75 research outputs found

    Abstracts for the twentyfirst European workshop on Computational geometry, Technische Universiteit Eindhoven, The Netherlands, March 9-11, 2005

    Get PDF
    This volume contains abstracts of the papers presented at the 21st European Workshop on Computational Geometry, held at TU Eindhoven (the Netherlands) on March 9–11, 2005. There were 53 papers presented at the Workshop, covering a wide range of topics. This record number shows that the field of computational geometry is very much alive in Europe. We wish to thank all the authors who submitted papers and presented their work at the workshop. We believe that this has lead to a collection of very interesting abstracts that are both enjoyable and informative for the reader. Finally, we are grateful to TU Eindhoven for their support in organizing the workshop and to the Netherlands Organisation for Scientific Research (NWO) for sponsoring the workshop

    Happy endings for flip graphs

    Full text link
    We show that the triangulations of a finite point set form a flip graph that can be embedded isometrically into a hypercube, if and only if the point set has no empty convex pentagon. Point sets of this type include convex subsets of lattices, points on two lines, and several other infinite families. As a consequence, flip distance in such point sets can be computed efficiently.Comment: 26 pages, 15 figures. Revised and expanded for journal publicatio

    Results on Select Combinatorial Problems With an Extremal Nature

    Get PDF
    This dissertation is split into three sections, each containing new results on a particular combinatorial problem. In the first section, we consider the set of 3-connected quadrangulations on n vertices and the set of 5-connected triangulations on n vertices. In each case, we find the minimum Wiener index of any graph in the given class, and identify graphs that obtain this minimum value. Moreover, we prove that these graphs are unique up to isomorphism. In the second section, we work with structures emerging from the biological sciences called tanglegrams. In particular, our work pertains to an invariant of tanglegrams called the tangle crossing number, an invariant which is NP-hard to compute. Czabarka, Székely, and Wagner found a finite characterization of tanglegrams with tangle crossing number equal to 0, which motivated the work here. In particular, our aim was to find a similar finite (and minimal) characterization of tanglegrams with tangle crossing number at least k, for any fixed k ≥ 2. We set out to prove this using an elegant order-theoretic argument, but came to another surprising result instead; we proved that the set of tanglegrams with the induced subtanglegram relation is not a well partial order. In the final section, we work on the problem of finding an upper bound on the diameter of graphs with particular properties. It was proven independently by several groups that for fixed minimum degree δ≥2\delta\ge 2, every connected graph GG of order nn satisfies diam(G)≤3nδ+1+O(1)(G)\le \dfrac{3n}{\delta + 1} + O(1) as n→∞n\rightarrow \infty. Erd\H{o}s, Pach, Pollack, and Tuza noticed that the graphs which achieve the aforementioned bound all contain complete subgraphs whose order increases with nn, and conjectured that if we disallowed complete subgraphs of a given fixed size, then we could improve the bound. Czabarka, Singgih, and Sz\\u27ekely recently found a counterexample to part of the conjecture of Erd\H{o}s \emph{et al.} and formulated a new conjecture. Under a stronger assumption, we verify two cases of this new conjecture using a novel unified duality approach

    Topological Phases: An Expedition off Lattice

    Full text link
    Motivated by the goal to give the simplest possible microscopic foundation for a broad class of topological phases, we study quantum mechanical lattice models where the topology of the lattice is one of the dynamical variables. However, a fluctuating geometry can remove the separation between the system size and the range of local interactions, which is important for topological protection and ultimately the stability of a topological phase. In particular, it can open the door to a pathology, which has been studied in the context of quantum gravity and goes by the name of `baby universe', Here we discuss three distinct approaches to suppressing these pathological fluctuations. We complement this discussion by applying Cheeger's theory relating the geometry of manifolds to their vibrational modes to study the spectra of Hamiltonians. In particular, we present a detailed study of the statistical properties of loop gas and string net models on fluctuating lattices, both analytically and numerically.Comment: 38 pages, 22 figure

    The lattice dimension of a graph

    Get PDF
    We describe a polynomial time algorithm for, given an undirected graph G, finding the minimum dimension d such that G may be isometrically embedded into the d-dimensional integer lattice Z^d.Comment: 6 pages, 3 figure
    • …
    corecore