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Abstract 

A fully integrated grasping system for a mobile manipulator to grasp an unknown object 

of interest (OI) in an unknown environment is presented. The system autonomously 

scans its environment, models the OI, plans and executes a grasp, while taking into 

account base pose uncertainty and obstacles in its way to reach the object. Due to 

inherent line of sight limitations in sensing, a single scan of the OI often does not reveal 

enough information to complete grasp analysis; as a result, our system autonomously 

builds a model of an object via multiple scans from different locations until a grasp can 

be performed. A volumetric next-best-view (NBV) algorithm is used to model an arbitrary 

object and terminates modelling when grasp poses are discovered on a partially 

observed object. Two key sets of experiments are presented: i) modelling and 

registration error in the OI point cloud model is reduced by selecting viewpoints with 

more scan overlap, and ii) model construction and grasps are successfully achieved 

while experiencing base pose uncertainty.  

A generalized algorithm is presented to discover grasp pose solutions for multiple grasp 

types for a multi-fingered mechanical gripper using sensed point clouds. The algorithm 

introduces two key ideas: 1) a histogram of finger contact normals is used to represent a 

grasp “shape” to guide a gripper orientation search in a histogram of object(s) surface 

normals, and 2) voxel grid representations of gripper and object(s) are cross-correlated 

to match finger contact points, i.e. grasp “size”, to discover a grasp pose. Constraints, 

such as collisions with neighbouring objects, are incorporated in the cross-correlation 

computation. Simulations and preliminary experiments show that 1) grasp poses for 

three grasp types are found in near real-time, 2) grasp pose solutions are consistent with 

respect to voxel resolution changes for both partial and complete point cloud scans, 3) a 

planned grasp pose is executed with a mechanical gripper, and 4) grasp overlap is 

presented as a feature to identify regions on a partial object model ideal for object 

transfer or securing an object. 

Keywords:  Grasp Planning, Object Modelling, Mobile Manipulators, Next Best View, 

Point Cloud Processing, Unknown Environment, Grasping, Mechanical 

Grippers, Autonomous Grasping, Robot-to-Human Transfer 
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Chapter 1.  

 
Introduction 

Autonomous mobile manipulation will be a central theme in the next generation of 

robotics applications. Mobile robots are anticipated to serve critical functions as helpers 

in homes, care centers, and varied circumstances where robots interact with humans. 

For instance, a survey in the health care industry ranked picking objects off the floor or 

shelf as the highest priority for people with disabilities[1]. Object retrieval, holding a tool, 

and opening a door are essential tasks examples for self-care and completing activities 

of daily living. A mobile robot retrieving medicine (or objects) could reduce the need for 

caregivers’ assistance. For this to occur, autonomous systems need to be developed 

that combine perception and mapping, navigation, motion planning, and grasp planning. 

Our aim is to develop an autonomous system for a mobile robot to safely navigate an 

unknown environment, model unknown objects, discover available grasps on these 

objects, and execute different grasps depending on the task (i.e. fetch, carry, holding a 

tool, etc.) requested.  

1.1. Related Works 

1.1.1. Autonomous Mobile Manipulators 

This research builds from and adds to previous work from the Robotics, Algorithms, an 

Motion Planning (RAMP) Lab to autonomously model an unknown object [2] and 

navigate to it in an unknown environment [3]. The key difference from [2] is that our 

modelling next best view (NBV) algorithm uses scan overlap as a key feature to improve 

model reconstruction. Although model reconstruction is performed by [2], merging and 

precisely registering scans is not explicitly evaluated; grasping is not involved. In [3], the 

object geometry, grasp location, and a grasp plan is known a priori. This presented work 

adds a significant capability by autonomously determining grasp poses for unknown 

objects by scanning, building a point cloud model, and performing grasp execution.  

Industry is investing tremendously to automate an object picking task. For example, the 

Amazon Picking Challenge, formerly known as the Amazon Robotics Challenge, was 

sponsored yearly until 2018 to pick objects from a shelf and place them into a bin. These 
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challenges promoted suction-based or clasp-base grippers to pick known objects in a 

free environment [4]. However, an object dataset and layout of the environment is given 

to contestants a priori [4, 5]. A key difference to our work is grasping is completed with 

no object or environmental information known a priori. Grasping is accomplished without 

a database for multiple grasp types. 

Two works present a grasping system for autonomous mobile manipulators, but their 

research solely focuses on grasping; issues associated to mobile manipulators, like base 

pose uncertainty, collision avoidance, and trajectory planning for the base and 

manipulator are not discussed [6, 7]. The grasping system presented in [6] uses stereo 

cameras to model an object and created a cost function to discover object surfaces that 

specifically fit their parallel jaw gripper. Modelling error was reduced by averaging 

surface normal within a voxel [6]. Work from [7] does not model objects; instead, their 

grasping system matches shape primitives to observed objects and executes known a 

prior grasps defined for each shape primitive. For mobile manipulators, no level of 

competence in research integrates autonomous object modelling with object grasping as 

a whole system. Work we present autonomously models an object until suitable grasp 

poses for multiple grasp types are discovered. Common issues that affect a mobile 

manipulators, like safe planning and experiencing base pose uncertainty, are addressed. 

Safe planning strategies for the base and manipulator are provided to navigate to scan 

viewpoints and final grasp poses outside the system’s dextrous workspace. 

1.1.2. Object Modelling 

Within the field of data-driven grasping applied to unknown objects, two surveys 

published by Bohg et al[8] and Lei et al[9] review grasp approaches in great detail. In 

general, grasp strategies are executed in three sequential phases: i) Building an Object 

Model (i.e. Object Modelling), ii) Grasp Planning/Analysis, and iii) Grasp Execution[8, 9]. 

Typically, the object modelling phase does not receive feedback from grasp planning to 

continue modelling. Object modelling often assumes enough information is collected for 

grasp planning. Grasp strategies are usually demonstrated with fixed base manipulators, 

and as a result, key issues are avoided: i) assuming an eye-in-hand sensor, virtually no 

base pose uncertainties are associated with the fixed base case; hence, integrating 

scans from multiple viewpoints does not encounter problems associated with relatively 

large base pose uncertainty in our case, ii) grasping outside the fixed base manipulator’s 
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workspace is not possible, and iii) safe planning (i.e. avoiding obstacles and unexplored 

space) is simplified by assuming a region in the manipulator’s workspace is free; 

planning is limited to a manipulator’s workspace instead of the much larger environment 

of the mobile manipulator. 

From a systems point of view, most works within data driven grasping decouples object 

modelling from grasp planning. This implicitly treats a grasping task as an open-loop 

system that assumes enough features exist in an object model to successfully plan a 

grasp. Early examples of grasping an unknown object are demonstrated by Wang et 

al[10] and Bone et al[11]. In these works, the modelling phase observes an object at pre-

determined viewing locations to capture a nearly complete model of an object. Object 

modelling is not autonomous and scan registration does not consider uncertainty. Spatial 

features have been extracted from household objects from a single viewpoint to be 

classified into several different object primitives for grasping [7]. Uncertainty is not 

addressed since it deals with a single scan, and hence, no scans are merged into a 

single model; instead, a complete primitive shape is assumed from a partial model. A 

gripper’s pre-grasp shape (or end effector configuration) is used to fit a gripper along the 

surface of a partially complete point cloud[12, 13]. Works from [14-16] search for 

cylindrical or c-shape grasps that fit the point cloud model. Successful grasps from a 

single viewpoint have been demonstrated by extracting an object’s centroid and 

orientation using principal component analysis (PCA)[17].  For these data driven 

methods, object modelling leads to successful grasps only if the viewpoint contains 

enough information to extract a grasp feature; further reconstructing the object until 

enough grasp features exist (and issues with this approach) are not directly addressed. 

A system should continue object modelling until a grasp is achievable. 

Our proposed NBV modelling algorithm guides an eye-in-hand laser, mounted on a 

mobile base, to take scans of objects from multiple view poses with uncertainty and 

precisely register point cloud scans to build an object model. Most NBV algorithms, 

whether applying volumetric or surface variations, strive to guarantee consecutive scan 

overlap with previous ones, reveal new scan information, register/integrate scans with 

each other, and self-terminate when modelling is complete[2, 18-22]. Few algorithms are 

demonstrated with large uncertainty; a manipulator is generally fixed on a base in the 

world frame, and as a result, scans from the manipulator’s sensor frame can be resolved 

with precision[23, 24]. Vasquez-Gomez et al introduced an NBV algorithm to address 
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position uncertainty somewhat indirectly by incorporating a distance metric that 

penalizes travel distance, and thus, reduces joint position uncertainty [25-27]. However, 

their algorithm is primarily demonstrated through simulation. Vasquez-Gomez et al did 

demonstrate their entire system using a real experiment and corrected odometry 

between scans by assuming the initial object location was known[26]. Although work 

from [22] compares [25] to others NBV algorithms with an experiment, position 

uncertainty is not directly assessed. In [24, 28], NBV algorithms generate viewpoints 

from an octree. Work from [24] adjusts a camera pose to avoid dynamics occlusions, 

while [28] models without a bounding box around objects and avoids obstacles along a 

ground plane. However, to aid simultaneous localization and mapping (SLAM) and 

reduce uncertainty, [28] used coloured tape as landmarks in their scene. 

1.1.3. Analytical Grasping Methods 

Analytical grasping approaches tend to apply specific grasp types that use two to four 

contact points. Some earlier works that present data-driven grasping from a point cloud 

applied force closure to determine grasp quality [10, 11, 29]. These works improved the 

computation time for force closure analysis by assuming a gripper pre-shape or 

introduced a heuristic stage that avoids searching for all contact combinations. For 

example, [29] showed three contact points form a triangular plane that can be 

decomposed to a series of IF-THEN statements, using contact normals, to determine a 

force closure grasp. The grasp planner presented in [10] reduced computation time for 

force closure by adding a pose constraint to align the gripper’s palm with the object so all 

fingers will touch the object simultaneously when closed. The planner presented in [11] 

reduces computational time by searching for a parallel grasp; the grasp wrench would 

only be estimated for contacts that geometrically matched a parallel jaw. All of these 

works demonstrated grasping but these grasps are specialized and represent only one 

grasp type (for one specific purpose). 

Later works generalize force closure to n-contacts, but experiments are demonstrated 

with randomly generated contacts or heuristics to consider a gripper’s physical shape 

and constraints to match contact locations [30-32]. In contrast, our proposed grasping 

algorithm discovers potential grasp locations for n-contacts, multiple grasp types, and 

prioritized grasp poses for different tasks while satisfying a gripper’s physical constraints. 
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1.1.4. Geometric Shape based Grasping Methods 

Spatial features have been extracted from household objects from a single viewpoint to 

be classified into several different object primitives for grasping [7]. An object primitive 

heuristically simplifies an object’s shape and represents it with a priori known geometric 

shapes (e.g. cube, cylinder, or sphere) [33, 34]. An object is either represented with a 

single primitive or can be decomposed into a group of sub-primitives [35-37]. Some 

learning-based methods also explore primitive shapes and discover grasps using 

simplified shapes [38-40] or similar objects [41, 42]. From these representations, either 

an analytical or data-driven database method can identify grasp locations. Comparably, 

object primitives can be viewed as a low resolution, quantized voxel grid setting applied 

by our algorithm that form similar cubic shapes. A key difference is our algorithm does 

not have prior geometric assumptions for an object model; their shape primitive can be 

thought of as a special case of our algorithm that occurs when using low voxel resolution 

to represent an object. An object’s shape is not the key methodology we apply for 

grasping—representing the gripper shape and all corresponding grasp types is key. 

1.1.5. Machine Learning and Heuristic Grasping Methods 

More recently, machine-learning (ML) based approaches to grasp an object are 

presented in research. Many ML based grasp planning systems plan one grasp type per 

object (or object shape) [8, 9, 42-48]. Recently, [43] demonstrated a learning-based 

approach able to perform grasps using two grasp types. This algorithm did not select 

which type is most appropriate but demonstrated their framework can flexibly learn 

different grasp types. Another method selects between suction and pinch grasp 

modalities to retrieve objects from a container [49]. An approach, generalized to one 

grasp type, successfully grasps partial point cloud represented objects utilizing a 

convolution neural network trained with box-like and cylinder-like objects[46]. Force 

closure analysis measured grasp quality, and although not necessary, force closure is 

used to prune grasp pose results[46]. A key challenge for this approach, and similar 

grasp template approaches, is generating synthetic data to further classify more objects 

(i.e. sphere, toroid, cone, etc.).  

Through human demonstration, earlier works demonstrated different grasp types to 

grasp a single object [50]. Even earlier work demonstrated database driven grasping for 
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approximately 7256 objects associated with 238,737 grasps for several different grippers 

[51]. These methods require large databases or significant training, which takes time to 

develop, and similar data-driven approaches do not scale well with respect to changes. 

For example, adding a new gripper or grasp type would significantly increase a 

database’s size, and the grasp type added may become more difficult to discern from 

others already embedded. 

In contrast, our proposed grasping algorithm demonstrates that different grasp types can 

be discovered in near real-time using conventional signal processing techniques, with no 

training or large databases. 

1.2. Contributions 

Key contributions to this research are: 

1. Object Modelling and Grasp Planning phases are integrated via feedback to fully 

automate grasping from a potentially incomplete point cloud model. Furthermore, 

during an OI’s point cloud model construction 

a. scan overlap is used as a key feature to mitigate registration error and 

guaranteeing correspondence between scans,  

b. registration correspondence for any iterative closest point (ICP) algorithm 

is improved by concatenating a 3D point with its respective 3D normal 

2. Grasp planning is completely data-driven and can discover different grasp types 

from a partial scanned object with no offline-training. 

a. Added advantages are collision checks and planning a linear Cartesian 

trajectory for a grasp pose are easily integrated within the correlation step 

3. A new grasping approach is introduced by representing grasp types and partially 

scanned objects using surface normal histograms and voxel grids 

a. Grasping is scalable for n-contact points, various grasp types, and is 

invariant to point cloud size 

b. Grasp pose solutions are found for several unique grasp types 

4. Grasp selection changes based on the task. Grasp selection can change whether 

the task is defined as robot-to-human transfer or securing an object. 

The material presented in this chapter is excerpted, reproduced, and modified with 

permission from the following papers: [52, 53]. 
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M. J. Hegedus, K. Gupta, and M. Mehrandezh, "Towards an Integrated Autonomous 
Data-Driven Grasping System with a Mobile Manipulator," IEEE Int. Conf. on 
Robotics and Automation (ICRA), pp. 1596-1600, May 20-24, 2019[52] 

M. J. Davari, M. J. Hegedus, K. Gupta, and M. Mehrandezh, "Identifying multiple 
interaction events from tactile data during robot-human object transfer," 28th 
IEEE Int. Conf. on Robot and Human Interactive Communication (RO-MAN), pp. 
1-6, Oct. 14-18, 2019.[53] 
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1.3. Thesis Overview 

This thesis is organized as follows: 

 Chapter 1 introduces the motivation and proposed work. Related works and expected 

research contributions are presented. 

 Chapter 2 presents the formal problem statement, mobile manipulator platform, and 

system-level solution for the problem statement. All discussion is high-level and 

focuses on the “world view” for planning, notation, and perception. Planning focuses 

to generate collision-free plans for the manipulator and base to either reach an NBV 

or final grasp pose. Notation introduces the mobile robot coordinate system and 

definitions used in the following chapters. Perception explains how all sensors scan 

the environment and update information planning.  

 Chapter 3 presents a detailed approach to generate a point cloud model for unknown 

object(s) using a next best view (NBV) algorithm. 

 Chapter 4 presents a detailed approach to generate grasp poses for multiple grasp 

types from a partial point cloud model. This section presents a method that generalizes 

grasp pose generation for mechanical grippers using partial point clouds. 

 Chapter 5 discusses conclusions and future work. 
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Chapter 2.  

 
Autonomous Motion Planning System 

2.1. Problem Statement 

This work’s purpose is to automate a mobile manipulator to autonomously model and 

grasp an unknown object within an unknown environment for an upcoming fetch and 

robot-to-human transfer task. From either a partial or complete object model, grasp 

poses representing various grasp types (i.e. pinch/lateral, tripodal, or power) are 

appropriately determined to grasp and lift an object of interest (OI). This system avoids 

collisions with obstacles and unobserved regions in the environment and assumes 

unknown object(s) to be grasped are at rest, can move freely, and located on a table 

within a known bounded region. Initially, the mobile robot faces towards the OI; a free 

path to the OI must exist to reach a proposed grasp pose. Simultaneous Localization 

and Mapping (SLAM) builds a map the mobile system navigates within[54], and 

assumes the environment is generally static (i.e. the system restarts if the OI location 

changes). Objects modelled and grasped are rigid and observable. Grasping actions 

assume the object’s context (or purpose) is unknown. For example, this system cannot 

determine if an object is too heavy, fused to a table, or slippery; the system will naively 

grasp any location it determines is graspable using pre-defined grasp types. 

2.2. Mobile Manipulator System 

Our system hardware (i.e.Figure 2.1) comprises of a 3-DOF base (Powerbot), 6-DOF 

manipulator (Schunk PowerCube arm), and 7-DOF 3-fingered Schunk Dextrous Hand 

(SDH). One 3D and two 2D laser scanners are used for sensing. A Velodyne HDL-32E 

performs 3D environmental scans to detect free space for arm navigation; it is mounted 

1.80m high above the base footprint frame (i.e. robot base’s center). A SICK LMS100 

mounted above the Powerbot’s front bumper is used for base localization and mapping 

(i.e. 2D SLAM), and a Hokuyo URG-04LX is mounted on the manipulator’s wrist as an 

eye-in-hand sensor. This sensor models objects and detects free space in the 

environment. Optical encoders estimate odometry from the drivetrain. Gmapping[54] 

implements SLAM because no inertial measuring unit (IMU) is installed in the Powerbot. 
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Figure 2.1: Powerbot Sensors & Gripper in a Folded Configuration. 

2.3. Base Pose Uncertainty Problem 

Mobile manipulator systems are susceptible to base pose uncertainty (i.e. the robot is 

not located at its assumed base pose). In a real-life system, estimating and reaching a 

base pose is affected by three factors: 1) 2D map quality generated from SLAM, 2) base 

pose localization estimated by SLAM, and 3) navigation minimizing error to reach its 

desired base pose goal (controlled using pose tolerances).  

2.4. System Overview 

 

Figure 2.2: Three Phase Methodology to Grasp Planning 

 
A high-level overview for the proposed grasping system is shown in Figure 2.2. In this 

figure, nodes represent stages while numbered branches indicate the system progression 

to grasp an unknown object; solid branches represent success while dashed branches 
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represent failure from the previous stage. Grasping an object is accomplished in three 

major stages: 1) Object Modelling creates a point cloud representation for all objects 

being scanned within a bounded region, 2) Grasp Planning determines if the object can 

be grasped, and 3) Grasp Execution discovers a base pose that allows the manipulator 

to reach and execute a collision-free grasp; this phase corrects base pose error that affects 

guiding the gripper to its final goal. All stages utilize Safe Navigation. Safe Navigation is 

unique because all perception focuses to analyze the global environment to determine 

base poses that are collision-free for both the mobile base and manipulator. In contrast, 

perception from the other stages focus to analyze object(s) within a local bounding box. 

A key feature for this grasping system is Grasp Planning is integrated with Object 

Modelling. Grasp Planning provides feedback to Object Modelling to temporarily pause 

modelling if a grasp exists. Grasp Execution is needed to correct base pose uncertainty; 

as the robot travels, base pose error propagates to the desired grasp pose in the world 

frame. Prior to executing a grasp, base pose uncertainty is estimated to correct proposed 

grasp poses to allow the gripper to reach its desired grasp pose. 
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2.5. System Detailed Approach 

 
Figure 2.3: System State Diagram 

 
The methodology shown in Figure 2.2 is implemented using a state machine presented 

in Figure 2.3. Numbered branches in each figure correspond to each other and generally 

indicate the system’s progression in chronological order. States presented on the left are 

ordered in terms of decreasing priority (i.e. END State is lowest priority). Not shown, are 

two sub-systems, detailed in later chapters, which determine the next best views for 

Object Modelling and final grasp poses for Grasp Execution; the output from these sub-

systems are represented as messages (MSGs) in Figure 2.3 to trigger Model State and 

Pick State within the state machine. From a system perspective, these messages 

represent the NBV to scan the object(s) of interest (or OI), and final grasp pose to grasp 

any object. The overall system (or state machine) is responsible for collision-free 

planning to reach these positions if they are reachable. 
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2.5.1. Clear Room State Overview 

The system begins with necessary initial conditions (i.e. Clear Room and Model State 

active). Clear Room state actively scans the front of the mobile robot in detail using all 

available laser scanners to observe free space within the environment for safe 

navigation; any observed obstacle or unobserved space is treated as an obstacle to 

avoid. This step is necessary to create and initialize all maps used by navigation.  

2.5.2. Model State Overview 

 
Figure 2.4: Model State Diagram 

 
After Clear Room state completes, Model State checks if a list of NBVs are inside the 

robot’s dexterous workspace. If any NBVs are potentially reachable without moving the 

base, a collision-free plan for the manipulator is calculated; otherwise, the system 

randomly samples base poses underneath NBV locations. At proposed base pose 

locations, collision-free plans for the manipulator are estimated for the list of NBVs within 

the robot’s workspace, and if a collision-free plan exists, the mobile base navigates to 

that proposed base pose. If no plan is found, the next proposed base pose is sampled, 

and this process repeats until a successful plan is predicted for a predicted base pose.  

Two loops, shown in Figure 2.4, are needed to pass through Model State to execute an 

object scan. The first loop triggers a base pose prediction that permits the manipulator to 

reach an NBV. Navigation State is activated, the mobile base moves to the base pose 

prediction, Navigation State is de-activated, and the second Model State loop begins. 

Since NBVs are now within the manipulators dexterous workspace, a collision-free plan 

for the manipulator is estimated for all reachable NBVs. If no valid plans are found (e.g. 

the manipulator is blocked by an obstacle), base pose prediction is re-triggered, and 

another Model State loop is repeated. 
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2.5.3. Pick State Overview 

 
Figure 2.5: Pick State Diagram 

 
Pick State activates when grasp poses to secure an object are discovered. A Final 

Grasp Pose MSG is received, and this message contains two candidate lists: 1) a grasp 

type (i.e. lateral, tripodal, or power) and 2) corresponding grasp poses to be attempted 

on a partial object model. As shown in Figure 2.3, Pick State is prioritized over Model 

State when active. Similar to Model State, grasp poses are executed if they are 

reachable and exist within the manipulators dextrous workspace; if not, base poses are 

randomly sampled around the modelled object(s), and collision-free plans for the 

manipulator are esimated to reach any grasp pose from a sampled base pose. If a 

collision-free plan exists, the mobile base navigates to the sampled base pose (i.e. 

Figure 2.5 Loop 1). If no plan is found, Pick State is disabled, and the system continues 

object modelling (i.e. Figure 2.5 Loop 2).  

After the mobile base navigates to a new base pose, candidate grasp poses are within 

its dexterous workspace. Pick State is repeated a second time to grasp and lift an object. 

Lifting an object is executed in three consecutive steps. First, the eye-in-hand laser 

scans the object(s) again (i.e. laser servoing) and corrects the current base pose relative 

to the observed object(s). Second, a collision-free plan for the manipulator to reach any 

grasp pose is estimated again because the current base pose changes after correction; 

grasp poses may no longer be reachable due to how much base pose uncertainty 

affects the system. If a collision-free plan exists, it is executed, and the gripper uniformly 

closes all fingers at the final grasp pose to securely grasp an object. Thirdly, the 

manipulator lifts the object vertically to show a secure grasp (i.e. Figure 2.5 Loop 3). If 

any failure (i.e. laser servoing, trajectory planning, or trajectory execution) occurs during 

these three steps, the system aborts, disables Pick State, and continues object 

modelling (i.e. Figure 2.5 Loop 2).  
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Failures are typically caused after base pose correction; the mobile base may no longer 

be at its ideal predicted position and is too close (or far) to discover a new collision-free 

plan to reach the final grasp pose. Theoretically, the mobile base could move to the 

corrected base pose, but this is impractical because base pose uncertainty is 

reintroduced while the mobile base navigates. Less commonly, the manipulator’s 

trajectory may abort because joints do not precisely reach a waypoint within the planned 

trajectory, or an obstacle blocking the trajectory may be observed erroneously. For these 

cases, Pick State is aborted to not disturb any object. 

2.5.4. Navigation State Overview 

Navigation State receives a base pose list from Model or Pick State and navigates the 

mobile base to a collision-free base pose. Prior to navigation, the robot’s manipulator is 

folded within the robot’s base footprint to prevent it from colliding with obstacles. A base 

pose is accepted for navigation if both the base footprint and volume above are free (i.e. 

region is observed and no obstacles are observed). If all base poses are rejected, 

Navigation State is disabled and Model State is repeated to sample new base pose 

locations. A decoupled approach to navigation (i.e. manipulator and base move 

separately) is chosen to ease implementation and reduce computational cost. 

2.6. Definitions and Notations 

Coordinate frames are represented using Denavit-Hartenberg notation[55]. Initially, the 

world frame (W) and base frame (B) poses coalign. The base frame (B) is attached to 

the base footprint and is primarily used to navigate to either a base frame pose for object 

modelling (Bm) or base frame pose for grasping (Bg); subscripts ‘m’ and ‘g’ denote 

modelling and grasping respectively. A manipulator (arm) is located on top of the mobile 

base, and the manipulator’s base frame (A) attaches to the manipulator’s base, on top of 

the mobile base. Trajectory planning, prediction, and the manipulator’s workspace is 

relative to the manipulator’s base frame (A). Visually, this frame is seldom shown 

because it is an intermediate transform to reach the world frame where most information 

is shown and represented. An eye-in-hand Hokuyo sensor frame (E) is attached at the 

end of the manipulator, above the wrist, and is orientated coplanar to the laser scanner’s 

field of view. The SDH gripper also connects to the end of the manipulator. A general 
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grasp/gripper frame (G) is attached between all SDH fingers, near between distal joint 

motors. The gripper frame (G) is meant to reach a pre-grasp frame (Gp) and move 

towards the final grasp frame (Gf) to grasp an object; subscripts ‘p’ an ‘f’ denote a pre-

grasp and final grasp poses respectively.  

Position (p, p∈ℝ4×1), rotation (R∈ℝ4×4), translation (t, t∈ℝ4×1) and pose/transformation 

(T∈ℝ4×4) use superscript and subscript annotation to designate the reference/designation 

and source coordinate frames respectively. Pose (T) is a homogenous transform, 

i.e. TB
A

=( RB
A

 
, tB
A ). All goal poses are visually shown in the world frame (W). 

2.7. World Octree (𝓦) for Planning and Collision Avoidance 

 
Figure 2.6: World Octree “Spatial” Notch Filters 

For mapping and perception, an octomap octree encompasses the environment and 

mobile manipulator[56, 57]. An octree is chosen because its 8-array tree structure can 

efficiently represent an environment without consuming a large memory footprint[56]. An 

octomap implements an octree structure as a volumetric, probabilistic 3D occupancy 

map; tree leafs (or voxels) are updated by current laser range sensors combined with 

prior observations to assign a low or high probabilistic values to indicate a leaf is empty 

or occupied respectively. Probabilities are discussed using log-odds notation. Obstacles 

(or occupied leafs) are coarsely represented (i.e. low voxel resolution) for collision 

detection and avoidance. A key feature of this work is unobserved space is assumed to 

be an obstacle to either be scanned or avoided.  
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Initially, every leaf within the octree 𝓦 is initialized as an obstacle. Shown in Figure 2.6, 

two filters, represented as dashdotted lines, free (i.e. clear) space within the octree 𝓦. 

Each filter is kin to a “spatial” notch filter removes initialized obstacles within a bounded 

region, and as such, we refer to them as a notch filter. One notch filter frees all 

volumetric space above the mobile manipulator’s footprint to allow the manipulator 

limited, collision-free, movement. A second notch filter frees space within the bounding 

box surrounding the object of interest to be scanned; this second filter prevents scanned 

objects to be considered as obstacles and is necessary to position a gripper for 

grasping. After initialization, the octree 𝓦 is updated by laser readings from the 

Velodyne sensor and Hokuyo eye-in-hand sensors. False-positive obstacles detection 

due to the lasers self-scanning the mobile manipulator is avoided by a third laser notch 

filter, represented as dotted lines; the Velodyne, shown as green, ignores any obstacles 

within a bounding box attached at manipulator’s wrist frame, and the Hokuyo eye-in-

hand sensor, shown as blue, ignores any obstacles within a bounding box attached to 

the robot’s base frame. 

 
Figure 2.7: World Octree Obstacle Perception (Before & After Sensors are Enabled) 

Figure 2.7 shows the octree 𝓦 initialized by an octomap server[57] prior to enabling lidar 

sensors. Occupied octree leafs are represented as solid green voxels, and for 

visualization, only surfaces of solid occupied leafs are displayed. When the octree 𝓦 is 

initialized, the mobile manipulator sits within a free region surrounded by occupied leafs. 

When lasers are enabled to update the octree 𝓦, free regions are updated, but a ‘cone’ 

of obstacles surround the robot because this region is not observed by lidar sensors. 

Using pre-defined movements, the eye-in-hand sensor observes regions outside the 

beamwidth of the Velodyne sensor. While controlling the eye-in-hand sensor pose, the 

robot’s manipulator avoids collision with any occupied leaf in the octree 𝓦.  
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Error! Reference source not found. summarizes how self-scanning is additionally 

mitigated by controlling when readings are accepted to update the world octree. In 

general, if the mobile base is stationary and the manipulator is homed, the Velodyne 

lidar is always on. The Velodyne is disabled when the manipulator moves, unless this 

movement is pre-defined (i.e. panning the wrist to scan an object or rotating the arm to 

scan the environment). If the mobile base is moving and manipulator is homed, both 

sensors are on; the Velodyne scans the entire room while the eye-in-hand sensor scans 

the floor in-front of the mobile robot. Due to the states defined in Figure 2.3, the mobile 

manipulator cannot move its base and arm simultaneously. 

Table 2.1: Lidar Sensor Truth Table for World Octree 

Base  
Stationary? 

Manipulator 
Moving? 

Movement  
Pre-Defined? 

Velodyne  
Status 

Eye-in-Hand  
Status 

Comment 

F F N/A ON ON Navigation 
F T X OFF OFF Not Possible 
T F N/A ON OFF Navigation Ended 
T T F OFF OFF Moving Arm/Gripper 
T T T ON ON Scanning 

2.8. Object Octree (𝓜) for Object Modelling  

Modelling is guided using an additional higher resolution octomap[57] octree that fills 

object bounding box show in Figure 2.6. All object(s) surfaces are reconstructed within 

this bounded region, and octree probabilities will classify leafs as free, occupied, or 

unknown[18]. Initially, all object octree leafs are initialized as unknown. Afterwards, the 

object octree is updated using the eye-in-hand sensor by copying raw laser data from 

obstacle perception. An octomap is selected because probabilistic updates account for 

sensor noise and dynamic changes in the environment. Our environment is static, but 

odometry uncertainty propagates to a mobile manipulator’s scanning frame; modelling 

while experiencing uncertainty can be viewed like changing the object pose between 

scans. Information captured by the last scan is important because it accurately localizes 

object features relative to the mobile manipulators base footprint frame. Information from 

those recent features can reconstruct an object model, even while a robot experiences 

large pose uncertainties.  
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2.8.1. Object Octomap-Specific Implementation 

 
Figure 2.8: Ray-Cube Intersection Visualization 

A ray-cube intersection algorithm detects when the eye-in-hand laser data passes 

through octree 𝓜’s bounding box, and if this occurs, laser data is virtually terminated 

along the bounding box’s border[58]. Shown in Figure 2.8, a ray intersects through two 

planes of a cube, and given the ray pose (known from odometry), a laser hit is projected 

along the plane furthest from the ray source. Practically, this step is necessary to update 

the octomap octree because its current implementation only updates if a laser ‘hit’ 

occurs within its defined bounds. 

2.9. Base Pose Selection 

2.9.1. Object Modelling Base Poses 

 
Figure 2.9: Object Modelling Base Pose Generation 

Figure 2.9 visualizes object modelling base goal generation, denoted as Bm, randomly 

sampled for any sensor scanning frame, denoted as {E}. Given the fully extended length 

of a manipulator’s arm, denoted as dA, a circle is projected onto the ground plane below 

{E}, shown as a solid circle. A parallel dashed circle is shown because the manipulator’s 

base frame, denoted as {A}, is raised above the ground plane because it is attached 

onto a mobile base. Trigonometry determines radius rA for every scanning pose E 

pointing towards the object bounding box, i.e. E1, E2, etc. Within each projected circle, 
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the manipulator can reach the goal pose if it is fully extended. A circle’s radius changes 

size for each scanning pose; for example, the circle becomes smaller as the goal is 

elevated in the world frame because the manipulator needs to reach more vertically. 

Proposed modelling base goal locations, Bm, are randomly sampled within a projected 

circle’s radius. The Bm frame orientation is orthogonal to the bounding box’s during the 

modelling phase. To select a candidate Bm, each scanning pose is projected (or 

transformed) into the current manipulator’s frame using odometry, i.e. and inverse 

kinematics (IK) determines if the manipulator’s sensor can reach frame Bm. The following 

equation projects a scanning frame, i.e. {E’}, into the current manipulator frame {A} using 

the robot’s current base frame {B} as an intermediate step: 

T
E1

'
W = TA

W  TB
A  T

E1
'
B

 ,        where T
E1

'
B  ≡ TE1

Bm  

Control for the base and manipulator are decoupled; typically, the base moves with the 

manipulator safely folded to a base pose goal for the manipulator to reach a scanning 

pose, and once the base reaches its goal, the arm moves the eye-in-hand sensor along 

a collision free trajectory from the folded configuration to scanning pose. To guarantee 

these actions are safe, the manipulator is constrained to execute trajectories within 

observed free regions within octree 𝓦. Prior to moving to any candidate base goal, 

octree 𝓦 is queried to determine if a bounded region around the manipulator is free at 

the candidate base goal within octree 𝓦. If this condition is true, the base goal is 

selected and executed; while navigating, free space in the 2D costmap is assumed free 

for both the base and manipulator. 
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2.9.2. Grasping Base Poses 

 
Figure 2.10: Grasping Base Pose Generation 

Given a set of potential grasp poses, random base positions around the OI are sampled 

with the robot orientated facing the OI (i.e. the OI is 0° relative to the base frame). 

Samples are bounded between an inside and outside circle; the inside circle is greater 

than navigation’s inflation radius[59, 60] (to prevent collision) and outside circle is less 

than the manipulator’s dexterous workspace (to reach the final goal). For each candidate 

base pose, denoted as BG, the IK are numerically calculated to reach pre-grasp Gp and 

final grasp Gf poses (see Figure 2.10). If the IK to reach Gp and Gf are successful and a 

straight line path passes through each pose, the base pose’s rank is incremented. Each 

base pose generated will check all final grasp poses, and a base pose that successfully 

reaches most final grasp poses will be ranked the highest; after ranking, the mobile robot 

moves to the base pose with the highest rank. If two base poses have the same rank, 

the first base pose evaluated is selected. The manipulator executes a trajectory to Gp 

with a closed gripper, and at Gp, the gripper opens for a Cartesian planner to execute a 

forward trajectory to Gf. If the manipulator cannot complete a trajectory to Gp or discover 

a Cartesian plan to Gf, the system aborts, executes another model scan and attempts 

another grasp. 

2.10. Evaluation from Implementation 

During development, unrecorded system tests were performed to confirm navigation and 

perception; no explicit evaluations are recorded to report. ROS MoveIt!’s interface[61] is 

implemented for trajectory planning, and MoveIt!’s collision avoidance octomap[57], 

accessed by MoveIt!’s planning scene class, is replaced with octree 𝓦. While integrating 
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perception, pre-defined trajectories swung the arm back and forth within octree 𝓦‘s 

observable free space. Afterwards, the trajectory is repeated with an obstacle inserted 

along the trajectory’s planned path; motion execution failed. However, when the planner 

was allowed to replan, a new trajectory is discovered to move the manipulator around 

the obstacle to reach its final goal. In fact, Clear Room State describe in Section 2.5.1 is 

needed to initiate autonomous planning because the system is initially surrounded by 

obstacles and unobserved space.  

Collision-models (i.e. defined to be slightly larger than physical dimensions) and 

threshold parameters (i.e. joint and goal tolerances) are selected to prevent the 

manipulator and base to collide into observable obstacles. These measures are 

confirmed through simulation and impolitely evaluated during experiments reported for 

object modelling and grasping objects using multiple grasp types, described in later 

chapters. Implicit knowledge confirms the mobile manipulator does not collide into 

obstacles, and the manipulator planner avoids collisions within octree 𝓦[61, 62]. 
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Chapter 3.  
 
Integrating NBV Modelling with Grasping 

3.1. Problem Statement 

An autonomous, fully-integrated, data-driven planning system is proposed for a mobile-

manipulator to grasp an unknown object in an unknown environment. Object modelling 

with a wrist mounted lidar sensor, using a next best view (NBV) algorithm, is integrated 

with grasp planning. The object of interest (OI) to be grasped is assumed rigid and inside 

a known bounded region in the world frame; no other a priori knowledge about the OI is 

assumed. Preliminary results is presented of a 9-DOF mobile manipulator (with a 

gripper) autonomously scanning and modelling an OI, and from the partially constructed 

model, a grasp is planned; if planning is successful, grasping the OI is executed, but 

otherwise, further scans are taken to build a more complete model until grasping the OI 

is achieved. 

3.2. Motivation 

A mobile manipulator provides more flexibility retrieving objects in a large workspace; 

however, errors associated with localizing the base can propagate to the sensor frame 

and adversely affect object modelling and grasp execution. Object modelling is affected 

because consecutive scans need to correctly register for integration. This action is 

typically performed using an Iterative Closest Point (ICP) algorithm[63]. ICP performs 

well when the initial guess is accurate but can fail in the presence of large uncertainties. 

A mobile manipulator’s registration error (i.e. distance between two overlapping scan) 

can be larger than the width of the scanned object. Generally, NBV algorithms that 

consider registration are not demonstrated to correct this issue[20, 21, 25, 27]. An 

algorithm adaptation is necessary to treat scan overlap as a primary feature to 

guarantee registration correspondence. Another key aspect of this work is our NBV 

algorithm guides the eye-in-hand laser, mounted on a mobile base, to take scans of an 

OI from multiple view poses with uncertainty and precisely register point cloud scans to 

build an OI model. 
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3.3. NBV Modelling System Integration 

 

Figure 3.1: Flow Diagram to Integrate Modelling with Grasping.  
This figure is reprinted with permission from [52] 

As discussed in Section 2.4, Object Modelling is integrated with Grasp Planning. A high 

level flowchart of our integrated and autonomous system to grasp an OI is shown in 

Figure 3.1. Initially, the robot begins the Modelling Phase; in this phase, a volumetric 

NBV algorithm (see [22, 64]) evaluates and ranks potential view poses that surround the 

OI. Shown in Figure 3.2, a global list of uniform randomly sampled view poses, within an 

inner and outer ring around the bounding box, encompassing the OI is first created and 

then ranked. Heuristically, a cylindrical shape is chosen to approximate a toroid, 

representing the robot manipulator’s workspace if the base moves circularly around the 

OI. If a portion of the ring is blocked by an obstacle, a mobile manipulator can travel to 

other free locations to continue OI modelling. View poses surrounding the OI ensure 

scans cover all sides of the object. The inside and outside ring radius provides depth for 

the mobile manipulator to select a range of NBVs in case several are unreachable due to 

obstacles. Ring height is similar to the manipulator’s dextrous workspace height.  
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Figure 3.2: NBV Frame Generation 

NBV orientation, shown as frames in Figure 3.2, is represented by three vectors. Frame 

vector axes are defined for world frame, W, as x̂
w

, ŷ
w

, ẑ
w

∈ℝ3×1 and sensor (or NBV) 

frame, E, as x̂
E

, ŷ
E

, ẑ
E

∈ℝ3×1. A frame is attached to the object’s bounding box center, 

denoted as {O}. Initially, a NBV’s x-axis is created by normalizing the difference between 

the bounding box’s origin, i.e. PorgO
W

, and NBV frame’s origin, i.e. PorgE
W

. This vector 

represents the sensor frame facing towards the OI. Next, the NBV’s y-axis is created by 

taking the cross-product between the NBV’s x-axis and world frame’s z-axis, and the 

cross-product between the NBV’s x-axis and y-axis. These steps are summarized below: 

x̂
E =

PorgO
W − PorgE

W

‖ PorgO
W − PorgE

W ‖
 

ŷ
E

= x̂
E

× ẑ
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ẑ
E

= x̂
E

× ŷ
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The highest ranked view pose (or NBV) is selected to scan the OI (see ‘NBV Ranking’ 

for ranking criteria). For planning motions to reach the NBV, the Hierarchical and 

Adaptive Mobile-manipulator Planner (HAMP)  [3] would be ideal; however, we chose a 

decoupled approach to ease implementation and reduce computational cost. Our 

approach works as follows. The base plans within a 2D costmap[59], and at the base’s 

goal, the arm plans within a global 3D octree [57] using Rapidly-exploring random trees 

(RRT)[65].  

Base poses, described in Section 2.9.1, are randomly sampled around the region of 

base poses from where the NBV pose is reachable. Each sampled base pose is tested 

to determine if a trajectory exists for the manipulator to reach the NBV. The robot moves 
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to the first available base pose if its location is collision free for both the base and arm.  

Once the robot arrives at its base pose, the eye-in-hand sensor moves to the highest 

ranked NBV; if this is unreachable (e.g. a new obstacle is discovered or the base stops 

offset from its desired pose), the next highest rank NBV is chosen. Once at the NBV, the 

eye-in-hand sensor initiates a scan. After a scan, three actions occur: i) the partial point 

cloud representation of the OI is updated using a generalized iterative closest point 

(GICP) algorithm[66], ii) all NBV rankings are updated, and iii) Grasp Planning/Analysis 

discovers if a gripper shape fits along the partial OI model for all grasp types. If grasp 

analysis discovers a match and generates grasp poses around the point cloud model, 

grasp pose(s) are sent to the robot, and the robot initiates the Grasp Execution Phase; 

otherwise, the robot moves to a new location for scanning, and the process repeats itself 

until the model is complete. The number of contact points associated to the group is 

determined by the grasp type attempted (e.g. two contact points for a pincer/parallel 

grasp, three points for a tripod grasp, etc.). During the Grasp Execution Phase, the 

manipulator moves into a pre-grasp position. From there, a Cartesian planner moves the 

end effector along a straight line trajectory from the pre-grasp to final grasp pose. 

3.4. NBV Object Modelling with Uncertainty 

The NBV modelling algorithm is frontier-based (i.e. a frontier is the boundary between 

free and unknown regions) and uses scan overlap as a key feature to reduce 

uncertainty. It is inspired by existing methods with adaptions to emphasize scan overlap 

from the previous scans[25, 64]. Scan overlap is used as a feature to mitigate 

registration error because it guarantees a specific ratio of correspondence for 

registration between consecutive scans. This overlap ratio is adjustable to improve 

registration accuracy (i.e. more scan overlap when more uncertainty exists). A GICP 

algorithm is used to merge current with previous scans, and in effect, GICP corrects 

position uncertainty. This algorithm is not optimized to fill details in the model or scan 

small occlusions. Our goal is to practically scan large, visible, and easily reachable 

surface features so the OI can be quickly and easily grasped. Constraints, i.e. field of 

view and viewing angle, are incorporated by ray casting from the sensor’s pose towards 

octree 𝓜’s bounding box. Indirectly, occlusions within the bounding box are revealed by 

selecting view poses that overlap information gained by the previous scan. View poses 
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that are obstructed by obstacles and do not have line-of-site to the OI within octree 𝓦 

are also ignored.  

3.4.1.  NBV Volumetric Representation 

 
Figure 3.3: Next Best View (NBV) Octree Representation. 

This figure is reprinted with permission from [52] 

Selecting viewpoints is accomplished by defining a bounding box around the OI and 

representing it with an octree [57] to guide the NBV algorithm. Sensor data updates 

these leafs using a Bayes filter to build a probabilistic occupancy map[57]. We assign 

four states to represent leafs: i) free, ii) occupied, iii) unknown, and iv) frontier. They are 

defined below, and a 2D representation is shown in Figure 3.3. 

 A leaf is free if its occupancy is below a threshold, pmin 

 A leaf is occupied if its occupancy is above a threshold, pmax 

 A leaf is unknown if it is either not scanned, or it is scanned but contains an 
occupancy probability value between pmin and pmax 

 A frontier leaf is any unknown leaf adjacent to a free leaf’s faces 

3.4.2. NBV Ranking 

NBVs are ranked by comparing a percentage of occupied and frontier leafs within octree 

𝓜. A positive weighting factor ω, ω ∈[0,1], creates a vector wd=(ω,1- ω) to represent the 

desired overlap percentage for each scan. Let ηOCi and ηFRi represent the occupied count 

and frontier count respectively for the ith viewpoint. ηOCi and ηFRi are derived for each 

viewpoint by casting rays within the sensor’s field of view within the octomap; if a ray 
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terminates at either an occupied or frontier leaf, ηOCi or ηFRi will be incremented 

respectively. Assuming a finite total of ‘n’ NBVs, where i={1, 2, …, n}, we define another 

vector wi, whose components are the fractions of frontiers and occupied leafs observed 

at the ith viewpoint is:  

wi= (
ηFRi

max(ηFR | n)
 , 

ηOCi

max(ηOC | n)
)  

CRi= {

wd

|wd|
∙

wi

|w
i
|
,    ηFRi , ηOCi>thresh

   0     ,               otherwise        

 

An NBV’s composite rank (CR) is given by the dot product of normalized wd and wi 

vectors. CR scales between [0, 1] and is maximal when wi equals the desired overlap 

wd. Each rank represents how similar a viewpoint 𝐚i matches a desired overlapping ratio 

wd, and its value decreases as a view pose moves further away from a maximal CR. If 

either ηOCi or ηFRi are below a minimal threshold, the NBV rank is set to zero due to not 

enough information contributing to the CR. Ranking criterion purposely has an intuitive 

and practical meaning for the user. For example, if ω = 0.5 (i.e. View B in Figure 3.3), 

ranks favour an equal ratio of occupied and frontier leafs. As ω decreases, more overlap 

is preferred.  

Heuristically, CR is automatically set to zero if a ray cast from a view pose does not 

terminate at an occupied or frontier leaf, leafs required to estimate CR. This heuristic 

ignores sampled view poses that are occluded by world obstacles or view poses that do 

not observe a leaf type needed to calculate CR. To ignore world obstacles, one ray cast 

from a sampled view pose to OI is performed within octree 𝓦, and if the ray cast 

terminates at any obstacle leaf before reaching the OI, the view pose is occluded by an 

obstacle (and CR rank is set to zero). To verify information exists to calculate CR, a 

second ray cast from a sampled view pose to OI is performed within octree 𝓜, and if the 

ray cast does not terminate on an occupied or frontier leaf, the CR rank is set to zero. 

These constraints quickly ignores view poses obstructed by obstacles or view poses that 

do not contribute information to calculate CR.  

Our NBV algorithm terminates when all NBV CRs equal zero. This occurs when the 

number of frontiers is below a minimal viewing threshold with non-zero occupied leafs in 

the octree (i.e. ηFRi<thresh and ηOCi≠0). 
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Figure 3.4: Next Best View (NBV) Ranking Progression 

CR behaviour for NBVs is visualized in Figure 3.4. Initially, all NBVs are assigned equal 

ranks, shown as navy blue. The mobile manipulator moves to a location where a group 

of NBVs are reachable, shown in magenta, and randomly selects any available NBV to 

perform the first scan. Once octree 𝓜 is update, CRs are updated to determine the next 

scanning location. The mobile manipulator travels to the highest CR, shown in red, and 

the process repeats until all CRs return back to zero rank. The number of zero ranks 

diminish as scans proceed because more frontiers are revealed. Eventually, as more 

frontiers are scanned and removed from octree 𝓜, zero ranks reappear and eventually 

envelop the OI when fully scanned. 

a) Initial Ranks b) 1st NBV Selected c) 1st Ranks Updated 

d) 2nd NBV Selected e) 2nd Ranks Updated 
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3.5. Registering Partial Scan with Uncertainty 

 
Figure 3.5: GICP6P Incorporates Surface Normals for Improved Correspondence Matching 

Consecutive scans, S, are registered using GICP. This algorithm improves the original 

ICP’s performance by associating a covariance to each registered point, and updating its 

covariance using a surface normal. GICP derives a transform that minimizes the 

distance between target and source points lying along a similar surface plane[66]. 

Implicitly, (G)ICP algorithms guarantee convergence when registered scans fully 

overlap; when scans partially overlap, convergence is not guaranteed because 

correspondence between target and source points might not be correctly identified. 

Correspondence between target and source points are determined using an L2 norm 

which excludes points beyond a maximum distance, i.e. dmax, threshold[66]. A few issues 

with this approach exist: i) small overlap between scans, relative to dmax, causes poor 

registration because correspondence incorporates more non-overlapped points, and ii) if 

uncertainty exists, dmax needs to be increased to incorporate more non-overlapping 

points during registration.  

Works generally add an additional stage to ICP to improve correspondence matching 

[67, 68]. A branch and bound algorithm minimizes residual error from the L2 norm and 

guides ICP to a globally convergent solution[67]. A point’s curvature and angle 

differences between neighbouring normals are estimated to discern pairs of points for 

registration[68]; in addition, the search space for correspondence is reduced through 

feature extraction[69]. Our GICP algorithm (i.e. GICP6P) determines correspondence 

using the L2 norm with a 6D feature created by concatenating a 3D point with its 3D 

normal. Since a surface normal can be resolved in two opposing directions, the direction 

facing the lidar’s view is chosen. Scale between translation (i.e. points) and orientation 

(i.e. surface normal) can be adjusted using a scale factor. Applying the L2 norm to a 6D 

feature vector improves correspondence because dissimilar normals increase the L2 
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norm distance, guiding correspondence to select physically close points with similar 

normals. GICP’s O(Nlog(N)) complexity remains unchanged. Alternatively, GICP’s L2 

norm correspondence metric can be replaced with inner product to measure distance; an 

added scale factor would relatively weight point and normal distances. Empirically, we 

observed GICP6P, using a scale factor equal to 1, registers points more accurately than 

standard GICP. Figure 3.5 illustrates how concatenating points (i.e. dotted lines) with 

surface normal information (i.e. arrows) improves correspondence matching. GICP6P 

ignores initial transformations that align dissimilar surface normals that are acceptable 

for GICP. Consequently, several local minima registration cases are avoided. 

3.6. Correcting Grasp Pose Uncertainty (Pose Correction) 

 
Figure 3.6: Grasp plan generated for the OI. The manipulator moves the gripper to its pre-grasp position (a) 

and a cartesian planner moves the gripper forward to reach its final grasp pose (b & c) 

Given a set of potential grasp poses, random base positions around the OI are sampled 

with the robot facing the OI. For each base pose, the inverse kinematics (IK) are 

numerically calculated for pre-grasp and final grasp poses, Gp and Gf, respectively; in 

addition, a straight line trajectory is processed from Gp and Gf.  If reaching a path to Gp, 

Gf, and all waypoints between Gp and Gf are successful, the base pose’s rank is 

incremented. As shown in Figure 3.6 the manipulator executes a trajectory to Gp with an 

open gripper, and at Gp, a Cartesian planner executes a straight forward trajectory to Gf 

and closes the gripper around the OI to trap it. When the robot reaches its base goal to 

grasp, its world frame location is uncertain; errors from odometry and mapping during 

the last base trajectory will alter the pose of the OI (relative to the base frame). To 

mitigate this error, the eye-in-hand sensor scans the OI again to correct the final base 

and grasp poses using the corrected transform derived by GICP.  

a.  b. c. 



32 

 
Figure 3.7: Transforms for Final Grasp and Base Pose Correction. 

This figure is reprinted with permission from [52] 

After every consecutive scan, GICP registers the OI’s point cloud to the most current 

scan. Planned grasp goals can be registered with this transform because grasp poses 

are relative to the OI’s surface features. Planning can derive a complete base and 

manipulator trajectory to execute a final grasp goal, but once the mobile base moves to 

a final base pose, uncertainty is reintroduced; the base will not reach its intended 

planned base goal. However, if the OI is scanned again, GICP’s transform can correct 

the planned base goal. As a result, no manipulator trajectory replanning is necessary; 

the mobile manipulator moves a relatively short distance (i.e. uncertainty does not 

accumulate significantly) to the corrected base pose to execute its original manipulator 

trajectory to the final grasp goal.  

As shown in Figure 3.7, G0 and B0 are planned poses for the gripper and base in the 

world frame (W) to pick the OI. GICP yields TG1
G0

. The goal is to discover a corrected base 

goal, B1, to reuse the same planned manipulator joint configuration to reach the 

corrected gripper pose G1. B1 maintains the same pose relative to G1 using the 

constraint T=G1
B1

TG0
B0

. The GICP transform within W with its rotation (zero translation) 

denoted as TRG1
G0

, where T∈ℝ4×4. Pose of the G0 frame origin PG0
W

org
 and rotation TRG0

W
 

are corrected with the following: 

PB1
W

org
= TG1

G0
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W

org
− TRG1

G0
PG0

B0
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TRB1
W = TRG1
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3.6.1. Reservoir Sampling to Mitigate Grasp Pose Replanning 

Base pose ranks described above prioritize a base pose that successfully reaches the 

most final grasp poses. However, if experiencing large uncertainty, final grasp positions 

could be corrected and offset a large physical distance away from prediction. The 

{W} 

{G
0
} {B0} 

{B1} 

{G1} 
TG0

B0
 

 

T=G1
B1

TG0
B0  

TG1
G0

 

Base pose (B0) 
corrected after gripper 

pose (G0) changes 



33 

system shown in Figure 3.1 permits replanning (i.e. selecting a new base pose to 

regrasp), but planning, with uncertainty, can mitigate this action. The most significant 

source of error for grasping is position uncertainty because a poorly positioned gripper 

can bump or not even touch the OI to cause a failed grasp. When utilizing a trapping 

strategy (i.e. closing a gripper around an object), successful grasps are shown to still be 

possible with minor orientation error, i.e. less than 20°[70, 71].  

To represent grasp position uncertainty, a box is defined around Gp. The box’s 

dimensions are defined to represent expected uncertainty. The pre-grasp pose, Gp, is 

cloned to fill the box at discrete intervals. Reservoir sampling[72] removes a percentage 

of cloned poses. Base pose ranks are recalculated, as described in Section 3.6, for the 

remaining cloned Gp poses. This new rank prioritizes a base pose that can be offset to 

the most positions and can still successfully reach a final grasp goal. 
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3.7. Experiments and Results 

3.7.1. Implementation 

Framework implementation is developed within the Robot Operating System (ROS). 

Within ROS, MoveIt!’s interface[61] is configured to implement RRT-Connect from the 

Open Motion Planning Library[73] to guide our 6-DOF manipulator along collision-free 

trajectories [65]. The goal and orientation tolerances for the end effector are set to 0.5cm 

and 1° respectively. Manipulator joint tolerances are set to 0.28°. Base navigation, 

utilizing ROS’ dynamic window approach planner[74], is performed with a base pose 

tolerance of 15cm and 5°. Base translational and rotational velocities are limited to 

0.7m/s and 57.3°/s respectively. During grasp execution, base pose goal tolerance is 

reduced to 4cm and 5°; translation and rotational velocities are also reduced to 0.15m/s 

and 14.3°/s to prevent the base from oscillating at the base goal. 

Two octomap servers are launched. World octree 𝓦 is used for collision avoidance to 

safely move the manipulator. Octree 𝓦 encompasses the room, has a resolution of 

10cm and is updated by the Velodyne and Hokuyo sensors. Three hundred NBVs are 

randomly generated between a radius of 1.0m and 1.5m from the OI. This range is 

selected to permit the base to freely move around the OI. Octree 𝓜 surrounds the 

unknown OI and updates NBV rankings to guide model reconstruction[57]. Object 

modelling is guided using a 70cm x 70cm x 50cm octree 𝓜 surrounding the OI with its 

resolution set to 0.8cm. Any object(s) set within this bounding box is processed for 

modelling and grasping. A ray-cube intersection algorithm detects when the eye-in-hand 

laser data passes through octree 𝓜’s bounding box, and if this occurs, laser data is 

virtually terminated along the bounding box’s border[58]. Practically, this step is 

necessary to update the octomap because its current implementation only updates if a 

‘hit’ occurs within its defined bounds. Unorganized point clouds model the object and are 

processed using the point cloud library (PCL)[75]. 

3.7.2. Object Reconstruction by Varying Overlap 

To demonstrate our NBV algorithm, our system was first configured to autonomously 

scan the OI after selecting five NBVs with ω = 0.3 to ω = 0.7 at 0.1 increments. The 

scene and OI never changed during runs. A model of the OI was first constructed by 
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manually choosing 32 scans to create an approximate ground truth reference model 

(MR) for validation. A model was created from real data because our simulation 

environment, i.e. ROS Gazebo, is intended to model physics and represents objects with 

meshes (without a ground truth point cloud). Initially, MR is registered to the first scan S0. 

During the experiment, GICP registers subsequent scans (i.e. S1, S2, …Si) to reconstruct 

the OI (Mi). Two variants of GICP are implemented with identical parameters, denoted as 

GICP3P and GICP6P, when correspondence is estimated from 3D and 6D points 

respectively (described at the beginning of Section 3.5). Three transforms are recorded 

during each scan for comparison. The first two are: i) GICP3P transform (Ti
3P

) that 

registers current scan Si with current model Mi-1, i.e. Si∪Mi-1, and ii) GICP6P transform 

(Ti
6P

) that also registers Si∪Mi-1. The third transform (Ti
R

) registers Si∪MR and represents 

the ‘ideal’ transform. All constructed models are down-sampled to 4mm resolution, and 

two metrics evaluate their construction: 

Transform Similarity 

Table 3.1: Comparison of GICP3P and GICP6P to Ground Truth. 
This table is reprinted with permission from [52] 

 
ω 

Registration Failure (Scan #) Ave. Transform Similarity (cm) 
GICP3P GICP6P TS3P TS6P 

0.3 N/A N/A 3.86 0.78 

0.4 3 N/A 3.73 1.88 

0.5 2 4 20.06 3.02 

0.6 2 4 8.96 6.20 

0.7 2 4 8.67 4.69 

Transform similarity, TSi
nP

, is the difference in distance after applying the estimated 

transforms Ti
nP

 and Ti
R to a point, Porg, located at the origin of the world frame. At the end 

of five scans (i.e. k=5), the results are averaged. 

TSi
nP

=
1

k
∑‖Ti

nP
Porg- Ti

R
Porg‖

n=3,6

k

i=1
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Registration Failure 

 
Figure 3.8: GICP3P (left) & GICP6P (middle) merged scans.  

Offline model (blue) and GICP3P (pink) / GICP6P (green) point clouds overlayed (right). 
This figure is reprinted with permission from [52] 

Every consecutive scan will accumulate a small error over time. Empirically, we notice 

registration typically fails when TSi
nP

 > 5cm, and we record it when this occurs. Table 3.1 

summarizes registration results by modifying the overlap factor ω. As ω increases (i.e. 

reducing desired overlap), average transform similarity decreases but not monotonically. 

Poor TS
nP

, shown when ω = 0.5, is due to GICP3P registering a scan to create a model 

that looks like Figure 3.8a, instead of being aligned like Figure 3.8b. Figure 3.8c 

demonstrates the difference between magenta GICP3P and green GICP6P models 

registering to the ground truth (shown in blue). This is caused by several factors, like little 

correspondence or discernable features captured between scans. Regardless, poor 

registration causes a failure to determine a valid grasp. By selecting an appropriate 

overlap factor ω, registration failure can be mitigated as shown in Figure 3.8b.  

Given sufficient overlap, registrations estimated from GICP3P and GICP6P are similar. 

Referring to Table 3.1, GICP3P and GICP6P’s desired overlap can be selected as ω = 0.3 

and ω = 0.4 respectively to avoid registration failure. Average TS6P is consistently less 

than TS3P; GICP6P transforms are more similar to our approximate ground truth model. 

Consistently, GICP6P registers scans more accurately (shown in Figure 3.8b and Table 

3.1) and registration failures occur less frequently when concurrent scans have more than 

50% overlap, ω < 0.5. This can be viewed in Figure 3.8c as poor registration causes the 

GICP3P model (shown pink) to translate ~7cm away from the ground truth (shown blue).  

 a. c. b. 
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Figure 3.9: NBV Ranks Before and After a Scan to Reveal Cylindrical Object (ω = 0.5) 

(Warmer coloured arrows have the highest ranks). 
This figure is reprinted with permission from [52] 

Figure 3.9 visualizes NBV rankings when ω = 0.5 (i.e. 50% overlap is desired). In the left 

image, the eye-in-hand laser scanned the object’s bottom and table surface. The point 

cloud, shown as copper coloured points, is observed below octree 𝓜, shown as a green 

voxelized box. Highest NBV ranks (shown as red arrows) orient towards the top of the 

object because these orientations overlap with the previous scan. After selecting the 

highest ranking NBV (i.e. scanning the object’s top), the right image shows how the 

ranks change; red arrows migrate outwards because the object’s exposed sides have 

scan overlap with the previous two scans, and more points from the copper coloured 

point cloud are revealed. This behaviour repeats until the object is fully modelled. When 

ω < 0.5, NBVs are ranked to orient closer to the previous scan. When ω < 0.3 or ω > 

0.7, ranking behaviour from the NBVs is not discernable; when less than 0.3, ranks 

prioritize viewpoints towards the last scan, and above 0.7, ranks prioritize viewpoints 

towards the opposite side of the OI. Warmer coloured arrows indicate highest NBV ranks 

and black arrows are ignored NBVs. Initially, all NBVs start and finish with equal ranks, 

indicated by navy blue.   

3.7.3. Complete Object Reconstruction 

In simulation, a tin can is reconstructed until our NBV modelling algorithm self-terminates 

(i.e. all CRs are zero), using a scan overlap setting ω = 0.4. At each scan location, NBV 

ranks, travel distance, octree 𝓜, and underlying point cloud model are shown in Figure 

3.10 and Figure 3.12. Scanning begins at Figure 3.10b and Figure 3.12a where the 
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mobile robot randomly selects a reachable NBV to begin object modelling, and 

subsequent images depict the mobile manipulator scanning at the next NBV. The tin can 

model and reconstructed point cloud model are observed in Figure 3.11. A more 

complex scene including a tin can and cordless drill model reconstruction is observed in 

Figure 3.13. 

Figure 3.10 and Figure 3.12 show NBV ranking progression as the OI is revealed and 

completely scanned. They also show base pose locations the system selects for 

scanning. Black arrows indicate zero rank NBVs (i.e. view poses to ignore), described in 

Section 3.4.2, because either not enough information exists to calculate a CR or the 

object is occluded by an environmental obstacle. Warm colours, i.e. red arrows, indicate 

NBV poses prioritized for scanning. Generally, after the first scan, warm NBVs prioritize 

poses neighbouring the previous scan. Due to the nature of the frontier leaf’s definition 

(i.e. a free leaf next to an unknown), few frontiers are discovered initially. As a result, 

many NBVs that surround octree 𝓜 are ignored (and shown as black arrows), except for 

view poses near the initial scan.  

Iteratively, the mobile manipulator moves to neighbouring view poses and builds a 

complete object model, shown in Figure 3.11 and Figure 3.13. The system does not 

oscillate (i.e. make large movements) back and forth while scanning. As more scans 

continue, zero ranked NBVs disappear because occupied and frontier leafs are 

observable at most view poses. As more scans continue, frontier leafs are removed 

because more unknown leaf locations are scanned. During this phase, zero ranked 

NBVs reappear because all necessary information is gained (or frontiers cannot be 

observed) at these view poses. Continued scans remove more frontiers from octree 𝓜, 

creating more zero ranked NBVs, until octree 𝓜 is only comprised of free, occupied, 

and unknown leafs. Unknown leafs exist, but they do not contribute to generating a 

frontier because they are encapsulated by occupied leafs. When all frontiers are 

removed, all NBVs will become zero ranked, and the algorithm self-terminates. 
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Figure 3.10: Mobile Robot Sequence Reconstructing a Tin Can Model, ω = 0.4 

(Warmer coloured arrows have the highest ranks) 

 

 
Figure 3.11: Tin Can Model Reconstruction Result, ω = 0.4 
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Figure 3.12: Mobile Robot Sequence Reconstructing Tin Can and Cordless Drill Models, ω = 0.4 

(Warmer coloured arrows have the highest ranks) 

In both simulation, our modelling algorithm can reconstruct point cloud models and self-

terminate. The underlying point cloud models are initially observed after the third scan, 

i.e. Figure 3.10d and Figure 3.12c. All object sides are scanned after eleven NBV poses 

are selected, i.e. i.e. Figure 3.10h and Figure 3.12j. Modelling the tin can and cordless 

(a) (b) (c) (d) 

Octree 𝓜 

Point Cloud 
Revealed 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

(m) (n) (o) (p) 

(q) (r) (s) (t) 

All object  
sides scanned 



41 

drill required five additional scans compared to modelling the tin can only; this is 

expected because the cordless drill’s irregular shape self-occludes itself and the other 

object. Both reconstructed point clouds, Figure 3.11 and Figure 3.13, resemble their 

respective virtual models and show minor registration error. 

 
Figure 3.13: Tin Can and Cordless Drill Model Reconstruction Result, ω = 0.4 

3.7.4. Framework Performance 

To demonstrate performance, three live experiments are performed to grasp the OI, a 

can, while reconstructing its partial point cloud model. The OI’s surface is covered with 

construction paper to create a Lambertian surface to improve the Hokuyo laser’s sensor 

data quality. NBVs are ranked with ω = 0.40, and grasp successes (or failures) are 

recorded. 

 
Figure 3.14: Object Modelling Progress while Avoiding Obstacles. 

This figure is reprinted with permission from [52] 

To fully model an object with ω = 0.4, the robot needs to move between seven to twelve 

view poses. Within five view poses (i.e. within fifteen minutes), the robot scans enough 

Simulated Object Reconstructed Point Cloud 

a. b. 

c. d. 
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of the object to discover a grasp pose. The total time planning a trajectory to an NBV 

ranges from 45s to 90s; planning a grasp ranges from 45s to 400s. Grasp planning time 

increases as more grasp goals are searched or if the base corrects and replans its final 

position. Grasp analysis completes within 45s. Figure 3.14 shows the progression to 

model an object while avoiding environmental obstacles. These images show the base is 

positioned to keep the manipulator free to scan the OI. By the sixth scan (i.e. Figure 

3.14d), most of the object is revealed. Due to the overlap constraint specified for the 

NBV ranks, scans merged well to perform grasp analysis.  

Work presented in [76] suggests that an object’s principal axis can be used as a grasp 

feature. In fact, [18] completes all grasps based only from a center of mass (CoM) and 

principal axis estimates from a partial point cloud. We have encountered two issues 

using the principal axis to guide a gripper’s pose: i) it works well for long, symmetric 

objects but produces incorrect results for objects with an irregular shape (e.g. a cordless 

drill) and ii) the principal axis does not stabilize when the OI is partially modelled. 

Orientation tends to follow along the point cloud direction that contains the highest 

density of points instead of the OI’s true pose, and the priciple axis tends to bias towards 

the scanned sides of incomplete model. As our modelling phase guarantees overlap but 

not uniform sampling, we avoided estimating the object’s principle axis.  

Table 3.2: Framework Performance Summary. 
This table is reprinted with permission from [52] 

 
# 

Model 
Locations 

Base Pose 
Corrected? 

Grasp Pose 
Corrected? 

L2 error to Goal 
(uncorrected) 

L2 error to Goal 
(corrected) 

1 2 No Yes 6.40cm 0.01cm 
2 2 Yes Yes 4.05cm 0.06cm 
3 1 No Yes 7.90cm <0.00cm 

Table 3.2 summarizes results to autonomously grasp an OI. Desired grasp poses are 

corrected, and the gripper reached its desired grasping goal. During the second run, 

corrected grasp poses fell outside the robot’s dextrous workspace, and the base 

repositioned its location to complete the final grasp. Although not recorded, if the base 

pose correction is less than the goal tolerance of the base planner (<4cm radius), the 

base will not correct its desired base goal because it is already within its base goal 

threshold. While testing, more than one attempt at base correction has never been 

observed.  
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Chapter 4.  

 
Generalizing Grasping for Multiple Grasp Types 

4.1. Problem Statement 

We present a generalized grasping approach for mechanical grippers that permits 

grippers with any number of fingers to discover poses for different grasp types. Grasp 

type matching is performed in a computationally efficient two stage process. In the first 

stage, a set of grasp type orientations that yield a “pure shape” match are discovered by 

matching histograms between finger contacts’ (corresponding to a grasp type) and 

objects’ surface normals. A pure shape match is when a gripper’s finger contact normal 

distribution matches that observed among a set of object surface normals. In the second 

stage, “size” of grasp type is matched by cross-correlating voxel grids representing the 

gripper with partially viewed objects. Furthermore, collision constraints, e.g. the gripper 

palm, can be accommodated in the second stage as one single step by introducing 

negative penalties during cross-correlation. Due to decoupling matching shape from 

scale, a grasp contact verification stage is added to verify grasp positioning after cross-

correlation; finger contacts may physically match an object surface but gripper contact 

normals may not perfectly align with observed surface normals. A tolerance rejects 

poses when the angle between any gripper contact and object surface normal becomes 

too large.  

Objects are assumed to be rigid, at rest, on a table, and their context is unknown. The 

presented algorithm should generate grasp poses along an object surface that match a 

grasp type to reasonably lift an object. Contextual information (i.e. objects are stacked, 

are slippery, fused to the table, need to be retrieved in a specific order) is not 

considered. Task information, (i.e. human-to-robot transfer or grasping securely) is 

decoupled from pose generation and incorporated as a final stage to refine pose 

generation results. 

4.2. Introduction 

Grasp planning and manipulation is fundamental in a variety of robotic domains, in 

particular for assisted robotics to aid people to complete a wide variety of tasks. In 
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robotics literature, grasps are planned based on analytical and heuristic approaches to 

securely grasp an object[8, 9]. For instance, force closure and caging works focus on 

analytical methods that rely on an object’s geometry, kinematic, and/or dynamic 

equilibrium[77-80]. A limitation for these methods is their design is typically for one 

specific task wrench (such as resisting gravity) or grasp type (such as a two fingered 

pinch grasp). As pointed out in [43], newer learning-based methods tend yield a single 

grasp type per object for multi-finger grasps. 

4.3. Motivation 

Planning for a single grasp type is rather limiting because the grasp type itself is 

determined from the task being accomplished, e.g. a power grasp to hold a tool, tripodal 

to grasp a ball, or precision to hold a pen[43]. Determining a grasp itself is not simply 

securing an object with parallel jaws, rather it is completing a practical task comprising of 

multiple sub-tasks which may require different grasp types. Securing an object is only 

one sub-task; other task types include object transfer, object manipulation, tool usage, 

etc. The principle objective of our research is to simultaneously generate grasp poses for 

different grasp types to accomplish a task. 

A key feature of our work is discovering grasp candidates for multiple grasp types 

without explicitly estimating an object’s grasp stability. A stability check is forgone 

because our approach is designed to work with partial object information; such a stability 

check would generally require complete object information. When quantifying grasp 

robustness, a contact region (and not a point) can potentially provide stable grasps over 

large perturbation between an object’s surface normal and grasp axis angle[81]. 

Capturing this behaviour is desired for systems experiencing uncertainty. We posit that a 

grasp taxonomy’s grasp type[82, 83] is inherently stable if defined correctly, and our 

algorithm is motivated by this observation. For example, a pinch (or parallel) grasp 

applied by a human to a plate’s corner may not be stable due to torque allowing the 

plate to rotate between each finger; however, this is a common grasp for humans (who 

have soft fingers[84]) because more force can be applied at one’s fingertips to increase 

friction and prevent rotation. Many newer multi-fingered grippers (e.g. Barrett, Schunk, 

and Robotiq) have soft material enveloping their fingers that could resist torque similarly. 

Discovering grasp candidates for a grasp type is not ‘optimized’; we argue optimizing (or 

selecting) a grasp should be a final decision because any optimization is dictated by a 
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task—e.g., if a task is securing an object, force closure and caging are optimized to 

restrict an object’s dynamic motion, but the consequence is the gripper contacts will 

ideally surround an object. If the task changes to handover, a sub-optimal grasp (in 

terms of minimizing dynamic motion) is desired to reveal more surface area for the 

receiving person to grasp. 

In grasping literature, there is an implicit theme to place importance on object shape. 

Object shape requires an appropriate grasp taxonomy[82], but this leads to a significant 

problem; an infinite number of shapes requires numerous grasp types. A human hand is 

observed to have over thirty different grasp variations[82, 83, 85]. Computing all grasp 

types for all objects would be an endless task. However, the search space for grasping 

can be reduced if we focus to generalize grasp types rather than an object’s shape. The 

key idea in our approach is to discover if a grasp type exists or “matches” to a set of 

contacts on an object’s surface; we assume a grasp is achievable if it exists. If a grasp 

type does not exist, that grasp cannot be executed. Even though over thirty grasp types 

exist for a human hand, these types can be generalized to a smaller set for a mechanical 

gripper to complete a task. (i.e. pinching, power, tripodal, parallel, ring, etc.)[85]. 

4.4. System Overview 

 
Figure 4.1: Grasp Pose Pipeline Overview.  
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Our system determines a grasp pose by cross-correlating a gripper’s grasp type shape 

with an object’s surface. Grasp type shape is modelled by desired contact surface 

normals. For example, a parallel jaw can be represented by either two or an array of 

opposing contact normals. Grasp types selected for multi-fingered grippers is inspired by 

human grasp taxonomy, and we investigate modelling power, tripodal, and lateral grasp 

types[83]. We assume object(s) being modelled are represented by a point cloud, a 

collection of points located on an object’s surface (obtained via a range sensor) and their 

respective normal (estimated from the point cloud). Our algorithm’s flow diagram is shown 

in Figure 4.1. A grasp plan for a single grasp type is completed in two stages using two 

data structures: 1) surface normal histograms, denoted by Ho for object surface normals 

and Hg for finger or grasp contact normals, and 2) 3D voxel grids, Vo for object voxel grid 

and Vg for gripper voxel grid, computed from point clouds. Furthermore, by adding negative 

penalties to the gripper voxel grid, a collision-free grasp and a “straight line path” to the 

object can be predicted in one integrated step. A surface normal histogram discretizes 

surface normals to their respective spherical coordinate angles, inserts them into bins, 

and shows the surface normal frequency for an object. Grasp contact normals for any 

grasp type are used to create Hg and are defined a priori. The advantage to using surface 

normal histograms is that they are invariant to translation and rotation from any viewing 

angle within the world frame. High frequency noise is filtered because quantizing surface 

normals smooth these frequencies. 

Computational efficiency for our system is achieved by decoupling shape matching 

(using contact surface normals) from scale (using contact points). A similar matching 

result may be achieved by cross-correlating gripper contact normals and points in 6-

dimensions (6D). However, the computation time to cross-correlate hypercubes in the 

frequency domain is O(vDlog(v)), where ‘v’ is the number of voxels needed to create a 

cube’s length, ‘D’ is the spatial dimension, and vD is the total number of voxels in the 

hypercube [86]; a decoupled approach in 3D results in significant computational 

efficiency.  



47 

4.5. Grasp Planning Overview 

4.5.1. Stage 1: Match Grasp Type Shape 

 

Figure 4.2: Stage 1 Example for Parallel Jaw to discover Gripper Orientation.  

Stage 1 determines if a grasp type shape (not the scale) “matches” any part of viewed 

unknown objects, i.e. a grasp type’s set of contact normals are observed on any 

scanned object. A grasp type model is created using point normals to define desire 

contact points on a gripper. A straightforward measure for “matching” shape is pairing 

object surface normal bins to non-zero bin locations within the grasp histogram. A grasp 

type’s contact normals used to create Hg, defined a priori, are rotated by the gripper’s 

orientation using Euler angles. For each gripper rotation, a rank quantifies how many 

object surface normals match desired gripper contacts. Heuristically, this step selects 

and ranks grasp orientations (i.e. top-down, sideways, etc.) that match the grasp type’s 

shape to any observed objects.  

A Stage 1 example, shown in Figure 4.2, illustrates a parallel jaw gripper with two 

contact points matching a partially observed box (in 2D). Two point normals represent 

the gripper’s desired shape to contact the object. Constraints, i.e. a palm, are not 

illustrated because they are a physical shape constraint (i.e. not represented by point 

normals). In this example, the gripper model contact normals (shown as lines) align with 

the observed object normals only when the gripper pose is rotated ±π/2; thereby, 

rotating the finger contact normal by the same amount. Green lines are inverted gripper 

contact normals. Blue lines are outer surface normals associated to the object. These 

orientations will need further investigation to determine if the shape’s scale matches the 

gripper in a subsequent stage. 
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4.5.2. Stage 2: Match Grasp Type Scale 

 
Figure 4.3: Stage 2 Example for Parallel Jaw to Discover Gripper Orientation.  

Stage 2 determines if a grasp type’s contacts points “match” a set of observed surface 

points on the object. Gripper orientations that satisfy Stage 1 are used to rotate a grasp 

type’s point cloud model. Rotated points are then inserted into a gripper voxel grid (Vg) 

and cross-correlated with the object’s voxel grid (i.e. Vgo=RVg⋆Vo), where ⋆ denotes a 

cross-correlation operation and R is gripper orientation. Peaks from correlation greater 

than or equal to the number of grasp type contacts identify potential grasp locations.  

Stage 2 for the parallel jaw gripper is shown in Figure 4.3, where parallel jaw gripper’s 

green contact points are cross-correlated to an object’s blue surface points; from cross-

correlation, an orange ‘X’ identifies potential positions where the parallel jaw matches 

the object’s surface, i.e. correlation is high. Symbolic red points are constraints applied 

to a region (with negative values) that should not collide with the object. Red points 

physically represent the gripper’s palm and wrist. Lastly, a final step revisits potential 

grasp locations, finds the gripper contact points closest to a surface point in the object 

point cloud, and verifies each contact normal and object surface normal are in a “similar” 

direction. If similar, the grasp type’s complete pose is inserted into a list for execution. 

4.6. Grasp Planning Details 

4.6.1. Stage 1a: Surface Normal Histograms 

A surface normal histogram, shown in Figure 4.4, is created by representing a point 

normal, n=(nx,ny,nz)T via two spherical angles: 1) elevation / pitch βi:[-π/2,π/2] and 2) 

azimuth / yaw γi:[0,2π), where ‘i’ is a coordinate (βi, γi) within histogram H. 
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Figure 4.4: Surface Normal Histogram Data Structure.  

Angles are discretized into uniform bins and incremented. Due to gimble lock when a 

normal is orientated at north or south poles, a unique solution to γ does not exist. For 

these two cases, all azimuth bins for the polar elevation angle are incremented ∆γ/2π, 

where ∆γ denotes bin size. Normals for the gripper represent the grasp type’s contact 

orientation; their orientation faces opposite to an object’s surface normals so an inverted 

normal is inserted into Hg, i.e. Hg[-n]. 

4.6.2. Stage 1b: Matching Histograms 

All histograms share the same angle resolution. If all non-zero gripper bin locations 

Hg(βi, γi) are also non-zero at the same object histogram bin location Ho(βi, γi), there 

exists a possibility the grasp shape is on the object’s surface. However, this is only true 

for one gripper orientation. To match a grasp type shape for all orientations, N gripper 

contact normals n∈ℝ3×1 are rotated using Euler angles roll αg:[0,2π), pitch βg:[-π/2,π/2], 

and yaw γg:[0,2π). A rotation transform is defined as Rzyx(γg, βg, αg)∈ℝ3×3. Rotated 

normals are then mapped to a histogram index, and these indexes are referenced to the 

object histogram to determine a rank. This method is fast because few gripper contacts 

are needed to represent grasp type. Note that gripper rotations correspond to bins 

shifting in Hg. 

4.6.3. Stage 1c: Ranking Different Orientations 

 
Figure 4.5: Surface Normal Histogram Matching (Bin Resolution = π/7).  
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Gripper orientation ranks are stored in a third surface normal histogram structure, i.e. a 

histogram result Hr, whose structure is shown in Figure 4.4. For simplicity of 

visualization, the axis corresponding to roll αg is not shown, but it is added to Hr as a 

third axis to index ranks for all possible rotations R(αg, βg, γg). A bin in Hr(αg, βg, γg) 

indexes a specific gripper orientation, and the rank value stored quantifies how well Hg 

matches with Ho. Ranks for an N-contact grasp type are defined as: 

Hr (αg,β
g
,γ

g
) = {

∑ logൣHo(β
i
,γ

i
)൧

N

i=1

,  Ho ≥ R(αg, βg, γg)Hg ≥ 1

0,  otherwise

 

Rank is a rough measure to indicate the combination of each finger contact normal 

choosing a surface normal. If all normals match, the logarithmic product is performed at 

all Ho bin locations that correspond to non-zero Hg bin locations. Surface normals do not 

match when Hg(βi, γi) ≥ 1 and Hg(βi,γi) > Ho(βi,γi). This condition’s intuition is too few 

object surface normals exist for the quantity of gripper contact normals requested. For 

this condition, Hr(αg, βg, γg) is set to zero. Practically, thousands of surface normals can 

represent an object, creating large values within Ho. Rank values can become extremely 

large using high resolution models. To mitigate this problem and keep rank values small, 

a log transformation is performed. Intuitively, rank maximizes when the most surface 

normals exist for each grasp. 

Figure 4.5 illustrates a 3D example to create Hr(βg, γg) using 2D rotation R(βg, γg). All 

histograms have a resolution set to ∆γ = π/7 (~25.7°). In this example, only yaw R(0, γg) 

is possible to rotate the gripper. If the gripper elevation angle changes, the same Hr 

results would shift up/down along β-axis for Hr. Figure 4.5 demonstrates the logarithmic 

product rank. By comparing histograms, bins in Hg align with Ho when γg = {0, π}. For all 

other rotations, Hg bins do not match Ho and Hr(0,γg) = 0. Although Stage 1 determines if 

a gripper orientation matches the grasp type shape to object surface, Stage 2 

determines both the scale of the object shape and if it satisfies the gripper’s physical 

constraints. 
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4.6.4. Stage 2a: Voxel Grid to Match Contacts 

 
Figure 4.6: Voxel Grid Model for a 2-Contact Parallel Grip.  

An object bounding box, Vo∈ℝ3, surrounds all object(s) being scanned, and a regular 

grid discretizes space into voxels. Each voxel is addressed by indexes, I = (i,j,k)T, where 

Vo(i,j,k) = 1 if it corresponds to a scanned location and Vo(i,j,k) = 0 if space is empty or 

unscanned (because unscanned regions also include a point cloud’s subsurface that we 

want free). Discussed in this section’s third paragraph, an additional palm contact added 

to a grasp model prevents poses to generate in unscanned regions. Shown in Figure 

4.6, a gripper bounding box, Vg∈ℝ3, surrounds the gripper’s grasp type being modelled 

and discretizes space with the same resolution as Vo. Vg(i,j,k) = 1 to model a contact 

point and its range of motion prior to contacting an object. This motion is defined by a 

directional vector for our system with adjustable length and represents a finger contact’s 

motion just prior to contact. This generalizes a grasp type for different object sizes. 

Precise motion depends on the finger joint’s kinematics, which can be modelled 

precisely. However, modelling straight line motion, i.e. a sliding joint, is computationally 

more efficient and a reasonable approximation for a relatively small range of motion; 

hence, we implemented this approximation for our system. We modelled rotational 

motion as a trial, e.g. revolute finger joints, but in practice, no significant effect was 

observed modelling an arc for rotational motion. Due to voxelization, an arc or chord 

passes through similar voxels over short distances.  

In Figure 4.6, two vectors, shown as arrows, point towards each other to model a parallel 

gripper partially closing. A grasp contact assumes its location is graspable for every 

point along the vector. Vector length generalizes the grasp type for different object sizes. 

Long vector lengths correlate with more object size variation while short vector lengths 

correlate with less object size variation (i.e. a grasp type becomes more size-specific). 

However, too long a vector length may generate larger pose offsets from an object’s 
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primary axis; if closing a gripper uniformly, fingers will contact the object at different 

times causing a sliding motion. Vg(i,j,k)=0 represents empty space. Vg(i,j,k)=-255 for 

constraints. A grasp type’s contact points and constraints are stored in a point cloud 

prior to voxel grid insertion. To indicate a point’s positive or negative value, its RGB 

(green and red) colour value is changed.  

Optionally, it is desirable to incorporate additional constraints with the grasp type model; 

their purpose is to create desirable behaviour for a grasp type. A collision-free linear 

path to grasp an object can be discovered by cross-correlating voxel grid grasp types 

with partial object voxel grid representations. Referring to Figure 4.6, constraints outside 

the gripper contacts penalize surfaces larger than the gripper’s “maximum opening”, 

specify a minimum gap required to place a finger between objects, and center the 

gripper palm with respect to contact points (that coupled actuation would need). A wrist 

constraint prevents the gripper’s palm from colliding with an object’s surface. An 

additional contact vector from the palm can be added to favour grasp poses along an 

object’s observed surface. This contact requires the gripper’s palm to face an object’s 

observed surface. The voxel representations in Figure 4.6 and Figure 4.10 demonstrate 

this contact vector for lateral and tripodal grasp types. Without this vector, cross-

correlation can yield valid pose results from both sides of an object (on observed and 

unobserved sides), and for safety, grasp poses should only exist in observed regions. 

Frames {o} and {g} are attached to the center of Vo and Vg bounding boxes respectively. 

Object and grasp type voxel grids are built within their respective reference frames; this 

allows points assigned to Vg to be rotated first and registered to Vo afterwards. The 

object’s point cloud updates Vo after each scan. Cross-correlation between Vg and Vo is 

performed using the Fast Fourier Transform (FFT). Once voxel grid size and resolution 

are set, correlation runtime is fixed. Large object point clouds do not negatively impact 

our algorithm because they are down-sampled to a fixed size voxel grid. In Cartesian 

space, cross-correlating identical M-sized voxel grids Vg with Vo at any gripper 

orientation R(αg,βg,γg) is defined as: 

Vgo(α,β,γ)
(x,y,zሻ= ∑ R(α,β,γ)Vg(i,j,kሻ

M

i,j,k=0

Vo(x+i,y+j,z+kሻ 
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Since a voxel grid represents physical space, a grasp type model Vg is bounded by a 

relatively small box while the object voxel is adjustable. The largest impact to this 

algorithm is voxel resolution (Vres), but for grasping, resolution can be about as coarse as 

a gripper’s finger width. Correlation also solves two problems with one step: 1) it 

indicates where a grasp type shape is most similar to the object, and 2) the wrist 

constraint length determines a collision-free linear path for the gripper to move through. 

A complete gripper pose, using orientations from Stage 1, is found for an N-contact 

grasp type when any voxel Vgo(α,β,γ)(x,y,z) is greater than or equal to N. 

4.6.5. Stage 2b: Verifying Normals and Contacts 

 
Figure 4.7: Removing Illogical Grasps when Surface and Contact Normals Mismatch.  

Contact location (light green) examples for a Partially Scanned Box (blue).  

Since shape and scale matching are decoupled into sequential steps, the results after 

cross-correlation may include locations that do not logically yield a grasp. Two examples 

are shown in Figure 4.7; Case 1 shows a grasp type’s contacts creating a plane in the 

figure. As a result, the correlation will correspond to a planar surface on one object face 

instead of two opposing faces. A single face on an object is not graspable. Even if the 

solution appears graspable, contacting edges are not desired because these locations 

offer the least amount of surface area for the gripper to touch. Case 2 in Figure 4.7 

shows a similar example, but contacts align at an object’s corner (i.e. several faces that 

are not opposing). If the gripper contacts close around an object’s corner, the object will 

likely slip free.  

Verification reasonably checks grasp contacts and their respective normal so that both 

match the partially scanned object surface. A grasp type position is verified by re-

checking the contact normal’s direction. At every potential grasp position, a k-nearest 

neighbour search is performed for each contact relative to the object(s)[87]. When the 

closest point on the object is discovered, the inner product of its normal with the gripper 
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normal is taken. The inner product for verification must be greater than a parameterized 

threshold (nth). We define it as a similar size as one surface normal histogram bin, i.e. nth 

= cos(∆γ). 

4.6.6. Additional Stages: Task-based Grasping 

A strength for the first two stages is many reasonable grasp poses are generated in near 

real-time by matching a grasp type to an observed object’s surface. This is desired for a 

robotic platform experiencing uncertainty because many alternative grasp pose options 

exist if the desired final grasp pose fails. In addition, more options permit higher-level 

decisions to refine and select a grasp location based on a specified task.  

For robot-to-human object transfer, a robot should select grasp pose locations that 

permits more surface area for another person to grasp; this action gives a person more 

opportunities to hold an object securely. However, estimating total surface area is 

difficult given a partial object model. Instead, overlapping grasp poses from all grasp 

types can identify graspable locations easily. For example as depicted in Figure 4.8, a 

cylinder’s center has more grasp pose solutions than the cylinder’s ends. If many grasp 

pose solutions exist at one region that match several grasp types, that region is 

assumed easily graspable. An algorithm can select this region if a task is specified as 

securing an object. For a robot-to-human transfer task, an algorithm can avoid this 

region, leaving it for the human receive to grasp. 

 
Figure 4.8: Task Selection based on Box Collisions 

Given grasp type point clouds used to create grasp type voxel models depicted in Figure 

4.6 and Figure 4.8, collision boxes encapsulate gripper contacts and wrist constraints 

within one voxel resolution. The gripper contact collision box detects if finger contacts 

from two grasp poses overlap. The wrist contact collision box detects if two grasp poses 
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are orientated in similar directions. The gripper contact collision box is defined using two 

points, denoted as Ptip_min and Ptip_max, that surround the minimum and maximum gripper 

contact point (by one voxel resolution). Similarly, the wrist constraint collision box is 

defined using two points, denoted as Pbase_min and Pbase_max, that surround the minimum 

and maximum wrist penalty locations. In practice, eight points define the edges of a 

collision box, and all eight points are transformed (i.e. rotated and translated) in the 

world frame. After transformation, the minimum and maximum edges are assigned 

Pname_min and Pname_max respectively. These points create two bounded regions for all 

other grasp type poses to avoid. Iteratively, collision boxes are created similarly for all 

remaining grasp poses to test overlap with these regions.  

By labelling two collision boxes as ‘cb1’ and ‘cb2’ respectively, collision boxes overlap 

along one axis if xcb1_max≥xcb2_min and xcb1_min≤xcb2_max. If this test is repeated for the 

remaining axes, every test must pass to determine if cb1⋂cb2; if any test fails, cb1 and 

cb2 do not overlap. The following ranks are applied for robot-to-human transfer and 

securing an object tasks: 

 Robot-to-Human Transfer Task: increment rank every instance two collision 

boxes do not overlap, shown in Figure 4.8. 

 Securing an Object Task: increment rank every instance two collision boxes 

overlap, shown in Figure 4.8. 

Intuitively, the robot-to-human transfer rank maximizes when both finger and wrist 

collision boxes avoid all other collision boxes, and securing an object task maximizes 

when both finger and wrist collision boxes overlap with all other collision boxes. 

4.6.7. Calibrating (or Offsetting) a Gripper Frame for each Grasp Type 

 
Figure 4.9: Shifting a Grasp Frame to tune Grasping 

The grasp gripper frame (i.e. g) may not be ideally located at the desired grasp location 

between desired contact locations, as shown in Figure 4.9. A gripper model can be 
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recreated to locate grasp contacts symmetrically around a new frame offset, assuming 

the same grasp type; alternatively, the gripper frame can be transformed to a new 

location. Given the grasp type frame’s origin (i.e. Porgg
W

), an intermediate calibration 

transform (i.e. Tg'
g

) or offset (i.e. Pg'
g

) is defined relative to the gripper frame to create a 

new grasp type origin (i.e. Porgg'
W

). The new grasp type origin and pose are defined as: 

Porgg'
W

= Tg
W

Pg'
g

 + Porgg 
W

 

Tg'
W = Tg

W
Tg'

g
 

Heuristically Removing Grasp Poses Passing Through a Table Surface 

Within the grasp pose generation algorithm, the options available to avoid and mitigate 

generating a grasp pose that causes a gripper to collide with a table’s surface is as 

follows: 1) Grasp type shapes should not be generalized to cross-correlate with a table’s 

surface, 2) a Stage 1 orientation search can define pitch (i.e. β) to only orientate towards 

(i.e. β:[-π/2,0]) and not away (i.e. β:(0,π/2]) from a table’s surface. For example, grasp 

poses for a box can orientate underneath it, and 3)  grasp type model voxel constraints, 

shown in Figure 4.6, can define finger limits or added constraints around desired contact 

locations to detect when a grasp type gripper model passes through a table’s surface. 

Within our proposed grasping system, octree 𝓦 guarantees a mobile manipulator avoids 

collisions with any observed obstacle and unobserved regions. However, in the absence 

of these measures, grasp pose generation after cross-correlation (i.e. Stage 2) can be 

heuristically filtered. 

Previously discussed in Section 4.6.7, the grasp type gripper frame can be offset to a 

new location relative to its original frame. Complete pose information is given by 

referencing locations relative to the final grasp frame (i.e. relating to Section 4.6.7, 

Tg
W

= TGf

W
 is the final grasp pose and T=g'

g 
TGf′

Gf  represents any pose relative to the final 

grasp frame). For every grasp pose generated after cross-correlation, edges relative to 

the grasp frame (i.e. TGf′
Gf ) are defined to create a collision boundary for the gripper. 

Iteratively, eight edges locate four corners bounding the gripper’s wrist and four corners 

bounding the gripper’s fingertips. If any corner is located below a table surface plane, the 

grasp pose is ignored. Table surface height can be observed from a point cloud using 

planar model segmentation[88, 89] or assumed known a priori. Determining if a 
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boundary is below a threshold is less computationally expensive than sending grasp 

poses to a trajectory planner, calculating inverse kinematics, and determining if the 

mobile manipulator collides with observed obstacles. For uneven or unknown surfaces, 

utilizing a collision map, e.g. octree 𝓦, is more robust for any planning algorithm 

because a table is represented as an avoidable region without using prior assumptions. 

  



58 

4.7. Experimental Setup 

4.7.1. Implementation 

Generalizing multi-grasp type pose generation is developed as a sub-system within the 

Robot Operating System (ROS) in our lab for a “fetch an object” task. Our mobile 

manipulator comprises of a 3-DOF base (Powerbot), a 6-DOF manipulator (Schunk 

Power Cube arm), and a 7-DOF 3-fingered Schunk Dextrous Hand (SDH). A Hokuyo 

URG-04LX planar laser is mounted on the manipulator’s wrist as an eye-in-hand sensor 

and scans all objects in the environment[52]. Its angular resolution is 0.36°. The overall 

integrated system comprises a motion planning and next best view (NBV) algorithm for 

automatically scanning an unknown object of interest  in an unknown environment  and 

is discussed in detail[52]. The focus of this paper is to show reasonable and successful 

grasp poses for different grasp types can be generated for a partially or fully scanned 

objects. The FFT algorithm that cross-correlates voxels is developed using the FFTW 

library[90]. Cross-correlation is performed by evaluating the Fourier transform for the 

object and conjugated (i.e. reversed) gripper voxel grids and evaluating the inverse 

Fourier transform after their product (i.e. Vo⋆Vg = ℱ−1{ℱሾVo(tሻሿℱൣVg
* (-tሻ൧}). Experiments 

are conducted using an Intel Core i5-3210M CPU @ 2.5 GHz and 16 GB of RAM. 

Hardware Limitations 

Grasp execution engages all motors simultaneously to trap an object. Sliding may occur 

for our system implementation because tactile feedback is not implemented to stop 

motors once they contact the object. To mitigate bumping or sliding, other grasping 

works added a subsequent stage to rank grasp poses based on grasp robustness[81], 

re-align the gripper’s palm so all fingers contact an object simultaneously[10, 41], or 

stabilize a grasp from an uncertain pose using tactile feedback[91]. 

4.7.2. Grasp Models and Parameters 

For all experiments, three grasp types (i.e. lateral, tripodal, and power), shown in Figure 

4.10 are repeatedly searched at different voxel resolutions. A lateral grasp is modelled 

like a parallel jaw gripper; distal pads (or fingertips) move towards each other in a 

pinching motion. A tripodal grasp is similar, but each fingertip is separated by 2π/3, 
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forming a triangular shape that closes. A power grasp is modelled as a diamond that 

encloses proximal and distal pads around an object at ±π/6. When modelling precise 

proximal/distal motion for a power grasp, grasp poses only appeared for a small range of 

object sizes. This merits further investigation. 

Lateral Grasp Tripodal Grasp Power Grasp 

   

   

   
Figure 4.10: Gripper images for three grasp types (top row),  

voxel models for the grasp types (middle row), and  
implemented voxel representation (bottom row)  

The total contact vector length to model our gripper’s motion in voxel grid Vg is 5.25cm, 

where 3.75cm is finger motion length, i.e. df, applied as a positive value (i.e. Vg(i,j,k)=0) 

and 1.5cm is finger spacing length, i.e. ds, dedicated as a constraint (i.e. Vg(i,j,k)=-255). 

These vectors are separated to generalize each grasp type to discover correlations for 

objects that range between 3.5cm to 11.0cm in diameter. A fourth contact vector from 

the palm is added to the lateral and tripodal grasp to favour grasp poses along the 

scanned object’s observed side. The power grasp does not have this vector because 

most of the object needs to be observed before this grasp type is discovered. The wrist 

constraint is 12.0cm wide (i.e. Schunk SDH width) and extends 10.0cm in length. This 

length guarantees the gripper moves collision-free 10.0cm along a linear trajectory prior 

to reaching the final grasp pose. Proximal joint motors engage at a constant velocity to 
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apply a lateral and tripodal grasp; both proximal and distal joint motors engage to 

complete a power grasp. 

Table 4.1 summarizes all voxel model and grasp generation algorithm parameters 

selected for experimentation. Behaviour from our grasp pose generation algorithm is 

affected by four parameters: 1) Normal histogram search Euler angles, i.e. α, β, γ, 2) 

normal histogram resolution, i.e. ∆αβγ, 3) voxel resolution, i.e. Vres, and 4) verification 

angle threshold, i.e. nth. Normal histogram search angles and resolution affect the 

quantity of gripper poses to query during Stage 1. Brute force or heuristics can select 

search angles. For example, search angles for integrated grasping experiments are 

heuristically selected to be parallel to the ground plane because the mobile base will not 

approach an object close enough to allow any alternative approach. Normal histogram 

resolution is below 20° to mitigate grasp failures due to pose orientation error[70, 71]. In 

Stage 2, voxel resolution, Vres, affects the volume a voxel ‘smooths’ and object’s point 

cloud and respective surface normals. The final verification angle threshold, nth, rejects 

grasp poses when the length between any finger contact normal and object surface 

exceeds this value.  

The object and gripper voxel size are defined as Vo= 50x60x30cm and Vg=30x30x30cm 

respectively. The object voxel encapsulates all objects in the world frame. For each 

grasp type, the gripper wrist rolls α:[0,2π), pitches (i.e. pivots up/down) β:[-π/2,π/6], and 

yaws (i.e. rotates around the object) γ:[0, 2π) at ∆αβγ=π/6 increments, unless stated 

otherwise. After cross-correlation, a verification threshold nth=0.9*cos(π/6) is chosen to 

confirm the object surface normal align with gripper contact normal within the resolution 

of the surface normal histograms. A maximum of 576 cross-correlations could be 

performed, but in practice, fewer cross-correlations (i.e. ~20%) are performed because 

normal histograms Ho and Hg remove orientations where a gripper normal does not exist 

on the object’s surface.   
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Table 4.1: Summary of Gripper Model and Grasping Algorithm Parameters for Experiments 

Voxel Modelling Symbol Value 
Object Voxel Size Vo 50x60x30cm 
Gripper Voxel Size Vg 30x30x30cm 
Finger Motion Length df 3.75 cm 
Finger Spacing Length ds 1.50 cm 
Palm Width N/A 12.0 cm 
Straight Line Trajectory Motion N/A 10.0 cm 

Grasp Algorithm Experiments Symbol Value 
Normal Histogram Search α, β, γ α:[0,2π), β:[-π/2,π/6], γ:[0, 2π) 
Normal Histogram Resolution ∆αβγ π/6 or π/12 radians 
Voxel Resolution Vres Variable, Typically: 1.0 – 1.5 cm3 
Verification Angle Threshold nth 0.9*cos(π/6) 

Integrated Grasping Experiments Symbol Value 

Normal Histogram Search α, β, γ α:[0,2π), β:{-π/2 ,[0, π/6]}, γ:[0] 
Normal Histogram Resolution ∆αβγ π/6 rad 
Voxel Resolution Vres 1.5 cm3 
Verification Angle Threshold nth 0.9*cos(π/6) 

4.8. Experimental Results 

Experimental results are divided into two categories: 1) grasping algorithm behaviour as 

parameters change and 2) fully integrated grasping. The first category utilizes 

simulation, simulated data, and household objects from the YCB dataset[92] to visualize 

our grasping algorithm’s performance as key parameters change. The second category 

characterizes the integrated system by grasping and lifting real objects from partially 

scanned models while experiencing uncertainty. Grasp poses are displayed as three 

different colour arrow markers for each grasp type, magenta for lateral, yellow for 

tripodal, and red for power. 
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4.8.1. Grasping Algorithm Performance as Parameters Change 

Experiment 1: Computation Time as Voxel Grid Size, Vres, Increases 

 
Figure 4.11: FFT-based Correlation Computation Time  

as a function of total number of Voxels.  

 

A tin can (Dimension: 10.5cm x 22.0cm) and hand drill (19.0cm x 6.5cm x 22.0cm) are 

completely scanned and modelled a priori with 30,438 points with a resolution of 3.0mm. 

The point cloud model is loaded into our algorithm and executed for different voxel 

resolutions, where Vres={0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}cm3, and FFT computation time 

is averaged. The major computation time is FFT-based correlation in Stage 2 and is 

shown as a function of total voxels in Figure 4.11. Time is linear with respect to total 

number of voxels (with a slope of 1) but exponential to dimension D, i.e. D = 3. Our 

system can process near real-time grasp results for voxel grid sizes up to 800,000 

voxels on a standard laptop CPU. 
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Experiment 2: Pose Results for Simulated Objects and YCB Model Dataset 

Pyramid 
(7 x 30 cm) 

Pyramid 
(14 x 30 cm) 

Cone 
(7 x 30 cm) 

Cone 
(14 x 30 cm) 

    
Figure 4.12: Pose Results for a Simulated Pyramid and Cone† 

†     Lateral (magenta) and Power Grasp (red) 

A simulated pyramid and cone point cloud is inserted into our algorithm’s object voxel 

grid. As shown in Figure 4.12, the grasp poses found by our algorithm are poses 

broadside to the objects, and as their base size increases, poses migrate upwards to 

match their desired size. Tripodal grasps are not found due to the wrist constraint 

preventing a top-down grasp, and power grasps only appear when its desired radius on 

the object exists.  
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Cracker Box Sugar Box Chip Can 

      
Tomato Can Tuna Can Soft Ball 

      
Baseball Mustard Bottle Bleach Cleaner 

      
Windex Bottle Orange Pear 

    

  

Banana Toy Plane  

Figure 4.13: Pose Examples from the YCB Dataset† (Vres: 1cm3, ∆αβγ : π/12) 
†     Lateral (magenta), Tripodal (yellow), and Power Grasp (red) 

Figure 4.13 visualizes and Table 4.2 summarizes pose results for household objects 

from the YCB model dataset after varying voxel resolution (Vres) and normal histogram 

bin size (∆αβγ). We make the following salient observations: 

 Grasp type shape associates consistently with similar object shapes. 

 Fine voxel resolution is more appropriate for smaller objects. 

Lateral grasps are associated to box-like surfaces, tripodal to cylinders/balls, and the 

power grasps to cylinders. For more complex objects, like the mustard and Windex 

bottles, lateral grasps are found along the base’s principal axis and top-down grasps are 

proposed to grab the mustard’s base or Windex bottle’s head. The algorithm worked 
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nicely even if the bottle’s model is partial, not revealing its entire shape. Experiments 

also reveal fine voxel resolution is needed for smaller objects, like the banana or tuna 

fish can. Large voxels applied to small objects average too many surface normals, 

making normal estimates inconsistent relative to their surface. 

Table 4.2: Pose Generation Results for YCB Model Dataset¥ 
¥     Bold indicates most frequent grasp type discovered 

Grasp Type: L/  T/  P L/  T/  P L/  T/  P 

Settings Vres: 1cm3  
∆αβγ : π/6 

Vres: 1cm3 
∆αβγ : π/12 

Vres: 0.75cm3 
∆αβγ : π/6 

Cracker Box 05/003/00 09/003/00 067/043/000 
Sugar Box 07/000/00 25/000/00 066/007/000 

Chips Can 15/027/04 40/043/07 152/036/111 
Tomato Soup 02/40/00 011/40/00 013/078/000 
Tuna Fish Can 00/000/00 00/000/00 000/013/000 

Softball 00/0133/00 00/139/00 002/292/000 
Baseball 00/042/00 00/043/00 001/202/000 

Mustard Bottle 22/001/00 64/000/00 104/150/008 
Bleach Cleanser 12/041/02 58/015/03 152/088/057 
Windex Bottle 01/015/00 07/000/00 006/004/000 

Orange 00/001/00 00/004/00 000/392/000 
Pear 00/011/00 00/003/00 016/037/000 
Banana 01/000/00 01/000/00 014/011/000 

 

  



66 

Experiment 3: Pose Results as Voxel Resolution Changes 

Voxel Resolution Side View Top View 

   

  
 

  
 

  
 

  
 

Part A Part B 

Figure 4.14: Experimental Results while Scanning a Tin Can and Hand Drill† 

†     Lateral (magenta), Tripodal (yellow), and Power Grasp (red) 

Figure 4.14a visualizes grasp results for voxel resolutions Vres = {0.5, 1.0, 1.5, 2.0, 2.5, 

3.0}cm3 from the previous experiment. Magenta, yellow, and red arrows indicate a grasp 

pose (normal to the gripper palm) for lateral, tripodal, and power grasps respectively. We 

make the following salient observations: 

 Finer resolution reveals more details and more grasp poses. 

 Reasonable solutions are consistently found for low and high voxel resolutions. 

 The wrist constraint prevented poses to generate where a straight line grasp 
trajectory would pass through a neighbouring object. 

In general, higher resolution reveals more details from the scanned objects and more 

grasp poses are discovered. Interestingly, reasonable grasp solutions for all grasp types 

are consistently found at both low (Vres = 2.0 cm3) and high (Vres = 0.5 cm3) resolutions. 

2.5cm3 Scan 1 

2.0cm3 Scan 2 

1.5cm3 Scan 3 

1.0cm3 Scan 4 

nth: 0.9*cos(π/12) 0.5cm3 Scan 5 
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This was also observed for the YCB model dataset. For example, a tripodal grasp is 

available above the tin can to grasp downwards, the drill can be grasped from above, 

and all lateral/power grasps along the tin can’s side face away from the drill to avoid 

collision. In fact, the grasping system autonomously selected these pose and avoided 

collision with the cordless drill; autonomous grasp examples are shown in Figure 4.15. 

Figure 4.15 also visualizes the real scene scanned to create models presented in Figure 

4.14. 

 

Figure 4.15: Autonomous Grasp Examples that avoids Collisions with a Neighbouring Object  

When Vres = 0.5 cm3, noise (and more details) causes some of these top-down tripodal 

grasps to be offset from center. To mitigate these offsets, the contact vector length can 

be reduced or verification threshold can become more specific. A verification threshold 

example is shown in Figure 4.14a by decreasing the normal verification angle from π/6 

to π/12 for Vres = 0.5 cm3. Resolutions Vres = {1.0, 1.5}cm3 smooth noise from the point 

cloud and clearly select top-down tripodal grasps. On the other hand, low resolution may 

introduce a physical position ‘offset’ error. Our grasp strategy is to trap the object 

between gripper fingers. A small position error (i.e. < 1.0cm) is likely to be relatively 

harmless for grasping. However, larger errors may cause one finger to bump into the 

object first, possibly resulting in the object being moved, e.g. sliding or even tipping over, 

potentially causing a failed grasp; this problem is avoided by utilizing tactile sensing to 

stop finger motion once a tactile pad contacts an object. 

  

a. b. 



68 

Experiment 4: Pose Results from Incomplete Information 

Figure 4.14b shows grasp results while scanning an object from five different viewpoints 

using Vres = 1.5 cm3. Scans are taken counter-clockwise, approximately π/4 radians 

apart, around the objects shown in Figure 4.14b. Each consecutive scan is registered 

and merged with the previous until a complete object point cloud is created; more details 

about this process can be found from our previous work[52]. We make the following 

salient observation: 

 Grasp pose generation consistently selects similar poses, regardless of a object 
model’s completeness. 

The first scan did not generate grasp poses. This is expected because a parallel grasp 

needs two opposing surfaces to be observed to generate a result. The second scan in 

Figure 4.14b demonstrates this behaviour as lateral grasps are found top-down and 

along the tin can’s side. All grasp types can be found by the third scan; at this point, the 

objects’ three sides are observed. In Figure 4.14b, the point cloud is experiencing 3cm of 

registration error; this can be observed from the fifth scan, looking at the point cloud’s 

top-right hand corner, where the corners do not align. Please note that our point cloud is 

down-sampled to the same resolution as Vres. This error does not significantly affect our 

algorithm. Pose locations are still centered with respect to each object, and can allow the 

gripper to trap the object between its fingers. 
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Experiment 5: Visualizing Task-Based Grasp Poses 

All Poses 
Unranked 

Robot-to-Human Poses 
Ranks 

Securing an Object Task 
Ranks 

   
Tin Can Tin Can Tin Can 

   
Wooden Box Wooden Box Wooden Box 

   
Cone Cone Cone 

   
Spray Bottle Spray Bottle Spray Bottle 

   
Cordless Drill Cordless Drill Cordless Drill 

Figure 4.16: Experimental Grasp Pose Task Rankings†҂ 

†     Lateral (magenta), Tripodal (yellow), and Power Grasp (red) 
҂     High Ranks (Opaque), Low Ranks (Transparent) 

The purpose for this experiment is to demonstrate how higher-level decisions can be 

incorporated with grasp pose generation to rank results. Grasp pose selection is 

presenting considering two different tasks: 1) grasping an object to transfer to a human 

receiver, and 2) grasping an object to hold it. Object point clouds from Figure 4.13 and 
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Figure 4.18 are re-used, and grasp poses for all grasp types are searched for α:[0,2π), 

β:[-π/2,π/6], and γ:[0] at ∆αβγ=π/12 increments. Magenta, yellow, and red arrows 

indicate a grasp pose (normal to the gripper palm) for lateral, tripodal, and power grasps 

respectively. Unranked grasp poses are compared to poses ranked for robot-to-human 

transfer and securing an object. To visualize rankings, high ranking grasp poses appear 

more opaque while low ranking grasp poses (i.e. not a good location for robot-to-human 

transfer) appear more transparent to invisible.  

Unranked Poses Robot-to-Human Poses Unranked Poses Robot-to-Human Poses 

    
Sugar Box Sugar Box Mustard Bottle Mustard Bottle 

    
Chips Can Chips Can Bleach Cleaner Bleach Cleaner 

    
Windex Bottle Windex Bottle Soft Ball Soft Ball 

Figure 4.17: YCB Grasp Pose Task Rankings†҂ 

†     Lateral (magenta), Tripodal (yellow), and Power Grasp (red) 
҂     High Ranks (Opaque), Low Ranks (Transparent) 

Comparing unranked poses to proposed task poses, Figure 4.16 and Figure 4.17, robot-

to-human transfer poses prioritize that have less grasp overlap with other grasp poses. 

Securing an object prioritizes object locations having the most grasp overlap. If all grasp 

poses overlap (e.g. the Windex bottle), no pose for robot-to-human transfer is 

discovered. The soft ball shown in Figure 4.17 favours grasp poses further away from 

the object for transfer. This result is promising because more surface area around the 

ball would be available if finger tips, rather than fingers, grasp. However, the 

consequence is higher precision is necessary to grasp the soft ball without bumping it. 

Little change is observed from the sugar box example because grasp poses on either 
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side of the object do not interfere with each other; for transfer, either side can be 

grasped. A similar result is observed from the mustard bottle. For both the tin can and 

chips can, the can’s top and base are ranked highest; the robot can grasp either location 

to allow a person to grasp the can’s top or base for transfer.  
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4.8.2. Fully Integrated Grasping System Performance 

Experiment 6: Grasp Execution for Real Objects 

Object Pose Pose Uncertainty Grasp Execution 

   

  

 

   

   

 

 

 

   

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Figure 4.18: Executing Different Grasp Types with 
Pose Uncertainty: Blue (Assumed), Green (Corrected). 

Seven real-world objects are partially scanned, grasped, and lifted 10cm executing 

lateral, tripodal, and power grasp types discovered by our algorithm. Four objects 

represent primitive shapes while the remaining objects represent a tool, kitchen, and 

food items similar (in size, shape, and mass) to the YCB dataset [92, 93]. Objects sit at 

rest and poses are varied for each object, as shown in Figure 4.18. Our Hokuyo eye-in-

hand sensor is not able to scan specular or black surfaces. Since several object 

surfaces are specular, objects are taped to create an observable Lambertian surface. 

Each object was manually scanned counter-clockwise, approximately π/4 radians apart 

at four locations. Grasp poses for lateral, tripodal, and power grasp types using 

parameters summarized in bottom of Table 4.1. Due to a banana’s small size and high 

curvature, no solutions were found at Vres=1.5 cm3; when resolution is increased to 

Vres=0.75 cm3, top-down lateral grasp types are found but correctly rejected by our 

algorithm due to fingers bumping into the supporting table. For this reason, the grasp 

frame for the lateral grasp type was translated 4 cm forward to the gripper’s fingertips.  

Our mobile manipulator system randomly selects among the grasp poses generated, 

checks if it corresponds to a reachable base pose (via inverse kinematics), and moves to 

a computed base position that partially corrects base pose uncertainty[52]. Grasp 

execution was repeated 10x per object. Other base locations were selected, and the 

experiment was repeated 2x; similar behaviour as reported was observed. A lift is 

considered successful if the object is raised 10 cm after grasping it, and a push indicates 

the object had a small sliding motion due to a finger pushing the object prior to grasping. 

  

(g) 
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Table 4.3: Experimental Trials to Grasp Objects with Different Grasp Types¥ 
¥     Bold indicates most frequent grasp type discovered 

 Grasp 
Type 

(Success)/ 
Trials 

Lift Push / 
Bump 

Feasible 
L / P/ T 

L2 Error 

Settings Vres: 1.5cm3          α:[0,2π), β:[0], γ:[0]          ∆αβγ : π/6 

Vertical Tin Lateral (10)/10 ✓ ✓ 56/6/0 12cm 

Vertical Tin Power (10)/10 ✓ ✓ 56/6/0 12cm 

Horizontal Tin Tripodal (10)/10 ✓ ✓ 6/0/3 9cm 

Box Lateral (10)/10 ✓ ✓ 84/0/0 9cm 

Cone Lateral (10)/10 ✓ ✓ 280/9/0 9cm 

Cone Power (10)/10 ✓ ✓ 280/9/0 9cm 

Spray Bottle Lateral (10)/10 ✓ ✓ 86/0/0 5cm 

Drill Lateral (10)/10 ✓ ✓ 1/0/0 9cm 

Banana N/A (0)/0 N/A N/A 0/0/0 N/A 

Settings Vres: 1.5cm3          α:[0,2π), β:[-π/2], γ:[0]          ∆αβγ : π/6 

Banana Lateral (10)/10 ✓ ✓ 5/0/0 10cm 

 

Table 4.3 summarizes results and shows our algorithm generates reasonable grasp 

pose solutions for partially observed objects. Our grasp type definitions successfully 

lifted objects without optimizing for dynamic stability. Given a banana’s high curvature 

and small size, no grasps were found at Vres=1.5 cm3 because voxels average much of a 

banana’s surface to compute accurate surface normals. 

Finally, a note about uncertainties in our system. These arise due to: 1) mobile base 

odometry and kinematic arm model calibration affecting the gripper pose, 2) contact 

vector length causing positive correlation over a range, and 3) voxel resolution rounding 

a grasp position to a nearest voxel center. Uncertainty is corrected by a predefined final 

scan and is described in Section 3.6. This uncertainty is represented as L2 Error in Table 

4.3 and is visualized as the difference between green (i.e. corrected) and blue (i.e. 

original) point clouds under the “Pose Uncertainty” column in Figure 4.18). In addition, 

high curvature object shapes, e.g. a banana, are highly sensitive to contact locations.    
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Experiment 7: Complete Autonomous Modelling and Grasping Experiments 

Three experiments are performed to demonstrate autonomous modelling, grasping, and 

lifting an unknown object in an unknown environment. A tin can, wooden box, and cone, 

shown in Figures 4.18a, 4.18b, and 4.18d are placed on a table to be lifted. Octree 𝓦 

and the mobile manipulator use the same resolution and tolerances as described in 

Section 3.7.1. Object modelling is guided using a 60cm x 60cm x 50cm octree 𝓜 

surrounding the OI with its resolution set to 0.8cm. Scan overlap is configured for ω = 

0.4. Grasp pose generation is configured using parameters summarized in the bottom of 

Table 4.1. Fifty reservoir samples within a 30cm x 30cm x 10cm bounding box are tested 

to compensate for uncertainty reaching 15cm.  

Three more experiments, using identical parameters as previously described, are 

repeated to model an unknown object and execute a power grasp. These tests are 

performed to intentionally extend the object modelling phase for the system and 

demonstrate autonomous execution of another grasp type. Generally, a lateral grasp is 

the first grasp type to be discovered because it requires fewer contact points (i.e. two 

opposing surfaces). To discover a power grasp type, more object surface area is 

observed because the grasp type wraps around an object. 

During each experiment, the laptop’s system clock records, Total Run Time, Base 

Planning Time, NBV Planning Time, and Pick Planning Time. Total Motion Execution 

Time is computed by taking the difference between Total Run Time and the sum of all 

other recorded times. Base Planning is time needed to create a base pose (for NBVs or 

objecting grasping). NBV planning is time needed to generate NBVs, update ranks, and 

predict IK at a projected base pose. Pick planning is time needed to predict a reachable 

base pose to grasp an object, all reservoir sampling, and Cartesian planning to the final 

grasp pose. Motion execution time is time taken to physically execute all base, 

manipulator, and gripper execution commands. 
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Figure 4.19: Experimental Results Autonomously Grasping an Unknown Tin Can Object† 

†     Lateral Grasp (magenta), Warmer coloured arrows have the highest ranks,  
Yellow voxels are unknown (or unobserved) regions to avoid, Coloured Gripper Axis is Grasp Frame 

Table 4.4: Time Taken to Autonomously Model and Grasp an Unknown Object using any Grasp Type 

Object # of 
NBV 

Scans 

Final Pose 
Reselected? 

Total 
Run 
Time 

Total Motion 
Execution 

Time 

Total Base  
Planning 

Time 

Total NBV  
Planning 

Time 

Total Pick  
Planning 

Time 

L2 error 
Compensated 

 (#)  (s) (s) (s) (s) (s) (cm) 

Tin Can 2 No 810 613 0.002 11.496 169.324 15.4 
Box 3 No 950 733 0.002 14.360 192.532 9.6 
Cone 3 No 993 813 0.001 36.842 135.298 7.6 

Table 4.5: Time Taken to Autonomously Model and Grasp of an Unknown Object using a Power Grasp 

Object # of 
NBV 

Scans 

Final Pose 
Reselected? 

Total 
Run 
Time 

Total Motion 
Execution 

Time 

Total Base  
Planning 

Time 

Total NBV  
Planning 

Time 

Total Pick  
Planning 

Time 

L2 error 
Compensated 

 (#)  (s) (s) (s) (s) (s) (cm) 

Cone 3¥ Yes 915 807 0.002 53.449 43.408 10.6 
Cone 3 No 1124 911 0.001 35.036 170.96 6.3 
Cone 4 Yes 1181 1040 0.001 57.517 71.790 11.1 

¥     One scan location failed. The mobile system moved to a new location to perform the final scan. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

(m) (n) (o) 

Projection/ 
Prediction 

Projection/ 
Prediction Base frame does 

not reach its goal 

 

Predicted and real  
poses do not match  

True offset between  
prediction and corrected 
grasp poses  

Planning for  
uncertainty succeeds  
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Table 4.4 and Table 4.5 summarize time needed to model and lift the unknown objects. 

Scanning an object, discovering a grasp pose, and executing a successful grasp that lifts 

an object 10 cm is performed within nineteen minutes. Primarily, the system consumes 

the most time executing a base or manipulator trajectory. For example, an object is 

grasped after two NBV scans within 13 minutes, three NBV scans within 16 minutes, and 

four NBV scans within 19 minutes. Although each additional scan increases total 

completion time by approximately 3 minutes, approximately 20 seconds is consumed 

completing all predictions to reach an NBV; the remaining time is consumed by real-time 

motion execution. Within 20 seconds, an NBV can be predicted and reached by a 

manipulator for object modelling.  

Computationally, Pick Planning time is the second-most expensive task and required 

over three minutes to process all IK for fifty reservoir samples at each base pose. In 

Table 4.5, short Pick Planning time is observed, and this is due to these trials having 

approximately three times fewer grasp pose candidates other trials (i.e. 5-6 vs 18-24 

solutions). Fewer grasp pose candidates and reservoir samples reduce Pick Planning 

time, but this causes the system to replan more frequently for another grasp. Replanning 

increases the Total Run Time, i.e. robot motion is the most time consuming task, 

because the mobile manipulator needs to move to a new base locations. For all 

experiments, the system reached the desired grasp pose within 0.5cm, correcting base 

pose uncertainty ranging from 7.6cm to 15.4cm. 

Figures 4.19, 4.20, and 4.21 show the mobile manipulator’s system described 

throughout this work grasping a tin can, box, and cone respectively. Figure 4.19a-d 

visualizes Clear Room State, described in Section 2.5.1; in an unknown environment, a 

pre-defined motion moves the manipulator to observe the room. Initially, the system is 

surrounded by unobserved space and cannot move until free space is detected within 

the environment. In Figure 4.19e, base poses are sampled and NBVs are projected back 

to the mobile manipulator to determine if they are reachable; this process is described in 

Section 2.9.1. Once a prediction is discovered, Navigation State moves the mobile 

manipulator to a base pose in Figure 4.19f, and Figure 4.19f-I shows Model State 

modelling the unknown object with a partial point cloud, i.e. Section 3.4.1. Grasp pose 

generation, i.e. Section 4.4, detected lateral grasps from the partial point cloud model. 

Pick State activates during this event, and Figure 4.19j shows the system using reservoir 

sampling, i.e. Section 3.6.1, to predict and rank base pick pose candidates that complete 
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a Cartesian trajectory to reach the final grasp pose, i.e. Section 2.9.2. Once a base 

candidate is selected, the mobile system moves near that location and performs pose 

correction, discussed in Section 3.6, to correct base pose uncertainty. Once corrected, 

the true final pick locations, shown in Figure 4.19m, are determined to be much further 

away than predicted, but due to prediction from reservoir sampling, a complete final pick 

trajectory is discovered and executed to lift the object, shown in Figure 4.19o. Behaviour 

observed for the cylinder and wooden box is similar. At each experiment’s end, the 

mobile manipulator grasped, lifted, and held each object; these results are shown in 

Figure 4.22. 
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Figure 4.20: Experimental Results Autonomously Grasping an Unknown Box Object† 

†     Lateral Grasp (magenta), Warmer coloured arrows have the highest ranks,  
Yellow voxels are unknown (or unobserved) regions to avoid, Coloured Gripper Axis is Grasp Frame 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

(q) (r) (s) 

Projection/ 
Prediction 

Projection/ 
Prediction 

Base frame does 
not reach its goal 

 

Position servoing 
corrects grasp poses  

Planning for  
uncertainty succeeds  

(m) (n) (o) (p) 
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Figure 4.21: Experimental Results Autonomously Grasping an Unknown Cone Object† 

†     Power Grasp (red), Warmer coloured arrows have the highest ranks,  
Yellow voxels are unknown (or unobserved) regions to avoid, Coloured Gripper Axis is Grasp Frame 

 

 
Figure 4.22: Experimental Results Autonomously Lifting and Holding Objects 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

Projection/ 
Prediction 

Base frame does 
not reach its goal 

 

Position servoing 
corrects grasp poses  

Planning for  
uncertainty succeeds  

(m) (n) (o) (p) 
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Chapter 5.  
 
Conclusions and Future Work 

5.1. Conclusions 

In this thesis, an integrated autonomous grasping system designed for a mobile 

manipulator is presented. The system is able to plan and execute grasps for a priori 

unknown objects in unknown environments. Our approach integrates collision-free 

motion planning and a next best view algorithm to collect and register multiple object 

scans in a point cloud model. From this point cloud model, a novel multiple grasp type 

generation algorithm is proposed to place different gripper configurations around the 

object for grasping. 

The grasp generation algorithm identifies grasp locations for multiple grasp types for 

varying object sizes in near real time. Two key ideas behind the algorithm are: 1) a 

surface normal histogram guides a gripper orientation search, and 2) voxel grid 

representation of a gripper and object is cross-correlated to discover a grasp pose for 

multiple grasp types. Gripper models for cross-correlation are generalized to find grasps 

for objects of different widths and shapes. Lastly, task-based grasping is presented that 

utilizes grasp overlap as a feature to identify locations to complete either robot-to-human 

transfer or securing the object tasks. Voxel size variation shows grasp results remain 

consistent for different resolutions.  

At a system level, large base pose uncertainty is mitigated to complete a precise 

grasping task. Our system is fully automated, and modelling and grasping an object is 

successfully achieved despite base uncertainty. An NBV algorithm is simplified to 

prioritize scan overlap as a key feature to reduce modelling error and assist registration 

from different viewpoints. Improving registration correspondence by concatenating a 3D 

point with its respective 3D normal, improves point cloud model reconstruction. 

Reservoir sampling grasp poses near a region mitigates uncertainty by discovering base 

pose candidates that yield many IK to a final grasp goal. 
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5.2. Future Work 

While we have shown preliminary experiments executing resultant grasps, in future, we 

plan to demonstrate our system grasping and lifting an object for different tasks as 

benchmarking protocols stated in [93]. Preferably, these demonstrations are performed 

on a fixed-base manipulator using a 2D eye-in-hand lidar to model faster without base 

pose uncertainty affecting the final grasp pose. A fixed-base manipulator also permits 

more demonstrations and repeatable tests.  

Automatically determining voxel size resolution can be explored further. Results show 

small and large voxel size are more appropriate to discover grasp pose solutions from 

small (e.g.. a banana) and large objects (e.g. a bottle) respectively. A complete grasp 

planning algorithm would need to incorporate several resolutions (or octaves) to 

accommodate grasping a larger object variety. We show grasp pose generation is 

consistent within neighbouring resolutions. As a result, further exploration can be 

conducted to automatically select resolution using techniques from scale invariant 

literature [94-98]. 

Incorporating more contextual information would improve grasping performance. For 

example, an additional stage can be added when observing multiple objects to determine 

a grasp order. Our generalized algorithm generated an interesting result for multiple 

objects, i.e. grasp from the outside away from a close object, but our system has no 

preference to select the drill or tin can first. Context (or preference) needs further 

exploration along with obstacle avoidance. A straight line path works because most 

surfaces grasped are smooth. If a ring grasp type (i.e. threading a finger through a mug’s 

ring or placing a gripper inside a handle) is selected, a more appropriate final path needs 

to be defined to accommodate these grasp types. 
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Appendix A.   
 
Using Finger Patches for Grasping 

Grasp Planning Phase with Uncertainty 

As the partial point cloud model is updated with each current ith scan Si, grasp analysis is 

conducted for a grasp. Our goal is to generate finger sized patches within the current 

point cloud Ii to perform force closure analysis[99, 100]. The cloud’s surface is 

represented with finger-tip sized patches to reduce computational load, mitigate noise 

within the point cloud model, and identify regions to place a finger. Patches along the 

object’s surface is shown in Figure A1. 

Identifying Finger-Sized Contact Patches 

 
Figure A1. Top & Side View of a Cylinder Represented with Patches 

The incoming point cloud Ii is initially downsampled to uniformly distribute points and 

remove high frequency noise. The center of mass (CoM) is estimated by using the mean 

of all points in Ii. Without downsampling, any further estimates for CoM biases towards a 

region scanned frequently instead of approaching the true object’s CoM. High-frequency 

noise is smoothed because it affects normal direction estimates. In addition, the faces of 

Ii are segmented with region growing segmentation using local curvature[101]; object 

edges are removed by excluding segments with a large curvature which improves 

normal direction estimates and biases grasp selection along the object faces. Small 

 a.  b. 



91 

faces are removed if their surface is smaller than our gripper’s finger. Surface faces are 

desired as they are more stable than edges to grasp. Finger-sized patches are 

generated by randomly selecting a point Prnd within the remaining faces of Ii; any points 

within a user defined local radius (2.5cm in our case) of Prnd are discovered, their 

corresponding normals are averaged to create Nrnd, and both Prnd & Nrnd are inserted 

into finger-sized patch list F to test force closure. All locally selected points are flagged to 

not be re-selected by as Prnd.  

Grasp Analysis for Finger-Sized Patches 

To complete force closure analysis for any set of contact points from fingers, a grasp 

wrench space (GWS) is created. A GWS is a six-dimensional space that represents all 

forces and torques that can be applied to the OI [99, 100]. To estimate the GWS, the 

friction coefficient μ, center of mass (CoM), applied force, contact location, and surface 

normal at each contact need to be known. Any large uncertainties associated with these 

parameters may cause a failed grasp, but this can be addressed. If the CoM location is 

uncertain, the object may twist and slip. In addition, the OI can also slip if its friction 

coefficient is very small, but practically, the gripper can apply a stronger force to mitigate 

these problems. Surface normals estimated contain uncertainty that affect a friction 

cone’s orientation, but this is lessened by averaging a patch of surface normals. 

As no information is given about the object, we assume a friction coefficient μ=0.8 to 

represent rubber contacts; a hypercube is selected for a task wrench space (TWS) to 

represent forces and torques applied in all directions. All other parameters are 

empirically derived from the point cloud model. If a GWS contains the TWS about its 

origin, force closure is deemed satisfied, and the contact pair is ranked based on the 

TWS volume. The final grasp pose, written as Gf, is calculated by averaging two contact 

locations on the object’s surface. Orientation of Gf is relative to two surface patch 

normals, n1 and n2. The x-axis of the grasp frame is created by adding two inverted 

contact normals. Simple kinematics determines the remaining axes. 
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Appendix B.   
 
ROS Node Mobile Manipulator Settings 

Base Navigation Costmap Parameters 

map_type: costmap 

transform_tolerance: 3.0 

obstacle_range: 4.5 

max_obstacle_height: 2.0 

raytrace_range: 4.0 

 

#Powerbot’s footprint 0.84 x 0.63 

footprint: [[-0.385,-0.350], [-0.545,-0.280], [-0.545,0.280], [-0.385,0.350], [0.205,0.350], 
[0.370,0.280], [0.370,-0.280], [0.205,-0.350]] 

 

inflation_radius: 0.385 

cost_scaling_factor: 8.3 

lethal_cost_threshold: 105 

observation_sources: base_scan 

 

base_scan: {sensor_frame: base_scan_link, topic: /scan_filtered, data_type: LaserScan, 
expected_update_rate: 5.0, observation_persistance: 0.0, marking: true,  
clearing: true} 

 

global_costmap:  

global_frame: /map 

robot_base_frame: /base_link 

update_frequency: 5.0 

publish_frequency: 2.0 

raytrace_range: 30.0 

obstacle_range: 18 

static_map: true 

rolling_window: false 

width: 24.0 

height: 24.0 

resolution: 0.025 

local_costmap:  

global_frame: /odom 

robot_base_frame: /base_link 

update_frequency: 5.0 

publish_frequency: 2.0 

static_map: false 

rolling_window: true 

width: 12.0 

height: 12.0 

resolution: 0.025 

origin_x: 0.0 

origin_y: 0.0 



93 

origin_x: -12.0 

origin_y: -12.0 

track_unknown_space: true 

unknown_cost_value: 255 

 

DWA Planner Parameters 

base_local_planner: dwa_local_planner/DWAPlannerROS 

 

# --- recovery behaviours --- 

recovery_behaviors: [{name: conservative_reset, type: 
clear_costmap_recovery/ClearCostmapRecovery}, {name: rotate_recovery, 
type: rotate_recovery/RotateRecovery}, {name: aggressive_reset, type: 
clear_costmap_recovery/ClearCostmapRecovery}] 

conservative_reset_dist: 2.5  

recovery_behavior_enabled: true 

clearing_rotation_allowed: true 

 

DWAPlannerROS: 

transform_tolerance: 3.0 

world_model: costmap 

  
 #Goal Tolerance Settings 

xy_goal_tolerance: 0.12 

yaw_goal_tolerance: 0.0960 

latch_xy_goal_tolerance: true 

  
 #Robot Configuration 

acc_lim_x: 7.0 

acc_lim_y: 0.0 

acc_lim_theta: 4.0 

max_vel_x: 0.30 

min_vel_x: -0.16  

max_vel_y: 0 

min_vel_y: 0 

max_trans_vel: 0.7 

min_trans_vel: 0.05 

max_rot_vel: 1.047 

#Robot Configuration 

acc_lim_x: 7.0 

acc_lim_y: 0.0 

acc_lim_theta: 4.0 

max_vel_x: 0.30 

min_vel_x: -0.16 

max_vel_y: 0 

min_vel_y: 0 

max_trans_vel: 0.7 

min_trans_vel: 0.05 

max_rot_vel: 1.047 

min_rot_vel: 0 

escape_vel: -0.1 

holonomic_robot: false 

 
#Base Local Planner Configs 

dwa: true 

meter_scoring: true 

simple_attractor: false 
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min_rot_vel: 0 

escape_vel: -0.1 

holonomic_robot: false 

 
#Weights to affect planning (dwa_planner) 

goal_distance_bias: 20 

path_distance_bias: 30 

occdist_scale: 0.06 

scaling_speed: 0.25  

max_scaling_factor: 0.2  

forward_point_distance: 0.325  

oscillation_reset_dist: 0.025 

stop_time_buffer: 0.2 

prune_plan: true 

use_dwa: false 

 

World Octomap Server 

<node pkg="octomap_server" type="octomap_server_node" name="coarse_octomap_server"> 

 <param name="publish_free_space" value="false" />  

 <param name="resolution" value="0.1" /> 

 <param name="frame_id" type="string" value="/map" /> 

 <param name="max_sensor_range" value="8.0" /> 

<param name="sensor_model/max_range" value = "7.5"/> 

 <param name="sensor_model/hit" value = "0.7"/> 

 <param name="sensor_model/miss" value = "0.07"/> 

 <param name="sensor_model/max" value = "0.97"/> 

 <param name="sensor_model/min" value = "0.25"/> 

 

 <param name="latch" value="false" /> 

 <param name="filter_ground " value="false" /> 

 <param name="filter_speckles" value="true" /> 

</node> 

 

Model Octomap Server 

<node pkg="octomap_server" type="octomap_server_node" name="fine_octomap_server" > 
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 <param name="publish_free_space" value="false" />  

 <param name="frame_id" type="string" value="/map" /> 

 <param name="resolution" value="0.008" /> 

<param name="sensor_model/max_range" value = "5.0"/> 

 <param name="sensor_model/hit" value = "0.75"/>  

 <param name="sensor_model/miss" value = "0.35"/>  

 <param name="sensor_model/max" value = "0.98"/> 

 <param name="sensor_model/min" value = "0.12"/> 

 

 <param name="latch" value="false" /> 

 <param name="filter_speckles" value="true" /> 

 <param name="filter_ground" value="false" /> 

 <param name="publish_free_space" value="true" /> 

</node> 

Point Cloud Registration 

#Implements PCL’s v1.7 Iterative Closest Point Library 

<node type="pointcloud_assembler" pkg="pcl_processing" name="pc_assembler" 
output="screen"> 

<param name="en_control" type="bool" value="true" /> 

<!--Voxel Filtering/Downsampling Parameters Input Cloud--> 

<param name="leaf_x" type="double" value="0.0040" />  

<param name="leaf_y" type="double" value="0.0040" />  

<param name="leaf_z" type="double" value="0.0040" />  

 

<!--Statistics Removals Parameters- Input Cloud-> 

<param name="meank" type="double" value="12" />  

<param name="std_thresh" type="double" value="2.0" />  

 

<!--GICP Parameters--> 

<param name="max_iterations" type="int" value="200" />  

<param name="euclidean_fitness_epsilon" type="double" value="0.001" />  

<param name="transformation_epsilon" type="double" value="1e-10" /> 

<param name="max_correspondence_distance" type="double" value="0.125" />  

<param name="min_cloud_size" type="int" value="80" /> 

 

<!--GICP Scaling for point representation (x,y,z, nx,ny,nz, curvature)--> 
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<param name="alpha_x" type="double" value="1.0" /> 

<param name="alpha_y" type="double" value="1.0" /> 

<param name="alpha_z" type="double" value="1.0" /> 

<param name="alpha_nx" type="double" value="1.0" /> 

<param name="alpha_ny" type="double" value="1.0" /> 

<param name="alpha_nz" type="double" value="1.0" /> 

<param name="alpha_c" type="double" value="1.0" /> 

 

<!--GICP Resolution for Merging Pointclouds (downsample factor)-->  

<param name="icp_leaf_x" type="double" value="0.0065" /> 

<param name="icp_leaf_y" type="double" value="0.0065" /> 

<param name="icp_leaf_z" type="double" value="0.0065" /> 

 

<!--Correspondence Rejector Parameters--> 

<param name="RANSAC_max_iterations" type="int" value="100" /> 

<param name="RANSAC_outlier_thresh" type="double" value="0.005" /> 

<param name="median_correspondance_factor" type="double" value="0.5" /> 

<param name="normal_correspondance_angle_deg" type="double" value="20" /> 

<param name="min_var_trimmed_ratio" type="double" value="0.05" /> 

<param name="max_var_trimmed_ratio" type="double" value="0.95" /> 

<param name="min_overlap_ratio" type="double" value="0.03" /> 

<param name="exp_overlap_ratio" type="double" value="0.25" /> 

</node> 


