216,402 research outputs found

    Darboux cyclides and webs from circles

    Full text link
    Motivated by potential applications in architecture, we study Darboux cyclides. These algebraic surfaces of order a most 4 are a superset of Dupin cyclides and quadrics, and they carry up to six real families of circles. Revisiting the classical approach to these surfaces based on the spherical model of 3D Moebius geometry, we provide computational tools for the identification of circle families on a given cyclide and for the direct design of those. In particular, we show that certain triples of circle families may be arranged as so-called hexagonal webs, and we provide a complete classification of all possible hexagonal webs of circles on Darboux cyclides.Comment: 34 pages, 20 figure

    Incircular nets and confocal conics

    Full text link
    We consider congruences of straight lines in a plane with the combinatorics of the square grid, with all elementary quadrilaterals possessing an incircle. It is shown that all the vertices of such nets (we call them incircular or IC-nets) lie on confocal conics. Our main new results are on checkerboard IC-nets in the plane. These are congruences of straight lines in the plane with the combinatorics of the square grid, combinatorially colored as a checkerboard, such that all black coordinate quadrilaterals possess inscribed circles. We show how this larger class of IC-nets appears quite naturally in Laguerre geometry of oriented planes and spheres, and leads to new remarkable incidence theorems. Most of our results are valid in hyperbolic and spherical geometries as well. We present also generalizations in spaces of higher dimension, called checkerboard IS-nets. The construction of these nets is based on a new 9 inspheres incidence theorem.Comment: 33 pages, 24 Figure

    Complex Networks and Symmetry I: A Review

    Get PDF
    In this review we establish various connections between complex networks and symmetry. While special types of symmetries (e.g., automorphisms) are studied in detail within discrete mathematics for particular classes of deterministic graphs, the analysis of more general symmetries in real complex networks is far less developed. We argue that real networks, as any entity characterized by imperfections or errors, necessarily require a stochastic notion of invariance. We therefore propose a definition of stochastic symmetry based on graph ensembles and use it to review the main results of network theory from an unusual perspective. The results discussed here and in a companion paper show that stochastic symmetry highlights the most informative topological properties of real networks, even in noisy situations unaccessible to exact techniques.Comment: Final accepted versio
    • …
    corecore