2,166 research outputs found

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Remote Sensing Object Detection Meets Deep Learning: A Meta-review of Challenges and Advances

    Full text link
    Remote sensing object detection (RSOD), one of the most fundamental and challenging tasks in the remote sensing field, has received longstanding attention. In recent years, deep learning techniques have demonstrated robust feature representation capabilities and led to a big leap in the development of RSOD techniques. In this era of rapid technical evolution, this review aims to present a comprehensive review of the recent achievements in deep learning based RSOD methods. More than 300 papers are covered in this review. We identify five main challenges in RSOD, including multi-scale object detection, rotated object detection, weak object detection, tiny object detection, and object detection with limited supervision, and systematically review the corresponding methods developed in a hierarchical division manner. We also review the widely used benchmark datasets and evaluation metrics within the field of RSOD, as well as the application scenarios for RSOD. Future research directions are provided for further promoting the research in RSOD.Comment: Accepted with IEEE Geoscience and Remote Sensing Magazine. More than 300 papers relevant to the RSOD filed were reviewed in this surve

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing

    Extracting structured information from 2D images

    Get PDF
    Convolutional neural networks can handle an impressive array of supervised learning tasks while relying on a single backbone architecture, suggesting that one solution fits all vision problems. But for many tasks, we can directly make use of the problem structure within neural networks to deliver more accurate predictions. In this thesis, we propose novel deep learning components that exploit the structured output space of an increasingly complex set of problems. We start from Optical Character Recognition (OCR) in natural scenes and leverage the constraints imposed by a spatial outline of letters and language requirements. Conventional OCR systems do not work well in natural scenes due to distortions, blur, or letter variability. We introduce a new attention-based model, equipped with extra information about the neuron positions to guide its focus across characters sequentially. It beats the previous state-of-the-art benchmark by a significant margin. We then turn to dense labeling tasks employing encoder-decoder architectures. We start with an experimental study that documents the drastic impact that decoder design can have on task performance. Rather than optimizing one decoder per task separately, we propose new robust layers for the upsampling of high-dimensional encodings. We show that these better suit the structured per pixel output across the board of all tasks. Finally, we turn to the problem of urban scene understanding. There is an elaborate structure in both the input space (multi-view recordings, aerial and street-view scenes) and the output space (multiple fine-grained attributes for holistic building understanding). We design new models that benefit from a relatively simple cuboidal-like geometry of buildings to create a single unified representation from multiple views. To benchmark our model, we build a new multi-view large-scale dataset of buildings images and fine-grained attributes and show systematic improvements when compared to a broad range of strong CNN-based baselines

    NWPU-MOC: A Benchmark for Fine-grained Multi-category Object Counting in Aerial Images

    Full text link
    Object counting is a hot topic in computer vision, which aims to estimate the number of objects in a given image. However, most methods only count objects of a single category for an image, which cannot be applied to scenes that need to count objects with multiple categories simultaneously, especially in aerial scenes. To this end, this paper introduces a Multi-category Object Counting (MOC) task to estimate the numbers of different objects (cars, buildings, ships, etc.) in an aerial image. Considering the absence of a dataset for this task, a large-scale Dataset (NWPU-MOC) is collected, consisting of 3,416 scenes with a resolution of 1024 ×\times 1024 pixels, and well-annotated using 14 fine-grained object categories. Besides, each scene contains RGB and Near Infrared (NIR) images, of which the NIR spectrum can provide richer characterization information compared with only the RGB spectrum. Based on NWPU-MOC, the paper presents a multi-spectrum, multi-category object counting framework, which employs a dual-attention module to fuse the features of RGB and NIR and subsequently regress multi-channel density maps corresponding to each object category. In addition, to modeling the dependency between different channels in the density map with each object category, a spatial contrast loss is designed as a penalty for overlapping predictions at the same spatial position. Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared with some mainstream counting algorithms. The dataset, code and models are publicly available at https://github.com/lyongo/NWPU-MOC

    Monoplotting through Fusion of LIDAR Data and Low-Cost Digital Aerial Imagery

    Get PDF

    A Review on Deep Learning in UAV Remote Sensing

    Full text link
    Deep Neural Networks (DNNs) learn representation from data with an impressive capability, and brought important breakthroughs for processing images, time-series, natural language, audio, video, and many others. In the remote sensing field, surveys and literature revisions specifically involving DNNs algorithms' applications have been conducted in an attempt to summarize the amount of information produced in its subfields. Recently, Unmanned Aerial Vehicles (UAV) based applications have dominated aerial sensing research. However, a literature revision that combines both "deep learning" and "UAV remote sensing" thematics has not yet been conducted. The motivation for our work was to present a comprehensive review of the fundamentals of Deep Learning (DL) applied in UAV-based imagery. We focused mainly on describing classification and regression techniques used in recent applications with UAV-acquired data. For that, a total of 232 papers published in international scientific journal databases was examined. We gathered the published material and evaluated their characteristics regarding application, sensor, and technique used. We relate how DL presents promising results and has the potential for processing tasks associated with UAV-based image data. Lastly, we project future perspectives, commentating on prominent DL paths to be explored in the UAV remote sensing field. Our revision consists of a friendly-approach to introduce, commentate, and summarize the state-of-the-art in UAV-based image applications with DNNs algorithms in diverse subfields of remote sensing, grouping it in the environmental, urban, and agricultural contexts.Comment: 38 pages, 10 figure
    • 

    corecore