stored in a point cloud

prior to voxel grid insertion. To indicate a point’s positive or negative value, its RGB

(green and red) colour value is changed.

Optionally, it is desirable to incorporate additional constraints with the grasp type model;

their purpose is to create desirable behaviour for a grasp type. A collision-free linear

path to grasp an object can be discovered by cross-correlating voxel grid grasp types

with partial object voxel grid representations. Referring to Figure 4.6, constraints outside

the gripper contacts penalize surfaces larger than the gripper’s “maximum opening”,

specify a minimum gap required to place a finger between objects, and center the

gripper palm with respect to contact points (that coupled actuation would need). A wrist

constraint prevents the gripper’s palm from colliding with an object’s surface. An

additional contact vector from the palm can be added to favour grasp poses along an

object’s observed surface. This contact requires the gripper’s palm to face an object’s

observed surface. The voxel representations in Figure 4.6 and Figure 4.10 demonstrate

this contact vector for lateral and tripodal grasp types. Without this vector, cross-

correlation can yield valid pose results from both sides of an object (on observed and

unobserved sides), and for safety, grasp poses should only exist in observed regions.

Frames {o} and {g} are attached to the center of Vo and Vg bounding boxes respectively.

Object and grasp type voxel grids are built within their respective reference frames; this

allows points assigned to Vg to be rotated first and registered to Vo afterwards. The

object’s point cloud updates Vo after each scan. Cross-correlation between Vg and Vo is

performed using the Fast Fourier Transform (FFT). Once voxel grid size and resolution

are set, correlation runtime is fixed. Large object point clouds do not negatively impact

our algorithm because they are down-sampled to a fixed size voxel grid. In Cartesian

space, cross-correlating identical M-sized voxel grids Vg with Vo at any gripper

orientation R(αg,βg,γg) is defined as:

Vgo(α,β,γ)
(x,y,zሻ= ∑ R(α,β,γ)Vg(i,j,kሻ

M

i,j,k=0

Vo(x+i,y+j,z+kሻ

53

Since a voxel grid represents physical space, a grasp type model Vg is bounded by a

relatively small box while the object voxel is adjustable. The largest impact to this

algorithm is voxel resolution (Vres), but for grasping, resolution can be about as coarse as

a gripper’s finger width. Correlation also solves two problems with one step: 1) it

indicates where a grasp type shape is most similar to the object, and 2) the wrist

constraint length determines a collision-free linear path for the gripper to move through.

A complete gripper pose, using orientations from Stage 1, is found for an N-contact

grasp type when any voxel Vgo(α,β,γ)(x,y,z) is greater than or equal to N.

4.6.5. Stage 2b: Verifying Normals and Contacts

Figure 4.7: Removing Illogical Grasps when Surface and Contact Normals Mismatch.

Contact location (light green) examples for a Partially Scanned Box (blue).

Since shape and scale matching are decoupled into sequential steps, the results after

cross-correlation may include locations that do not logically yield a grasp. Two examples

are shown in Figure 4.7; Case 1 shows a grasp type’s contacts creating a plane in the

figure. As a result, the correlation will correspond to a planar surface on one object face

instead of two opposing faces. A single face on an object is not graspable. Even if the

solution appears graspable, contacting edges are not desired because these locations

offer the least amount of surface area for the gripper to touch. Case 2 in Figure 4.7

shows a similar example, but contacts align at an object’s corner (i.e. several faces that

are not opposing). If the gripper contacts close around an object’s corner, the object will

likely slip free.

Verification reasonably checks grasp contacts and their respective normal so that both

match the partially scanned object surface. A grasp type position is verified by re-

checking the contact normal’s direction. At every potential grasp position, a k-nearest

neighbour search is performed for each contact relative to the object(s)[87]. When the

closest point on the object is discovered, the inner product of its normal with the gripper

Case 1:
Grasp contacts co-align
with object face

Case 2:
Grasp contacts co-align
with object corner

54

normal is taken. The inner product for verification must be greater than a parameterized

threshold (nth). We define it as a similar size as one surface normal histogram bin, i.e. nth

= cos(∆γ).

4.6.6. Additional Stages: Task-based Grasping

A strength for the first two stages is many reasonable grasp poses are generated in near

real-time by matching a grasp type to an observed object’s surface. This is desired for a

robotic platform experiencing uncertainty because many alternative grasp pose options

exist if the desired final grasp pose fails. In addition, more options permit higher-level

decisions to refine and select a grasp location based on a specified task.

For robot-to-human object transfer, a robot should select grasp pose locations that

permits more surface area for another person to grasp; this action gives a person more

opportunities to hold an object securely. However, estimating total surface area is

difficult given a partial object model. Instead, overlapping grasp poses from all grasp

types can identify graspable locations easily. For example as depicted in Figure 4.8, a

cylinder’s center has more grasp pose solutions than the cylinder’s ends. If many grasp

pose solutions exist at one region that match several grasp types, that region is

assumed easily graspable. An algorithm can select this region if a task is specified as

securing an object. For a robot-to-human transfer task, an algorithm can avoid this

region, leaving it for the human receive to grasp.

Figure 4.8: Task Selection based on Box Collisions

Given grasp type point clouds used to create grasp type voxel models depicted in Figure

4.6 and Figure 4.8, collision boxes encapsulate gripper contacts and wrist constraints

within one voxel resolution. The gripper contact collision box detects if finger contacts

from two grasp poses overlap. The wrist contact collision box detects if two grasp poses

Ptip_min

P
tip_max

P
base_max

P
base_min

Grasp Type Collision Box Model
-Surrounds Finger Contacts
-Surrounds Wrist Constraint

Overlapping Boxes
Desired for Securing

Object Task

Non-Overlapping Boxes
Desired for Robot-to-Human

Transfer Task

{Gf1} {G
f2

}

✓

{G
f1

}

{G
f2

}

✓

55

are orientated in similar directions. The gripper contact collision box is defined using two

points, denoted as Ptip_min and Ptip_max, that surround the minimum and maximum gripper

contact point (by one voxel resolution). Similarly, the wrist constraint collision box is

defined using two points, denoted as Pbase_min and Pbase_max, that surround the minimum

and maximum wrist penalty locations. In practice, eight points define the edges of a

collision box, and all eight points are transformed (i.e. rotated and translated) in the

world frame. After transformation, the minimum and maximum edges are assigned

Pname_min and Pname_max respectively. These points create two bounded regions for all

other grasp type poses to avoid. Iteratively, collision boxes are created similarly for all

remaining grasp poses to test overlap with these regions.

By labelling two collision boxes as ‘cb1’ and ‘cb2’ respectively, collision boxes overlap

along one axis if xcb1_max≥xcb2_min and xcb1_min≤xcb2_max. If this test is repeated for the

remaining axes, every test must pass to determine if cb1⋂cb2; if any test fails, cb1 and

cb2 do not overlap. The following ranks are applied for robot-to-human transfer and

securing an object tasks:

 Robot-to-Human Transfer Task: increment rank every instance two collision

boxes do not overlap, shown in Figure 4.8.

 Securing an Object Task: increment rank every instance two collision boxes

overlap, shown in Figure 4.8.

Intuitively, the robot-to-human transfer rank maximizes when both finger and wrist

collision boxes avoid all other collision boxes, and securing an object task maximizes

when both finger and wrist collision boxes overlap with all other collision boxes.

4.6.7. Calibrating (or Offsetting) a Gripper Frame for each Grasp Type

Figure 4.9: Shifting a Grasp Frame to tune Grasping

The grasp gripper frame (i.e. g) may not be ideally located at the desired grasp location

between desired contact locations, as shown in Figure 4.9. A gripper model can be

X

Y {g’}

X

Y
{g}

Tg'
g

56

recreated to locate grasp contacts symmetrically around a new frame offset, assuming

the same grasp type; alternatively, the gripper frame can be transformed to a new

location. Given the grasp type frame’s origin (i.e. Porgg
W

), an intermediate calibration

transform (i.e. Tg'
g

) or offset (i.e. Pg'
g

) is defined relative to the gripper frame to create a

new grasp type origin (i.e. Porgg'
W

). The new grasp type origin and pose are defined as:

Porgg'
W

= Tg
W

Pg'
g

 + Porgg
W

Tg'
W = Tg

W
Tg'

g

Heuristically Removing Grasp Poses Passing Through a Table Surface

Within the grasp pose generation algorithm, the options available to avoid and mitigate

generating a grasp pose that causes a gripper to collide with a table’s surface is as

follows: 1) Grasp type shapes should not be generalized to cross-correlate with a table’s

surface, 2) a Stage 1 orientation search can define pitch (i.e. β) to only orientate towards

(i.e. β:[-π/2,0]) and not away (i.e. β:(0,π/2]) from a table’s surface. For example, grasp

poses for a box can orientate underneath it, and 3) grasp type model voxel constraints,

shown in Figure 4.6, can define finger limits or added constraints around desired contact

locations to detect when a grasp type gripper model passes through a table’s surface.

Within our proposed grasping system, octree 𝓦 guarantees a mobile manipulator avoids

collisions with any observed obstacle and unobserved regions. However, in the absence

of these measures, grasp pose generation after cross-correlation (i.e. Stage 2) can be

heuristically filtered.

Previously discussed in Section 4.6.7, the grasp type gripper frame can be offset to a

new location relative to its original frame. Complete pose information is given by

referencing locations relative to the final grasp frame (i.e. relating to Section 4.6.7,

Tg
W

= TGf

W
 is the final grasp pose and T=g'

g
TGf′

Gf represents any pose relative to the final

grasp frame). For every grasp pose generated after cross-correlation, edges relative to

the grasp frame (i.e. TGf′
Gf) are defined to create a collision boundary for the gripper.

Iteratively, eight edges locate four corners bounding the gripper’s wrist and four corners

bounding the gripper’s fingertips. If any corner is located below a table surface plane, the

grasp pose is ignored. Table surface height can be observed from a point cloud using

planar model segmentation[88, 89] or assumed known a priori. Determining if a

57

boundary is below a threshold is less computationally expensive than sending grasp

poses to a trajectory planner, calculating inverse kinematics, and determining if the

mobile manipulator collides with observed obstacles. For uneven or unknown surfaces,

utilizing a collision map, e.g. octree 𝓦, is more robust for any planning algorithm

because a table is represented as an avoidable region without using prior assumptions.

58

4.7. Experimental Setup

4.7.1. Implementation

Generalizing multi-grasp type pose generation is developed as a sub-system within the

Robot Operating System (ROS) in our lab for a “fetch an object” task. Our mobile

manipulator comprises of a 3-DOF base (Powerbot), a 6-DOF manipulator (Schunk

Power Cube arm), and a 7-DOF 3-fingered Schunk Dextrous Hand (SDH). A Hokuyo

URG-04LX planar laser is mounted on the manipulator’s wrist as an eye-in-hand sensor

and scans all objects in the environment[52]. Its angular resolution is 0.36°. The overall

integrated system comprises a motion planning and next best view (NBV) algorithm for

automatically scanning an unknown object of interest in an unknown environment and

is discussed in detail[52]. The focus of this paper is to show reasonable and successful

grasp poses for different grasp types can be generated for a partially or fully scanned

objects. The FFT algorithm that cross-correlates voxels is developed using the FFTW

library[90]. Cross-correlation is performed by evaluating the Fourier transform for the

object and conjugated (i.e. reversed) gripper voxel grids and evaluating the inverse

Fourier transform after their product (i.e. Vo⋆Vg = ℱ−1{ℱሾVo(tሻሿℱൣVg
* (-tሻ൧}). Experiments

are conducted using an Intel Core i5-3210M CPU @ 2.5 GHz and 16 GB of RAM.

Hardware Limitations

Grasp execution engages all motors simultaneously to trap an object. Sliding may occur

for our system implementation because tactile feedback is not implemented to stop

motors once they contact the object. To mitigate bumping or sliding, other grasping

works added a subsequent stage to rank grasp poses based on grasp robustness[81],

re-align the gripper’s palm so all fingers contact an object simultaneously[10, 41], or

stabilize a grasp from an uncertain pose using tactile feedback[91].

4.7.2. Grasp Models and Parameters

For all experiments, three grasp types (i.e. lateral, tripodal, and power), shown in Figure

4.10 are repeatedly searched at different voxel resolutions. A lateral grasp is modelled

like a parallel jaw gripper; distal pads (or fingertips) move towards each other in a

pinching motion. A tripodal grasp is similar, but each fingertip is separated by 2π/3,

59

forming a triangular shape that closes. A power grasp is modelled as a diamond that

encloses proximal and distal pads around an object at ±π/6. When modelling precise

proximal/distal motion for a power grasp, grasp poses only appeared for a small range of

object sizes. This merits further investigation.

Lateral Grasp Tripodal Grasp Power Grasp

Figure 4.10: Gripper images for three grasp types (top row),

voxel models for the grasp types (middle row), and
implemented voxel representation (bottom row)

The total contact vector length to model our gripper’s motion in voxel grid Vg is 5.25cm,

where 3.75cm is finger motion length, i.e. df, applied as a positive value (i.e. Vg(i,j,k)=0)

and 1.5cm is finger spacing length, i.e. ds, dedicated as a constraint (i.e. Vg(i,j,k)=-255).

These vectors are separated to generalize each grasp type to discover correlations for

objects that range between 3.5cm to 11.0cm in diameter. A fourth contact vector from

the palm is added to the lateral and tripodal grasp to favour grasp poses along the

scanned object’s observed side. The power grasp does not have this vector because

most of the object needs to be observed before this grasp type is discovered. The wrist

constraint is 12.0cm wide (i.e. Schunk SDH width) and extends 10.0cm in length. This

length guarantees the gripper moves collision-free 10.0cm along a linear trajectory prior

to reaching the final grasp pose. Proximal joint motors engage at a constant velocity to

X

Y

X

Y

2π/3

2π/3

X

Y

±π/6 ±π/6

60

apply a lateral and tripodal grasp; both proximal and distal joint motors engage to

complete a power grasp.

Table 4.1 summarizes all voxel model and grasp generation algorithm parameters

selected for experimentation. Behaviour from our grasp pose generation algorithm is

affected by four parameters: 1) Normal histogram search Euler angles, i.e. α, β, γ, 2)

normal histogram resolution, i.e. ∆αβγ, 3) voxel resolution, i.e. Vres, and 4) verification

angle threshold, i.e. nth. Normal histogram search angles and resolution affect the

quantity of gripper poses to query during Stage 1. Brute force or heuristics can select

search angles. For example, search angles for integrated grasping experiments are

heuristically selected to be parallel to the ground plane because the mobile base will not

approach an object close enough to allow any alternative approach. Normal histogram

resolution is below 20° to mitigate grasp failures due to pose orientation error[70, 71]. In

Stage 2, voxel resolution, Vres, affects the volume a voxel ‘smooths’ and object’s point

cloud and respective surface normals. The final verification angle threshold, nth, rejects

grasp poses when the length between any finger contact normal and object surface

exceeds this value.

The object and gripper voxel size are defined as Vo= 50x60x30cm and Vg=30x30x30cm

respectively. The object voxel encapsulates all objects in the world frame. For each

grasp type, the gripper wrist rolls α:[0,2π), pitches (i.e. pivots up/down) β:[-π/2,π/6], and

yaws (i.e. rotates around the object) γ:[0, 2π) at ∆αβγ=π/6 increments, unless stated

otherwise. After cross-correlation, a verification threshold nth=0.9*cos(π/6) is chosen to

confirm the object surface normal align with gripper contact normal within the resolution

of the surface normal histograms. A maximum of 576 cross-correlations could be

performed, but in practice, fewer cross-correlations (i.e. ~20%) are performed because

normal histograms Ho and Hg remove orientations where a gripper normal does not exist

on the object’s surface.

61

Table 4.1: Summary of Gripper Model and Grasping Algorithm Parameters for Experiments

Voxel Modelling Symbol Value
Object Voxel Size Vo 50x60x30cm
Gripper Voxel Size Vg 30x30x30cm
Finger Motion Length df 3.75 cm
Finger Spacing Length ds 1.50 cm
Palm Width N/A 12.0 cm
Straight Line Trajectory Motion N/A 10.0 cm

Grasp Algorithm Experiments Symbol Value
Normal Histogram Search α, β, γ α:[0,2π), β:[-π/2,π/6], γ:[0, 2π)
Normal Histogram Resolution ∆αβγ π/6 or π/12 radians
Voxel Resolution Vres Variable, Typically: 1.0 – 1.5 cm3
Verification Angle Threshold nth 0.9*cos(π/6)

Integrated Grasping Experiments Symbol Value

Normal Histogram Search α, β, γ α:[0,2π), β:{-π/2 ,[0, π/6]}, γ:[0]
Normal Histogram Resolution ∆αβγ π/6 rad
Voxel Resolution Vres 1.5 cm3
Verification Angle Threshold nth 0.9*cos(π/6)

4.8. Experimental Results

Experimental results are divided into two categories: 1) grasping algorithm behaviour as

parameters change and 2) fully integrated grasping. The first category utilizes

simulation, simulated data, and household objects from the YCB dataset[92] to visualize

our grasping algorithm’s performance as key parameters change. The second category

characterizes the integrated system by grasping and lifting real objects from partially

scanned models while experiencing uncertainty. Grasp poses are displayed as three

different colour arrow markers for each grasp type, magenta for lateral, yellow for

tripodal, and red for power.

62

4.8.1. Grasping Algorithm Performance as Parameters Change

Experiment 1: Computation Time as Voxel Grid Size, Vres, Increases

Figure 4.11: FFT-based Correlation Computation Time

as a function of total number of Voxels.

A tin can (Dimension: 10.5cm x 22.0cm) and hand drill (19.0cm x 6.5cm x 22.0cm) are

completely scanned and modelled a priori with 30,438 points with a resolution of 3.0mm.

The point cloud model is loaded into our algorithm and executed for different voxel

resolutions, where Vres={0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}cm3, and FFT computation time

is averaged. The major computation time is FFT-based correlation in Stage 2 and is

shown as a function of total voxels in Figure 4.11. Time is linear with respect to total

number of voxels (with a slope of 1) but exponential to dimension D, i.e. D = 3. Our

system can process near real-time grasp results for voxel grid sizes up to 800,000

voxels on a standard laptop CPU.

63

Experiment 2: Pose Results for Simulated Objects and YCB Model Dataset

Pyramid
(7 x 30 cm)

Pyramid
(14 x 30 cm)

Cone
(7 x 30 cm)

Cone
(14 x 30 cm)

Figure 4.12: Pose Results for a Simulated Pyramid and Cone†

† Lateral (magenta) and Power Grasp (red)

A simulated pyramid and cone point cloud is inserted into our algorithm’s object voxel

grid. As shown in Figure 4.12, the grasp poses found by our algorithm are poses

broadside to the objects, and as their base size increases, poses migrate upwards to

match their desired size. Tripodal grasps are not found due to the wrist constraint

preventing a top-down grasp, and power grasps only appear when its desired radius on

the object exists.

64

Cracker Box Sugar Box Chip Can

Tomato Can Tuna Can Soft Ball

Baseball Mustard Bottle Bleach Cleaner

Windex Bottle Orange Pear

Banana Toy Plane

Figure 4.13: Pose Examples from the YCB Dataset† (Vres: 1cm3, ∆αβγ : π/12)
† Lateral (magenta), Tripodal (yellow), and Power Grasp (red)

Figure 4.13 visualizes and Table 4.2 summarizes pose results for household objects

from the YCB model dataset after varying voxel resolution (Vres) and normal histogram

bin size (∆αβγ). We make the following salient observations:

 Grasp type shape associates consistently with similar object shapes.

 Fine voxel resolution is more appropriate for smaller objects.

Lateral grasps are associated to box-like surfaces, tripodal to cylinders/balls, and the

power grasps to cylinders. For more complex objects, like the mustard and Windex

bottles, lateral grasps are found along the base’s principal axis and top-down grasps are

proposed to grab the mustard’s base or Windex bottle’s head. The algorithm worked

65

nicely even if the bottle’s model is partial, not revealing its entire shape. Experiments

also reveal fine voxel resolution is needed for smaller objects, like the banana or tuna

fish can. Large voxels applied to small objects average too many surface normals,

making normal estimates inconsistent relative to their surface.

Table 4.2: Pose Generation Results for YCB Model Dataset¥
¥ Bold indicates most frequent grasp type discovered

Grasp Type: L/ T/ P L/ T/ P L/ T/ P

Settings Vres: 1cm3
∆αβγ : π/6

Vres: 1cm3
∆αβγ : π/12

Vres: 0.75cm3
∆αβγ : π/6

Cracker Box 05/003/00 09/003/00 067/043/000
Sugar Box 07/000/00 25/000/00 066/007/000

Chips Can 15/027/04 40/043/07 152/036/111
Tomato Soup 02/40/00 011/40/00 013/078/000
Tuna Fish Can 00/000/00 00/000/00 000/013/000

Softball 00/0133/00 00/139/00 002/292/000
Baseball 00/042/00 00/043/00 001/202/000

Mustard Bottle 22/001/00 64/000/00 104/150/008
Bleach Cleanser 12/041/02 58/015/03 152/088/057
Windex Bottle 01/015/00 07/000/00 006/004/000

Orange 00/001/00 00/004/00 000/392/000
Pear 00/011/00 00/003/00 016/037/000
Banana 01/000/00 01/000/00 014/011/000

66

Experiment 3: Pose Results as Voxel Resolution Changes

Voxel Resolution Side View Top View

Part A Part B

Figure 4.14: Experimental Results while Scanning a Tin Can and Hand Drill†

† Lateral (magenta), Tripodal (yellow), and Power Grasp (red)

Figure 4.14a visualizes grasp results for voxel resolutions Vres = {0.5, 1.0, 1.5, 2.0, 2.5,

3.0}cm3 from the previous experiment. Magenta, yellow, and red arrows indicate a grasp

pose (normal to the gripper palm) for lateral, tripodal, and power grasps respectively. We

make the following salient observations:

 Finer resolution reveals more details and more grasp poses.

 Reasonable solutions are consistently found for low and high voxel resolutions.

 The wrist constraint prevented poses to generate where a straight line grasp
trajectory would pass through a neighbouring object.

In general, higher resolution reveals more details from the scanned objects and more

grasp poses are discovered. Interestingly, reasonable grasp solutions for all grasp types

are consistently found at both low (Vres = 2.0 cm3) and high (Vres = 0.5 cm3) resolutions.

2.5cm3 Scan 1

2.0cm3 Scan 2

1.5cm3 Scan 3

1.0cm3 Scan 4

nth: 0.9*cos(π/12) 0.5cm3 Scan 5

67

This was also observed for the YCB model dataset. For example, a tripodal grasp is

available above the tin can to grasp downwards, the drill can be grasped from above,

and all lateral/power grasps along the tin can’s side face away from the drill to avoid

collision. In fact, the grasping system autonomously selected these pose and avoided

collision with the cordless drill; autonomous grasp examples are shown in Figure 4.15.

Figure 4.15 also visualizes the real scene scanned to create models presented in Figure

4.14.

Figure 4.15: Autonomous Grasp Examples that avoids Collisions with a Neighbouring Object

When Vres = 0.5 cm3, noise (and more details) causes some of these top-down tripodal

grasps to be offset from center. To mitigate these offsets, the contact vector length can

be reduced or verification threshold can become more specific. A verification threshold

example is shown in Figure 4.14a by decreasing the normal verification angle from π/6

to π/12 for Vres = 0.5 cm3. Resolutions Vres = {1.0, 1.5}cm3 smooth noise from the point

cloud and clearly select top-down tripodal grasps. On the other hand, low resolution may

introduce a physical position ‘offset’ error. Our grasp strategy is to trap the object

between gripper fingers. A small position error (i.e. < 1.0cm) is likely to be relatively

harmless for grasping. However, larger errors may cause one finger to bump into the

object first, possibly resulting in the object being moved, e.g. sliding or even tipping over,

potentially causing a failed grasp; this problem is avoided by utilizing tactile sensing to

stop finger motion once a tactile pad contacts an object.

a. b.

68

Experiment 4: Pose Results from Incomplete Information

Figure 4.14b shows grasp results while scanning an object from five different viewpoints

using Vres = 1.5 cm3. Scans are taken counter-clockwise, approximately π/4 radians

apart, around the objects shown in Figure 4.14b. Each consecutive scan is registered

and merged with the previous until a complete object point cloud is created; more details

about this process can be found from our previous work[52]. We make the following

salient observation:

 Grasp pose generation consistently selects similar poses, regardless of a object
model’s completeness.

The first scan did not generate grasp poses. This is expected because a parallel grasp

needs two opposing surfaces to be observed to generate a result. The second scan in

Figure 4.14b demonstrates this behaviour as lateral grasps are found top-down and

along the tin can’s side. All grasp types can be found by the third scan; at this point, the

objects’ three sides are observed. In Figure 4.14b, the point cloud is experiencing 3cm of

registration error; this can be observed from the fifth scan, looking at the point cloud’s

top-right hand corner, where the corners do not align. Please note that our point cloud is

down-sampled to the same resolution as Vres. This error does not significantly affect our

algorithm. Pose locations are still centered with respect to each object, and can allow the

gripper to trap the object between its fingers.

69

Experiment 5: Visualizing Task-Based Grasp Poses

All Poses
Unranked

Robot-to-Human Poses
Ranks

Securing an Object Task
Ranks

Tin Can Tin Can Tin Can

Wooden Box Wooden Box Wooden Box

Cone Cone Cone

Spray Bottle Spray Bottle Spray Bottle

Cordless Drill Cordless Drill Cordless Drill

Figure 4.16: Experimental Grasp Pose Task Rankings†҂

† Lateral (magenta), Tripodal (yellow), and Power Grasp (red)
҂ High Ranks (Opaque), Low Ranks (Transparent)

The purpose for this experiment is to demonstrate how higher-level decisions can be

incorporated with grasp pose generation to rank results. Grasp pose selection is

presenting considering two different tasks: 1) grasping an object to transfer to a human

receiver, and 2) grasping an object to hold it. Object point clouds from Figure 4.13 and

70

Figure 4.18 are re-used, and grasp poses for all grasp types are searched for α:[0,2π),

β:[-π/2,π/6], and γ:[0] at ∆αβγ=π/12 increments. Magenta, yellow, and red arrows

indicate a grasp pose (normal to the gripper palm) for lateral, tripodal, and power grasps

respectively. Unranked grasp poses are compared to poses ranked for robot-to-human

transfer and securing an object. To visualize rankings, high ranking grasp poses appear

more opaque while low ranking grasp poses (i.e. not a good location for robot-to-human

transfer) appear more transparent to invisible.

Unranked Poses Robot-to-Human Poses Unranked Poses Robot-to-Human Poses

Sugar Box Sugar Box Mustard Bottle Mustard Bottle

Chips Can Chips Can Bleach Cleaner Bleach Cleaner

Windex Bottle Windex Bottle Soft Ball Soft Ball

Figure 4.17: YCB Grasp Pose Task Rankings†҂

† Lateral (magenta), Tripodal (yellow), and Power Grasp (red)
҂ High Ranks (Opaque), Low Ranks (Transparent)

Comparing unranked poses to proposed task poses, Figure 4.16 and Figure 4.17, robot-

to-human transfer poses prioritize that have less grasp overlap with other grasp poses.

Securing an object prioritizes object locations having the most grasp overlap. If all grasp

poses overlap (e.g. the Windex bottle), no pose for robot-to-human transfer is

discovered. The soft ball shown in Figure 4.17 favours grasp poses further away from

the object for transfer. This result is promising because more surface area around the

ball would be available if finger tips, rather than fingers, grasp. However, the

consequence is higher precision is necessary to grasp the soft ball without bumping it.

Little change is observed from the sugar box example because grasp poses on either

71

side of the object do not interfere with each other; for transfer, either side can be

grasped. A similar result is observed from the mustard bottle. For both the tin can and

chips can, the can’s top and base are ranked highest; the robot can grasp either location

to allow a person to grasp the can’s top or base for transfer.

72

4.8.2. Fully Integrated Grasping System Performance

Experiment 6: Grasp Execution for Real Objects

Object Pose Pose Uncertainty Grasp Execution

(a)

(b)

(c)

(d)

(e)

(f)

73

Figure 4.18: Executing Different Grasp Types with
Pose Uncertainty: Blue (Assumed), Green (Corrected).

Seven real-world objects are partially scanned, grasped, and lifted 10cm executing

lateral, tripodal, and power grasp types discovered by our algorithm. Four objects

represent primitive shapes while the remaining objects represent a tool, kitchen, and

food items similar (in size, shape, and mass) to the YCB dataset [92, 93]. Objects sit at

rest and poses are varied for each object, as shown in Figure 4.18. Our Hokuyo eye-in-

hand sensor is not able to scan specular or black surfaces. Since several object

surfaces are specular, objects are taped to create an observable Lambertian surface.

Each object was manually scanned counter-clockwise, approximately π/4 radians apart

at four locations. Grasp poses for lateral, tripodal, and power grasp types using

parameters summarized in bottom of Table 4.1. Due to a banana’s small size and high

curvature, no solutions were found at Vres=1.5 cm3; when resolution is increased to

Vres=0.75 cm3, top-down lateral grasp types are found but correctly rejected by our

algorithm due to fingers bumping into the supporting table. For this reason, the grasp

frame for the lateral grasp type was translated 4 cm forward to the gripper’s fingertips.

Our mobile manipulator system randomly selects among the grasp poses generated,

checks if it corresponds to a reachable base pose (via inverse kinematics), and moves to

a computed base position that partially corrects base pose uncertainty[52]. Grasp

execution was repeated 10x per object. Other base locations were selected, and the

experiment was repeated 2x; similar behaviour as reported was observed. A lift is

considered successful if the object is raised 10 cm after grasping it, and a push indicates

the object had a small sliding motion due to a finger pushing the object prior to grasping.

(g)

74

Table 4.3: Experimental Trials to Grasp Objects with Different Grasp Types¥
¥ Bold indicates most frequent grasp type discovered

 Grasp
Type

(Success)/
Trials

Lift Push /
Bump

Feasible
L / P/ T

L2 Error

Settings Vres: 1.5cm3 α:[0,2π), β:[0], γ:[0] ∆αβγ : π/6

Vertical Tin Lateral (10)/10 ✓ ✓ 56/6/0 12cm

Vertical Tin Power (10)/10 ✓ ✓ 56/6/0 12cm

Horizontal Tin Tripodal (10)/10 ✓ ✓ 6/0/3 9cm

Box Lateral (10)/10 ✓ ✓ 84/0/0 9cm

Cone Lateral (10)/10 ✓ ✓ 280/9/0 9cm

Cone Power (10)/10 ✓ ✓ 280/9/0 9cm

Spray Bottle Lateral (10)/10 ✓ ✓ 86/0/0 5cm

Drill Lateral (10)/10 ✓ ✓ 1/0/0 9cm

Banana N/A (0)/0 N/A N/A 0/0/0 N/A

Settings Vres: 1.5cm3 α:[0,2π), β:[-π/2], γ:[0] ∆αβγ : π/6

Banana Lateral (10)/10 ✓ ✓ 5/0/0 10cm

Table 4.3 summarizes results and shows our algorithm generates reasonable grasp

pose solutions for partially observed objects. Our grasp type definitions successfully

lifted objects without optimizing for dynamic stability. Given a banana’s high curvature

and small size, no grasps were found at Vres=1.5 cm3 because voxels average much of a

banana’s surface to compute accurate surface normals.

Finally, a note about uncertainties in our system. These arise due to: 1) mobile base

odometry and kinematic arm model calibration affecting the gripper pose, 2) contact

vector length causing positive correlation over a range, and 3) voxel resolution rounding

a grasp position to a nearest voxel center. Uncertainty is corrected by a predefined final

scan and is described in Section 3.6. This uncertainty is represented as L2 Error in Table

4.3 and is visualized as the difference between green (i.e. corrected) and blue (i.e.

original) point clouds under the “Pose Uncertainty” column in Figure 4.18). In addition,

high curvature object shapes, e.g. a banana, are highly sensitive to contact locations.

75

Experiment 7: Complete Autonomous Modelling and Grasping Experiments

Three experiments are performed to demonstrate autonomous modelling, grasping, and

lifting an unknown object in an unknown environment. A tin can, wooden box, and cone,

shown in Figures 4.18a, 4.18b, and 4.18d are placed on a table to be lifted. Octree 𝓦

and the mobile manipulator use the same resolution and tolerances as described in

Section 3.7.1. Object modelling is guided using a 60cm x 60cm x 50cm octree 𝓜

surrounding the OI with its resolution set to 0.8cm. Scan overlap is configured for ω =

0.4. Grasp pose generation is configured using parameters summarized in the bottom of

Table 4.1. Fifty reservoir samples within a 30cm x 30cm x 10cm bounding box are tested

to compensate for uncertainty reaching 15cm.

Three more experiments, using identical parameters as previously described, are

repeated to model an unknown object and execute a power grasp. These tests are

performed to intentionally extend the object modelling phase for the system and

demonstrate autonomous execution of another grasp type. Generally, a lateral grasp is

the first grasp type to be discovered because it requires fewer contact points (i.e. two

opposing surfaces). To discover a power grasp type, more object surface area is

observed because the grasp type wraps around an object.

During each experiment, the laptop’s system clock records, Total Run Time, Base

Planning Time, NBV Planning Time, and Pick Planning Time. Total Motion Execution

Time is computed by taking the difference between Total Run Time and the sum of all

other recorded times. Base Planning is time needed to create a base pose (for NBVs or

objecting grasping). NBV planning is time needed to generate NBVs, update ranks, and

predict IK at a projected base pose. Pick planning is time needed to predict a reachable

base pose to grasp an object, all reservoir sampling, and Cartesian planning to the final

grasp pose. Motion execution time is time taken to physically execute all base,

manipulator, and gripper execution commands.

76

Figure 4.19: Experimental Results Autonomously Grasping an Unknown Tin Can Object†

† Lateral Grasp (magenta), Warmer coloured arrows have the highest ranks,
Yellow voxels are unknown (or unobserved) regions to avoid, Coloured Gripper Axis is Grasp Frame

Table 4.4: Time Taken to Autonomously Model and Grasp an Unknown Object using any Grasp Type

Object # of
NBV

Scans

Final Pose
Reselected?

Total
Run
Time

Total Motion
Execution

Time

Total Base
Planning

Time

Total NBV
Planning

Time

Total Pick
Planning

Time

L2 error
Compensated

 (#) (s) (s) (s) (s) (s) (cm)

Tin Can 2 No 810 613 0.002 11.496 169.324 15.4
Box 3 No 950 733 0.002 14.360 192.532 9.6
Cone 3 No 993 813 0.001 36.842 135.298 7.6

Table 4.5: Time Taken to Autonomously Model and Grasp of an Unknown Object using a Power Grasp

Object # of
NBV

Scans

Final Pose
Reselected?

Total
Run
Time

Total Motion
Execution

Time

Total Base
Planning

Time

Total NBV
Planning

Time

Total Pick
Planning

Time

L2 error
Compensated

 (#) (s) (s) (s) (s) (s) (cm)

Cone 3¥ Yes 915 807 0.002 53.449 43.408 10.6
Cone 3 No 1124 911 0.001 35.036 170.96 6.3
Cone 4 Yes 1181 1040 0.001 57.517 71.790 11.1

¥ One scan location failed. The mobile system moved to a new location to perform the final scan.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Projection/
Prediction

Projection/
Prediction Base frame does

not reach its goal

Predicted and real
poses do not match

True offset between
prediction and corrected
grasp poses

Planning for
uncertainty succeeds

77

Table 4.4 and Table 4.5 summarize time needed to model and lift the unknown objects.

Scanning an object, discovering a grasp pose, and executing a successful grasp that lifts

an object 10 cm is performed within nineteen minutes. Primarily, the system consumes

the most time executing a base or manipulator trajectory. For example, an object is

grasped after two NBV scans within 13 minutes, three NBV scans within 16 minutes, and

four NBV scans within 19 minutes. Although each additional scan increases total

completion time by approximately 3 minutes, approximately 20 seconds is consumed

completing all predictions to reach an NBV; the remaining time is consumed by real-time

motion execution. Within 20 seconds, an NBV can be predicted and reached by a

manipulator for object modelling.

Computationally, Pick Planning time is the second-most expensive task and required

over three minutes to process all IK for fifty reservoir samples at each base pose. In

Table 4.5, short Pick Planning time is observed, and this is due to these trials having

approximately three times fewer grasp pose candidates other trials (i.e. 5-6 vs 18-24

solutions). Fewer grasp pose candidates and reservoir samples reduce Pick Planning

time, but this causes the system to replan more frequently for another grasp. Replanning

increases the Total Run Time, i.e. robot motion is the most time consuming task,

because the mobile manipulator needs to move to a new base locations. For all

experiments, the system reached the desired grasp pose within 0.5cm, correcting base

pose uncertainty ranging from 7.6cm to 15.4cm.

Figures 4.19, 4.20, and 4.21 show the mobile manipulator’s system described

throughout this work grasping a tin can, box, and cone respectively. Figure 4.19a-d

visualizes Clear Room State, described in Section 2.5.1; in an unknown environment, a

pre-defined motion moves the manipulator to observe the room. Initially, the system is

surrounded by unobserved space and cannot move until free space is detected within

the environment. In Figure 4.19e, base poses are sampled and NBVs are projected back

to the mobile manipulator to determine if they are reachable; this process is described in

Section 2.9.1. Once a prediction is discovered, Navigation State moves the mobile

manipulator to a base pose in Figure 4.19f, and Figure 4.19f-I shows Model State

modelling the unknown object with a partial point cloud, i.e. Section 3.4.1. Grasp pose

generation, i.e. Section 4.4, detected lateral grasps from the partial point cloud model.

Pick State activates during this event, and Figure 4.19j shows the system using reservoir

sampling, i.e. Section 3.6.1, to predict and rank base pick pose candidates that complete

78

a Cartesian trajectory to reach the final grasp pose, i.e. Section 2.9.2. Once a base

candidate is selected, the mobile system moves near that location and performs pose

correction, discussed in Section 3.6, to correct base pose uncertainty. Once corrected,

the true final pick locations, shown in Figure 4.19m, are determined to be much further

away than predicted, but due to prediction from reservoir sampling, a complete final pick

trajectory is discovered and executed to lift the object, shown in Figure 4.19o. Behaviour

observed for the cylinder and wooden box is similar. At each experiment’s end, the

mobile manipulator grasped, lifted, and held each object; these results are shown in

Figure 4.22.

79

Figure 4.20: Experimental Results Autonomously Grasping an Unknown Box Object†

† Lateral Grasp (magenta), Warmer coloured arrows have the highest ranks,
Yellow voxels are unknown (or unobserved) regions to avoid, Coloured Gripper Axis is Grasp Frame

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(q) (r) (s)

Projection/
Prediction

Projection/
Prediction

Base frame does
not reach its goal

Position servoing
corrects grasp poses

Planning for
uncertainty succeeds

(m) (n) (o) (p)

80

Figure 4.21: Experimental Results Autonomously Grasping an Unknown Cone Object†

† Power Grasp (red), Warmer coloured arrows have the highest ranks,
Yellow voxels are unknown (or unobserved) regions to avoid, Coloured Gripper Axis is Grasp Frame

Figure 4.22: Experimental Results Autonomously Lifting and Holding Objects

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Projection/
Prediction

Base frame does
not reach its goal

Position servoing
corrects grasp poses

Planning for
uncertainty succeeds

(m) (n) (o) (p)

81

Chapter 5.

Conclusions and Future Work

5.1. Conclusions

In this thesis, an integrated autonomous grasping system designed for a mobile

manipulator is presented. The system is able to plan and execute grasps for a priori

unknown objects in unknown environments. Our approach integrates collision-free

motion planning and a next best view algorithm to collect and register multiple object

scans in a point cloud model. From this point cloud model, a novel multiple grasp type

generation algorithm is proposed to place different gripper configurations around the

object for grasping.

The grasp generation algorithm identifies grasp locations for multiple grasp types for

varying object sizes in near real time. Two key ideas behind the algorithm are: 1) a

surface normal histogram guides a gripper orientation search, and 2) voxel grid

representation of a gripper and object is cross-correlated to discover a grasp pose for

multiple grasp types. Gripper models for cross-correlation are generalized to find grasps

for objects of different widths and shapes. Lastly, task-based grasping is presented that

utilizes grasp overlap as a feature to identify locations to complete either robot-to-human

transfer or securing the object tasks. Voxel size variation shows grasp results remain

consistent for different resolutions.

At a system level, large base pose uncertainty is mitigated to complete a precise

grasping task. Our system is fully automated, and modelling and grasping an object is

successfully achieved despite base uncertainty. An NBV algorithm is simplified to

prioritize scan overlap as a key feature to reduce modelling error and assist registration

from different viewpoints. Improving registration correspondence by concatenating a 3D

point with its respective 3D normal, improves point cloud model reconstruction.

Reservoir sampling grasp poses near a region mitigates uncertainty by discovering base

pose candidates that yield many IK to a final grasp goal.

82

5.2. Future Work

While we have shown preliminary experiments executing resultant grasps, in future, we

plan to demonstrate our system grasping and lifting an object for different tasks as

benchmarking protocols stated in [93]. Preferably, these demonstrations are performed

on a fixed-base manipulator using a 2D eye-in-hand lidar to model faster without base

pose uncertainty affecting the final grasp pose. A fixed-base manipulator also permits

more demonstrations and repeatable tests.

Automatically determining voxel size resolution can be explored further. Results show

small and large voxel size are more appropriate to discover grasp pose solutions from

small (e.g.. a banana) and large objects (e.g. a bottle) respectively. A complete grasp

planning algorithm would need to incorporate several resolutions (or octaves) to

accommodate grasping a larger object variety. We show grasp pose generation is

consistent within neighbouring resolutions. As a result, further exploration can be

conducted to automatically select resolution using techniques from scale invariant

literature [94-98].

Incorporating more contextual information would improve grasping performance. For

example, an additional stage can be added when observing multiple objects to determine

a grasp order. Our generalized algorithm generated an interesting result for multiple

objects, i.e. grasp from the outside away from a close object, but our system has no

preference to select the drill or tin can first. Context (or preference) needs further

exploration along with obstacle avoidance. A straight line path works because most

surfaces grasped are smooth. If a ring grasp type (i.e. threading a finger through a mug’s

ring or placing a gripper inside a handle) is selected, a more appropriate final path needs

to be defined to accommodate these grasp types.

83

References

[1] C. A. Stanger, C. Anglin, W. S. Harwin, and D. P. Romilly, "Devices for assisting
manipulation: a summary of user task priorities," IEEE Trans. on Rehabilitation
Engineering, vol. 2, pp. 256-265, 1994.

[2] L. Torabi and K. Gupta, "Integrated view and path planning for an autonomous
six-DOF eye-in-hand object modeling system," in 2010 IEEE/RSJ Int.l Conf. on
Intelligent Robots and Systems (IROS), 2010, pp. 4516-4521.

[3] V. Pilania and K. Gupta, "Mobile manipulator planning under uncertainty in
unknown environments," The Int. J. of Robotics Research (IJRR), vol. 37, pp.
316-339, 2018.

[4] C. Eppner, S. Höfer, R. Jonschkowski, R. Martín-Martín, A. Sieverling, V. Wall, et
al., "Lessons from the Amazon Picking Challenge: Four aspects of building
robotic systems," in Robotics: Science and Systems, 2016.

[5] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza, et al., "Robotic
pick-and-place of novel objects in clutter with multi-affordance grasping and
cross-domain image matching," presented at the IEEE Int. Conf on Robotics and
Automation (ICRA), 2018.

[6] K. Yamazaki, M. Tomono, T. Tsubouchi, and S.-i. Yuta, "A grasp planning for
picking up an unknown object for a mobile manipulator," in 2006 IEEE Int. Conf.
on Robotics and Automation (ICRA), 2006, pp. 2143-2149.

[7] S. Jain and B. Argall, "Grasp detection for assistive robotic manipulation," in
2016 IEEE Int. Conf. on Robotics and Automation (ICRA), 2016, pp. 2015-2021.

[8] J. Bohg, A. Morales, T. Asfour, and D. Kragic, "Data-driven grasp synthesis—a
survey," IEEE Trans. Robot., vol. 30, pp. 289-309, 2014.

[9] Q. Lei, J. Meijer, and M. Wisse, "A survey of unknown object grasping and our
fast grasping algorithm-C shape grasping," in 2017 3rd Int. Conf. on Control
Automation and Robotics, 2017, pp. 150-157.

[10] B. Wang, L. Jiang, J. Li, and H. Cai, "Grasping unknown objects based on 3d
model reconstruction," in 2005 IEEE/ASME Int. Conf. on Advanced Intelligent
Mechatronics (AIM), 2005, pp. 461-466.

[11] G. M. Bone, A. Lambert, and M. Edwards, "Automated modeling and robotic
grasping of unknown three-dimensional objects," in 2008 IEEE Int. Conf. on
Robotics and Automation (ICRA), 2008, pp. 292-298.

[12] I. Gori, U. Pattacini, V. Tikhanoff, and G. Metta, "Ranking the good points: A
comprehensive method for humanoid robots to grasp unknown objects," in 16th
Int. Conf. on Advanced Robotics (ICAR), 2013, pp. 1-7.

[13] I. Gori, U. Pattacini, V. Tikhanoff, and G. Metta, "Three-finger precision grasp on
incomplete 3d point clouds," in 2014 IEEE Int. Conf. on Robotics and Automation
(ICRA), 2014, pp. 5366-5373.

[14] Q. Lei and M. Wisse, "Fast grasping of unknown objects using force balance
optimization," in 2014 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2014, pp. 2454-2460.

84

[15] Q. Lei and M. Wisse, "Unknown object grasping using force balance exploration
on a partial point cloud," in 2015 IEEE Int. Conf. on Advanced Intelligent
Mechatronics (AIM), 2015, pp. 7-14.

[16] Q. Lei and M. Wisse, "Fast grasping of unknown objects using cylinder searching
on a single point cloud," in 9th Int. Conf. on Machine Vision (ICMV), 2016, p.
1034108.

[17] T. Suzuki and T. Oka, "Grasping of unknown objects on a planar surface using a
single depth image," in 2016 IEEE Int. Conf. on Advanced Intelligent
Mechatronics (AIM), 2016, pp. 572-577.

[18] C. Connolly, "The determination of next best views," in Proc. of IEEE Int. Conf.
on Robotics and Automation (ICRA), 1985, pp. 432-435.

[19] R. Pito, "A solution to the next best view problem for automated surface
acquisition," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 21,
pp. 1016-1030, 1999.

[20] R. Fisher and J. Sanchiz, "A next-best-view algorithm for 3d scene recovery with
5 degrees of freedom," in British Machine Vision Conf. (BMVC), 1999.

[21] W. R. Scott, G. Roth, and J.-F. Rivest, "View planning with a registration
constraint," in Proceedings Third Int. Conf. on 3-D Digital Imaging and Modeling,
2001, pp. 127-134.

[22] M. Karaszewski, M. Adamczyk, and R. Sitnik, "Assessment of next-best-view
algorithms performance with various 3D scanners and manipulator," J. of
Photogrammetry and Remote Sensing (ISPRS), vol. 119, pp. 320-333, 2016.

[23] S. Kriegel, C. Rink, T. Bodenmüller, and M. Suppa, "Efficient next-best-scan
planning for autonomous 3d surface reconstruction of unknown objects," J. of
Real-Time Image Processing, vol. 10, pp. 611-631, 2015.

[24] C. Maniatis, M. Saval-Calvo, R. Tylecek, and R. B. Fisher, "Best viewpoint
tracking for camera mounted on robotic arm with dynamic obstacles," in 2017 Int.
Conf. on 3D Vision (3DV), 2017, pp. 107-115.

[25] J. I. Vasquez-Gomez, L. E. Sucar, R. Murrieta-Cid, and E. Lopez-Damian,
"Volumetric next-best-view planning for 3D object reconstruction with positioning
error," Int. J. of Advanced Robotic Systems, vol. 11, p. 159, 2014.

[26] J. I. Vasquez-Gomez, L. E. Sucar, and R. Murrieta-Cid, "View/state planning for
three-dimensional object reconstruction under uncertainty," Autonomous Robots,
vol. 41, pp. 89-109, 2017.

[27] J. I. Vasquez-Gomez, L. E. Sucar, R. Murrieta-Cid, and J.-C. Herrera-Lozada,
"Tree-based search of the next best view/state for three-dimensional object
reconstruction," Int. J. of Advanced Robotic Systems, vol. 15, p.
1729881418754575, 2018.

[28] J. Daudelin and M. Campbell, "An adaptable, probabilistic, next-best view
algorithm for reconstruction of unknown 3-d objects," IEEE Robotics and
Automation Letters, vol. 2, pp. 1540-1547, 2017.

[29] J.-W. Li, H. Liu, and H.-G. Cai, "On computing three-finger force-closure grasps
of 2-D and 3-D objects," IEEE Trans. on Robotics and Automation, vol. 19, pp.
155-161, 2003.

85

[30] X. Zhu and H. Ding, "Planning force-closure grasps on 3-D objects," in IEEE Int.
Conf. Robot. Autom. (ICRA), 2004, pp. 1258-1263.

[31] B. Bounab, D. Sidobre, and A. Zaatri, "Central axis approach for computing n-
finger force-closure grasps," in 2008 IEEE Int. Conf. on Robotics and Automation
(ICRA), 2008, pp. 1169-1174.

[32] S. El-Khoury and A. Sahbani, "On computing robust n-finger force-closure grasps
of 3D objects," in 2009 IEEE Int. Conf. on Robotics and Automation (ICRA),
2009, pp. 2480-2486.

[33] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen, "Automatic grasp
planning using shape primitives," in IEEE Int. Conf. on Robotics and Automation
(ICRA), 2003, pp. 1824-1829.

[34] K. Huebner and D. Kragic, "Selection of robot pre-grasps using box-based shape
approximation," in 2008 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2008, pp. 1765-1770.

[35] C. Goldfeder, P. K. Allen, C. Lackner, and R. Pelossof, "Grasp planning via
decomposition trees," in IEEE Int. Conf. on Robotics and Automation (ICRA),
2007, pp. 4679-4684.

[36] M. Przybylski, T. Asfour, and R. Dillmann, "Planning grasps for robotic hands
using a novel object representation based on the medial axis transform," in 2011
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2011, pp. 1781-
1788.

[37] M. Nieuwenhuisen, J. Stückler, A. Berner, R. Klein, and S. Behnke, "Shape-
primitive based object recognition and grasping," in 7th German Conference on
Robotics (ROBOTIK), 2012, pp. 1-5.

[38] A. Herzog, P. Pastor, M. Kalakrishnan, L. Righetti, J. Bohg, T. Asfour, et al.,
"Learning of grasp selection based on shape-templates," Autonomous Robots,
vol. 36, pp. 51-65, 2014.

[39] D. Fischinger, A. Weiss, and M. Vincze, "Learning grasps with topographic
features," The Int. J. of Robotics Research (IJRR), vol. 34, pp. 1167-1194, 2015.

[40] E. Dessalene, Y. H. Ong, J. Morrow, R. Balasubramanian, and C. Grimm, "Using
geometric features to represent near-contact behavior in robotic grasping," in
IEEE Int. Conf. on Robotics and Automation (ICRA), 2019, pp. 2772-2777.

[41] R. Detry, C. H. Ek, M. Madry, J. Piater, and D. Kragic, "Generalizing grasps
across partly similar objects," in 2012 IEEE Int. Conf. on Robotics and
Automation (ICRA), 2012, pp. 3791-3797.

[42] L. Berscheid, T. Rühr, and T. Kröger, "Improving data efficiency of self-
supervised learning for robotic grasping," in 2019 Int. Conf. on Robotics and
Automation (ICRA), 2019, pp. 2125-2131.

[43] Q. Lu and T. Hermans, "Modeling grasp type improves learning-based grasp
planning," IEEE Robot. Autom. Letters, vol. 4, pp. 784-791, 2019.

[44] J. Cai, H. Cheng, Z. Zhang, and J. Su, "MetaGrasp: Data efficient grasping by
affordance interpreter network," in Int. Conf. on Robotics and Automation (ICRA),
2019, pp. 4960-4966.

86

[45] Q. V. Le, D. Kamm, A. F. Kara, and A. Y. Ng, "Learning to grasp objects with
multiple contact points," in 2010 IEEE Int. Conf. on Robotics and Automation
(ICRA), 2010, pp. 5062-5069.

[46] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, "Grasp pose detection in point
clouds," The Int. J. of Robotics Research (IJRR), vol. 36, pp. 1455-1473, 2017.

[47] H. Liang, X. Ma, S. Li, M. Görner, S. Tang, B. Fang, et al., "Pointnetgpd:
Detecting grasp configurations from point sets," in IEEE Int. Conf. on Robotics
and Automation (ICRA), 2019, pp. 3629-3635.

[48] H. Karaoguz and P. Jensfelt, "Object detection approach for robot grasp
detection," in IEEE Int. Conf. on Robotics and Automation (ICRA), 2019, pp.
4953-4959.

[49] S. Hasegawa, K. Wada, S. Kitagawa, Y. Uchimi, K. Okada, and M. Inaba,
"GraspFusion: Realizing complex motion by learning and fusing grasp modalities
with instance segmentation," in IEEE Int. Conf. on Robotics and Automation
(ICRA), 2019, pp. 7235-7241.

[50] H. B. Amor, O. Kroemer, U. Hillenbrand, G. Neumann, and J. Peters,
"Generalization of human grasping for multi-fingered robot hands," in 2012
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2012, pp. 2043-
2050.

[51] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen, "The columbia grasp
database," in 2009 IEEE Int. Conf. on Robotics and Automation (ICRA), 2009,
pp. 1710-1716.

[52] M. J. Hegedus, K. Gupta, and M. Mehrandezh, "Towards an integrated
autonomous data-driven grasping system with a mobile manipulator," IEEE Int.
Conf. on Robotics and Automation (ICRA), pp. 1596-1600, May 20-24, 2019.

[53] M. J. Davari, M. J. Hegedus, K. Gupta, and M. Mehrandezh, "Identifying multiple
interaction events from tactile data during robot-human object transfer," 28th
IEEE Int. Conf. on Robot and Human Interactive Communication (RO-MAN), pp.
1-6, Oct. 14-18, 2019.

[54] G. Grisetti, G. D. Tipaldi, C. Stachniss, W. Burgard, and D. Nardi, "Fast and
accurate SLAM with Rao–Blackwellized particle filters," Robotics and
Autonomous Systems, vol. 55, pp. 30-38, 2007.

[55] R. S. Hartenberg and J. Denavit, "A kinematic notation for lower pair
mechanisms based on matrices," J. of Applied Mechanics, vol. 77, pp. 215-221,
1955.

[56] D. Meagher, "Geometric modeling using octree encoding," Computer graphics
and image processing, vol. 19, pp. 129-147, 1982.

[57] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
"OctoMap: An efficient probabilistic 3D mapping framework based on octrees,"
Autonomous Robots, vol. 34, pp. 189-206, 2013.

[58] A. Williams, S. Barrus, R. K. Morley, and P. Shirley, "An efficient and robust ray-
box intersection algorithm," in ACM SIGGRAPH 2005 Courses, 2005, pp. 1-4.

87

[59] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, "The office
marathon: Robust navigation in an indoor office environment," in 2010 IEEE Int.
Conf. on Robotics and Automation (ICRA), 2010, pp. 300-307.

[60] S. Oajsalee, S. Tantrairatn, and S. Khaengkarn, "Study of ROS based
localization and mapping for closed area survey," in IEEE 5th Int. Conf. on
Mechatronics System and Robots (ICMSR), 2019, pp. 24-28.

[61] S. Chitta, "Moveit!: an introduction," in Robot Operating System (ROS), ed:
Springer, 2016, pp. 3-27.

[62] S. Chitta, I. Sucan, and S. Cousins, "Moveit![ros topics]," IEEE Robotics &
Automation Magazine, vol. 19, pp. 18-19, 2012.

[63] P. J. Besl and N. D. McKay, "Method for registration of 3-D shapes," in Sensor
Fusion IV: Control Paradigms and Data Structures, 1992, pp. 586-607.

[64] W. R. Scott, G. Roth, and J.-F. Rivest, "View planning for automated three-
dimensional object reconstruction and inspection," ACM Computing Surveys
(CSUR), vol. 35, pp. 64-96, 2003.

[65] J. J. Kuffner and S. M. LaValle, "RRT-connect: An efficient approach to single-
query path planning," in IEEE Int. Conf. on Robotics and Automation (ICRA),
2000, pp. 995-1001.

[66] A. Segal, D. Haehnel, and S. Thrun, "Generalized-icp," in Robotics: Science and
Systems, 2009, p. 435.

[67] J. Yang, H. Li, D. Campbell, and Y. Jia, "Go-ICP: A globally optimal solution to
3D ICP point-set registration," in IEEE Trans. on Pattern Analysis and Machine
Intelligence, 2016, pp. 2241-2254.

[68] Y. He, B. Liang, J. Yang, S. Li, and J. He, "An iterative closest points algorithm
for registration of 3D laser scanner point clouds with geometric features,"
Sensors, vol. 17, p. 1862, 2017.

[69] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, "RGB-D mapping: Using
Kinect-style depth cameras for dense 3D modeling of indoor environments," The
Int. J. of Robotics Research (IJRR), vol. 31, pp. 647-663, 2012.

[70] J. Weisz and P. K. Allen, "Pose error robust grasping from contact wrench space
metrics," in IEEE Int. Conf. on Robotics and Automation (ICRA), 2012, pp. 557-
562.

[71] D. Seita, F. T. Pokorny, J. Mahler, D. Kragic, M. Franklin, J. Canny, et al., "Large-
scale supervised learning of the grasp robustness of surface patch pairs," in
IEEE Int. Conf. on Simulation, Modeling, and Programming for Autonomous
Robots (SIMPAR), 2016, pp. 216-223.

[72] J. S. Vitter, "Random sampling with a reservoir," ACM Transactions on
Mathematical Software (TOMS), vol. 11, pp. 37-57, 1985.

[73] I. A. Sucan, M. Moll, and L. E. Kavraki, "The open motion planning library," IEEE
Robotics & Automation Magazine, vol. 19, pp. 72-82, 2012.

[74] D. Fox, W. Burgard, and S. Thrun, "The dynamic window approach to collision
avoidance," IEEE Robotics & Automation Magazine, vol. 4, pp. 23-33, 1997.

88

[75] R. B. Rusu and S. Cousins, "3d is here: Point cloud library (PCL)," in IEEE Int.
Conf. on Robotics and Automation (ICRA), 2011, pp. 1-4.

[76] R. Balasubramanian, L. Xu, P. D. Brook, J. R. Smith, and Y. Matsuoka, "Physical
human interactive guidance: Identifying grasping principles from human-planned
grasps," IEEE Tran. on Robotics, vol. 28, pp. 899-910, 2012.

[77] V.-D. Nguyen, "Constructing force-closure grasps," The Int. J. of Robotics
Research (IJRR), vol. 7, pp. 3-16, 1988.

[78] M. R. Cutkosky, "On grasp choice, grasp models, and the design of hands for
manufacturing tasks," IEEE Trans. on Robotics and Automation, vol. 5, pp. 269-
279, 1989.

[79] E. Rimon and A. Blake, "Caging 2D bodies by 1-parameter two-fingered gripping
systems," in IEEE Int. Conf. on Robotics and Automation (ICRA), 1996, pp. 1458-
1464.

[80] A. S. Besicovitch, "A net to hold a sphere," The Mathematical Gazette, vol. 41,
pp. 106-107, 1957.

[81] D. Seita, F. T. Pokorny, J. Mahler, D. Kragic, M. Franklin, J. Canny, et al., "Large-
scale supervised learning of the grasp robustness of surface patch pairs," in
2016 IEEE Int. Conf. on Simul., Model., and Program. for Auton. Robots
(SIMPAR), 2016, pp. 216-223.

[82] F. Heinemann, S. Puhlmann, C. Eppner, J. Élvarez-Ruiz, M. Maertens, and O.
Brock, "A taxonomy of human grasping behavior suitable for transfer to robotic
hands," in IEEE Int. Conf. on Robotics and Automation (ICRA), 2015, pp. 4286-
4291.

[83] T. Feix, J. Romero, H.-B. Schmiedmayer, A. M. Dollar, and D. Kragic, "The grasp
taxonomy of human grasp types," IEEE Trans. on Human-Machine Systems, vol.
46, pp. 66-77, 2015.

[84] N. Rojas and A. M. Dollar, "Classification and kinematic equivalents of contact
types for fingertip-based robot hand manipulation," J. of Mechanisms and
Robotics, vol. 8, 2016.

[85] F. Stival, S. Michieletto, M. Cognolato, E. Pagello, H. Müller, and M. Atzori, "A
quantitative taxonomy of human hand grasps," J. of NeuroEngineering and
Rehabilitation, vol. 16, pp. 1-17, 2019.

[86] L. E. Kavraki, "Computation of configuration-space obstacles using the fast
fourier transform," IEEE Trans. on Robotics and Automation, vol. 11, pp. 408-
413, 1995.

[87] V. Bhatia Nitin, "Survey of nearest neighbor techniques," Int. J. of Computer
Science and Information Security, vol. 2, pp. 302-305, 2010.

[88] R. Schnabel, R. Wahl, and R. Klein, "Efficient RANSAC for point‐cloud shape
detection," in Computer graphics forum, 2007, pp. 214-226.

[89] M. A. Fischler and R. C. Bolles, "Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography,"
Communications of the ACM, vol. 24, pp. 381-395, 1981.

[90] M. Frigo and S. G. Johnson, "The design and implementation of FFTW3,"
Proceedings of the IEEE, vol. 93, pp. 216-231, 2005.

89

[91] H. Dang and P. K. Allen, "Stable grasping under pose uncertainty using tactile
feedback," Auton. Robots, vol. 36, pp. 309-330, 2014.

[92] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar, "The
ycb object and model set: Towards common benchmarks for manipulation
research," in 2015 Int. Conf. on Advanced Robotics (ICAR), 2015, pp. 510-517.

[93] Y. Bekiroglu, N. Marturi, M. A. Roa, K. J. M. Adjigble, T. Pardi, C. Grimm, et al.,
"Benchmarking protocol for grasp planning algorithms," IEEE Robot. and Autom.
Lett., vol. 5, pp. 315-322, 2019.

[94] D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. of
Computer Vision, vol. 60, pp. 91-110, 2004.

[95] H. Bay, T. Tuytelaars, and L. Van Gool, "Surf: Speeded up robust features," in
European conference on computer vision, 2006, pp. 404-417.

[96] E. Rosten and T. Drummond, "Machine learning for high-speed corner
detection," in European conference on computer vision, 2006, pp. 430-443.

[97] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, "Brief: Binary robust
independent elementary features," in European Conf. on Computer Vision, 2010,
pp. 778-792.

[98] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, "ORB: An efficient alternative
to SIFT or SURF," in 2011 Int. Conf. on Computer Vision, 2011, pp. 2564-2571.

[99] X. Markenscoff, L. Ni, and C. H. Papadimitriou, "The geometry of grasping," The
Int. J. of Robotics Research (IJRR), vol. 9, pp. 61-74, 1990.

[100] A. Bicchi, "On the closure properties of robotic grasping," The Int. J. of Robotics
Research (IJRR), vol. 14, pp. 319-334, 1995.

[101] T. Rabbani, F. Van Den Heuvel, and G. Vosselmann, "Segmentation of point
clouds using smoothness constraint," Int. Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences (ISPRS), vol. 36, pp. 248-253, 2006.

90

Appendix A.

Using Finger Patches for Grasping

Grasp Planning Phase with Uncertainty

As the partial point cloud model is updated with each current ith scan Si, grasp analysis is

conducted for a grasp. Our goal is to generate finger sized patches within the current

point cloud Ii to perform force closure analysis[99, 100]. The cloud’s surface is

represented with finger-tip sized patches to reduce computational load, mitigate noise

within the point cloud model, and identify regions to place a finger. Patches along the

object’s surface is shown in Figure A1.

Identifying Finger-Sized Contact Patches

Figure A1. Top & Side View of a Cylinder Represented with Patches

The incoming point cloud Ii is initially downsampled to uniformly distribute points and

remove high frequency noise. The center of mass (CoM) is estimated by using the mean

of all points in Ii. Without downsampling, any further estimates for CoM biases towards a

region scanned frequently instead of approaching the true object’s CoM. High-frequency

noise is smoothed because it affects normal direction estimates. In addition, the faces of

Ii are segmented with region growing segmentation using local curvature[101]; object

edges are removed by excluding segments with a large curvature which improves

normal direction estimates and biases grasp selection along the object faces. Small

 a. b.

91

faces are removed if their surface is smaller than our gripper’s finger. Surface faces are

desired as they are more stable than edges to grasp. Finger-sized patches are

generated by randomly selecting a point Prnd within the remaining faces of Ii; any points

within a user defined local radius (2.5cm in our case) of Prnd are discovered, their

corresponding normals are averaged to create Nrnd, and both Prnd & Nrnd are inserted

into finger-sized patch list F to test force closure. All locally selected points are flagged to

not be re-selected by as Prnd.

Grasp Analysis for Finger-Sized Patches

To complete force closure analysis for any set of contact points from fingers, a grasp

wrench space (GWS) is created. A GWS is a six-dimensional space that represents all

forces and torques that can be applied to the OI [99, 100]. To estimate the GWS, the

friction coefficient μ, center of mass (CoM), applied force, contact location, and surface

normal at each contact need to be known. Any large uncertainties associated with these

parameters may cause a failed grasp, but this can be addressed. If the CoM location is

uncertain, the object may twist and slip. In addition, the OI can also slip if its friction

coefficient is very small, but practically, the gripper can apply a stronger force to mitigate

these problems. Surface normals estimated contain uncertainty that affect a friction

cone’s orientation, but this is lessened by averaging a patch of surface normals.

As no information is given about the object, we assume a friction coefficient μ=0.8 to

represent rubber contacts; a hypercube is selected for a task wrench space (TWS) to

represent forces and torques applied in all directions. All other parameters are

empirically derived from the point cloud model. If a GWS contains the TWS about its

origin, force closure is deemed satisfied, and the contact pair is ranked based on the

TWS volume. The final grasp pose, written as Gf, is calculated by averaging two contact

locations on the object’s surface. Orientation of Gf is relative to two surface patch

normals, n1 and n2. The x-axis of the grasp frame is created by adding two inverted

contact normals. Simple kinematics determines the remaining axes.

92

Appendix B.

ROS Node Mobile Manipulator Settings

Base Navigation Costmap Parameters

map_type: costmap

transform_tolerance: 3.0

obstacle_range: 4.5

max_obstacle_height: 2.0

raytrace_range: 4.0

#Powerbot’s footprint 0.84 x 0.63

footprint: [[-0.385,-0.350], [-0.545,-0.280], [-0.545,0.280], [-0.385,0.350], [0.205,0.350],
[0.370,0.280], [0.370,-0.280], [0.205,-0.350]]

inflation_radius: 0.385

cost_scaling_factor: 8.3

lethal_cost_threshold: 105

observation_sources: base_scan

base_scan: {sensor_frame: base_scan_link, topic: /scan_filtered, data_type: LaserScan,
expected_update_rate: 5.0, observation_persistance: 0.0, marking: true,
clearing: true}

global_costmap:

global_frame: /map

robot_base_frame: /base_link

update_frequency: 5.0

publish_frequency: 2.0

raytrace_range: 30.0

obstacle_range: 18

static_map: true

rolling_window: false

width: 24.0

height: 24.0

resolution: 0.025

local_costmap:

global_frame: /odom

robot_base_frame: /base_link

update_frequency: 5.0

publish_frequency: 2.0

static_map: false

rolling_window: true

width: 12.0

height: 12.0

resolution: 0.025

origin_x: 0.0

origin_y: 0.0

93

origin_x: -12.0

origin_y: -12.0

track_unknown_space: true

unknown_cost_value: 255

DWA Planner Parameters

base_local_planner: dwa_local_planner/DWAPlannerROS

--- recovery behaviours ---

recovery_behaviors: [{name: conservative_reset, type:
clear_costmap_recovery/ClearCostmapRecovery}, {name: rotate_recovery,
type: rotate_recovery/RotateRecovery}, {name: aggressive_reset, type:
clear_costmap_recovery/ClearCostmapRecovery}]

conservative_reset_dist: 2.5

recovery_behavior_enabled: true

clearing_rotation_allowed: true

DWAPlannerROS:

transform_tolerance: 3.0

world_model: costmap

 #Goal Tolerance Settings

xy_goal_tolerance: 0.12

yaw_goal_tolerance: 0.0960

latch_xy_goal_tolerance: true

 #Robot Configuration

acc_lim_x: 7.0

acc_lim_y: 0.0

acc_lim_theta: 4.0

max_vel_x: 0.30

min_vel_x: -0.16

max_vel_y: 0

min_vel_y: 0

max_trans_vel: 0.7

min_trans_vel: 0.05

max_rot_vel: 1.047

#Robot Configuration

acc_lim_x: 7.0

acc_lim_y: 0.0

acc_lim_theta: 4.0

max_vel_x: 0.30

min_vel_x: -0.16

max_vel_y: 0

min_vel_y: 0

max_trans_vel: 0.7

min_trans_vel: 0.05

max_rot_vel: 1.047

min_rot_vel: 0

escape_vel: -0.1

holonomic_robot: false

#Base Local Planner Configs

dwa: true

meter_scoring: true

simple_attractor: false

94

min_rot_vel: 0

escape_vel: -0.1

holonomic_robot: false

#Weights to affect planning (dwa_planner)

goal_distance_bias: 20

path_distance_bias: 30

occdist_scale: 0.06

scaling_speed: 0.25

max_scaling_factor: 0.2

forward_point_distance: 0.325

oscillation_reset_dist: 0.025

stop_time_buffer: 0.2

prune_plan: true

use_dwa: false

World Octomap Server

<node pkg="octomap_server" type="octomap_server_node" name="coarse_octomap_server">

 <param name="publish_free_space" value="false" />

 <param name="resolution" value="0.1" />

 <param name="frame_id" type="string" value="/map" />

 <param name="max_sensor_range" value="8.0" />

<param name="sensor_model/max_range" value = "7.5"/>

 <param name="sensor_model/hit" value = "0.7"/>

 <param name="sensor_model/miss" value = "0.07"/>

 <param name="sensor_model/max" value = "0.97"/>

 <param name="sensor_model/min" value = "0.25"/>

 <param name="latch" value="false" />

 <param name="filter_ground " value="false" />

 <param name="filter_speckles" value="true" />

</node>

Model Octomap Server

<node pkg="octomap_server" type="octomap_server_node" name="fine_octomap_server" >

95

 <param name="publish_free_space" value="false" />

 <param name="frame_id" type="string" value="/map" />

 <param name="resolution" value="0.008" />

<param name="sensor_model/max_range" value = "5.0"/>

 <param name="sensor_model/hit" value = "0.75"/>

 <param name="sensor_model/miss" value = "0.35"/>

 <param name="sensor_model/max" value = "0.98"/>

 <param name="sensor_model/min" value = "0.12"/>

 <param name="latch" value="false" />

 <param name="filter_speckles" value="true" />

 <param name="filter_ground" value="false" />

 <param name="publish_free_space" value="true" />

</node>

Point Cloud Registration

#Implements PCL’s v1.7 Iterative Closest Point Library

<node type="pointcloud_assembler" pkg="pcl_processing" name="pc_assembler"
output="screen">

<param name="en_control" type="bool" value="true" />

<!--Voxel Filtering/Downsampling Parameters Input Cloud-->

<param name="leaf_x" type="double" value="0.0040" />

<param name="leaf_y" type="double" value="0.0040" />

<param name="leaf_z" type="double" value="0.0040" />

<!--Statistics Removals Parameters- Input Cloud->

<param name="meank" type="double" value="12" />

<param name="std_thresh" type="double" value="2.0" />

<!--GICP Parameters-->

<param name="max_iterations" type="int" value="200" />

<param name="euclidean_fitness_epsilon" type="double" value="0.001" />

<param name="transformation_epsilon" type="double" value="1e-10" />

<param name="max_correspondence_distance" type="double" value="0.125" />

<param name="min_cloud_size" type="int" value="80" />

<!--GICP Scaling for point representation (x,y,z, nx,ny,nz, curvature)-->

96

<param name="alpha_x" type="double" value="1.0" />

<param name="alpha_y" type="double" value="1.0" />

<param name="alpha_z" type="double" value="1.0" />

<param name="alpha_nx" type="double" value="1.0" />

<param name="alpha_ny" type="double" value="1.0" />

<param name="alpha_nz" type="double" value="1.0" />

<param name="alpha_c" type="double" value="1.0" />

<!--GICP Resolution for Merging Pointclouds (downsample factor)-->

<param name="icp_leaf_x" type="double" value="0.0065" />

<param name="icp_leaf_y" type="double" value="0.0065" />

<param name="icp_leaf_z" type="double" value="0.0065" />

<!--Correspondence Rejector Parameters-->

<param name="RANSAC_max_iterations" type="int" value="100" />

<param name="RANSAC_outlier_thresh" type="double" value="0.005" />

<param name="median_correspondance_factor" type="double" value="0.5" />

<param name="normal_correspondance_angle_deg" type="double" value="20" />

<param name="min_var_trimmed_ratio" type="double" value="0.05" />

<param name="max_var_trimmed_ratio" type="double" value="0.95" />

<param name="min_overlap_ratio" type="double" value="0.03" />

<param name="exp_overlap_ratio" type="double" value="0.25" />

</node>

