206 research outputs found

    Kappa coefficients for dichotomous-nominal classifications

    Get PDF
    Two types of nominal classifications are distinguished, namely regular nominal classifications and dichotomous-nominal classifications. The first type does not include an 'absence' category (for example, no disorder), whereas the second type does include an 'absence' category. Cohen's unweighted kappa can be used to quantify agreement between two regular nominal classifications with the same categories, but there are no coefficients for assessing agreement between two dichotomous-nominal classifications. Kappa coefficients for dichotomous-nominal classifications with identical categories are defined. All coefficients proposed belong to a one-parameter family. It is studied how the coefficients for dichotomous-nominal classifications are related and if the values of the coefficients depend on the number of categories. It turns out that the values of the new kappa coefficients can be strictly ordered in precisely two ways. The orderings suggest that the new coefficients are measuring the same thing, but to a different extent. If one accepts the use of magnitude guidelines, it is recommended to use stricter criteria for the new coefficients that tend to produce higher values

    Inequalities between multi-rater kappas

    Get PDF
    Multivariate analysis of psychological data - ou

    The School Attachment Monitor—A novel computational tool for assessment of attachment in middle childhood

    Get PDF
    © 2021 Rooksby et al. This is an open access article distributed under the terms of the Creative Commons Attribution License.Background Attachment research has been limited by the lack of quick and easy measures. We report development and validation of the School Attachment Monitor (SAM), a novel measure for largescale assessment of attachment in children aged 5–9, in the general population. SAM offers automatic presentation, on computer, of story-stems based on the Manchester Child Attachment Story Task (MCAST), without the need for trained administrators. SAM is delivered by novel software which interacts with child participants, starting with warm-up activities to familiarise them with the task. Children’s story completion is video recorded and augmented by ‘smart dolls’ that the child can hold and manipulate, with movement sensors for data collection. The design of SAM was informed by children of users’ age range to establish their task understanding and incorporate their innovative ideas for improving SAM software. Methods 130 5–9 year old children were recruited from mainstream primary schools. In Phase 1, sixty-one children completed both SAM and MCAST. Inter-rater reliability and rating concordance was compared between SAM and MCAST. In Phase 2, a further 44 children completed SAM complete and, including those children completing SAM in Phase 1 (total n = 105), a machine learning algorithm was developed using a “majority vote” procedure where, for each child, 500 non-overlapping video frames contribute to the decision. Results Using manual rating, SAM-MCAST concordance was excellent (89% secure versus insecure; 97% organised versus disorganised; 86% four-way). Comparison of human ratings of SAM versus the machine learning algorithm showed over 80% concordance. Conclusions We have developed a new tool for measuring attachment at the population level, which has good reliability compared to a validated attachment measure and has the potential for automatic rating–opening the door to measurement of attachment in large populations.Peer reviewedFinal Published versio

    3D Object Recognition Based On Constrained 2D Views

    Get PDF
    The aim of the present work was to build a novel 3D object recognition system capable of classifying man-made and natural objects based on single 2D views. The approach to this problem has been one motivated by recent theories on biological vision and multiresolution analysis. The project's objectives were the implementation of a system that is able to deal with simple 3D scenes and constitutes an engineering solution to the problem of 3D object recognition, allowing the proposed recognition system to operate in a practically acceptable time frame. The developed system takes further the work on automatic classification of marine phytoplank- (ons, carried out at the Centre for Intelligent Systems, University of Plymouth. The thesis discusses the main theoretical issues that prompted the fundamental system design options. The principles and the implementation of the coarse data channels used in the system are described. A new multiresolution representation of 2D views is presented, which provides the classifier module of the system with coarse-coded descriptions of the scale-space distribution of potentially interesting features. A multiresolution analysis-based mechanism is proposed, which directs the system's attention towards potentially salient features. Unsupervised similarity-based feature grouping is introduced, which is used in coarse data channels to yield feature signatures that are not spatially coherent and provide the classifier module with salient descriptions of object views. A simple texture descriptor is described, which is based on properties of a special wavelet transform. The system has been tested on computer-generated and natural image data sets, in conditions where the inter-object similarity was monitored and quantitatively assessed by human subjects, or the analysed objects were very similar and their discrimination constituted a difficult task even for human experts. The validity of the above described approaches has been proven. The studies conducted with various statistical and artificial neural network-based classifiers have shown that the system is able to perform well in all of the above mentioned situations. These investigations also made possible to take further and generalise a number of important conclusions drawn during previous work carried out in the field of 2D shape (plankton) recognition, regarding the behaviour of multiple coarse data channels-based pattern recognition systems and various classifier architectures. The system possesses the ability of dealing with difficult field-collected images of objects and the techniques employed by its component modules make possible its extension to the domain of complex multiple-object 3D scene recognition. The system is expected to find immediate applicability in the field of marine biota classification

    Inequalities between kappa and kappa-like statistics for kXk tables.

    Get PDF
    Multivariate analysis of psychological data - ou

    Use of multi-spectral imagery and LiDar data to quantify compositional and structural characteristics of vegetation in red-cockaded woodpecker (Picoides borealis) habitat in North Carolina

    Get PDF
    This study evaluated habitat parameters for the red-cockaded woodpecker (RCW; Picoides borealis) on three tracts in Hoke County, North Carolina. Multi-spectral imagery was used to classify shadow, non-vegetation, herbaceous, hardwoods, and loblolly and longleaf pine trees. Field data were collected for image classification training and validation. Overall classification accuracy for separating hardwood from pine trees, was 80.8%. When separating longleaf (Pinus palustris Mill.) and loblolly (Pinus taeda L.) pine from hardwoods the accuracy was 73.7%. Field-based height/diameter relationships were applied to LiDAR-identified trees to predict diameter classes. Due to differences in management regimes and site conditions, each tract had different majority pine diameter classes. Average height, diameter, basal area, and stem density per plot were reported from matched, unmatched, and total LiDAR trees to field trees. Differences between the height, diameter, basal area, and stem density values occurred between the matched and unmatched LiDAR- and field-identified trees

    Land Use/Land Cover Mapping Using Multitemporal Sentinel-2 Imagery and Four Classification Methods-A Case Study from Dak Nong, Vietnam

    Get PDF
    Information on land use and land cover (LULC) including forest cover is important for the development of strategies for land planning and management. Satellite remotely sensed data of varying resolutions have been an unmatched source of such information that can be used to produce estimates with a greater degree of confidence than traditional inventory estimates. However, use of these data has always been a challenge in tropical regions owing to the complexity of the biophysical environment, clouds, and haze, and atmospheric moisture content, all of which impede accurate LULC classification. We tested a parametric classifier (logistic regression) and three non-parametric machine learning classifiers (improved k-nearest neighbors, random forests, and support vector machine) for classification of multi-temporal Sentinel 2 satellite imagery into LULC categories in Dak Nong province, Vietnam. A total of 446 images, 235 from the year 2017 and 211 from the year 2018, were pre-processed to gain high quality images for mapping LULC in the 6516 km(2) study area. The Sentinel 2 images were tested and classified separately for four temporal periods: (i) dry season, (ii) rainy season, (iii) the entirety of the year 2017, and (iv) the combination of dry and rainy seasons. Eleven different LULC classes were discriminated of which five were forest classes. For each combination of temporal image set and classifier, a confusion matrix was constructed using independent reference data and pixel classifications, and the area on the ground of each class was estimated. For overall temporal periods and classifiers, overall accuracy ranged from 63.9% to 80.3%, and the Kappa coefficient ranged from 0.611 to 0.813. Area estimates for individual classes ranged from 70 km(2) (1% of the study area) to 2200 km(2) (34% of the study area) with greater uncertainties for smaller classes.Peer reviewe

    The Influence of Each Facial Feature on How We Perceive and Interpret Human Faces

    Full text link
    [EN] Facial information is processed by our brain in such a way that we immediately make judgments about, for example, attractiveness or masculinity or interpret personality traits or moods of other people. The appearance of each facial feature has an effect on our perception of facial traits. This research addresses the problem of measuring the size of these effects for five facial features (eyes, eyebrows, nose, mouth, and jaw). Our proposal is a mixed feature-based and image-based approach that allows judgments to be made on complete real faces in the categorization tasks, more than on synthetic, noisy, or partial faces that can influence the assessment. Each facial feature of the faces is automatically classified considering their global appearance using principal component analysis. Using this procedure, we establish a reduced set of relevant specific attributes (each one describing a complete facial feature) to characterize faces. In this way, a more direct link can be established between perceived facial traits and what people intuitively consider an eye, an eyebrow, a nose, a mouth, or a jaw. A set of 92 male faces were classified using this procedure, and the results were related to their scores in 15 perceived facial traits. We show that the relevant features greatly depend on what we are trying to judge. Globally, the eyes have the greatest effect. However, other facial features are more relevant for some judgments like the mouth for happiness and femininity or the nose for dominance.This study was carried out using the Chicago Face Database developed at the University of Chicago by Debbie S. Ma, Joshua Correll, and Bernd Wittenbrink.Diego-Mas, JA.; Fuentes-Hurtado, FJ.; Naranjo Ornedo, V.; Alcañiz Raya, ML. (2020). The Influence of Each Facial Feature on How We Perceive and Interpret Human Faces. i-Perception. 11(5):1-18. https://doi.org/10.1177/2041669520961123S118115Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037-2041. doi:10.1109/tpami.2006.244Axelrod, V., & Yovel, G. (2010). External facial features modify the representation of internal facial features in the fusiform face area. NeuroImage, 52(2), 720-725. doi:10.1016/j.neuroimage.2010.04.027Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 711-720. doi:10.1109/34.598228Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94(2), 115-147. doi:10.1037/0033-295x.94.2.115Blais, C., Roy, C., Fiset, D., Arguin, M., & Gosselin, F. (2012). The eyes are not the window to basic emotions. Neuropsychologia, 50(12), 2830-2838. doi:10.1016/j.neuropsychologia.2012.08.010Bovet, J., Barthes, J., Durand, V., Raymond, M., & Alvergne, A. (2012). Men’s Preference for Women’s Facial Features: Testing Homogamy and the Paternity Uncertainty Hypothesis. PLoS ONE, 7(11), e49791. doi:10.1371/journal.pone.0049791Brahnam, S., & Nanni, L. (2010). Predicting trait impressions of faces using local face recognition techniques. Expert Systems with Applications, 37(7), 5086-5093. doi:10.1016/j.eswa.2009.12.002Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology, 77(3), 305-327. doi:10.1111/j.2044-8295.1986.tb02199.xCabeza, R., & Kato, T. (2000). Features are Also Important: Contributions of Featural and Configural Processing to Face Recognition. Psychological Science, 11(5), 429-433. doi:10.1111/1467-9280.00283Chihaoui, M., Elkefi, A., Bellil, W., & Ben Amar, C. (2016). A Survey of 2D Face Recognition Techniques. Computers, 5(4), 21. doi:10.3390/computers5040021Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 681-685. doi:10.1109/34.927467Diamond, R., & Carey, S. (1986). Why faces are and are not special: An effect of expertise. Journal of Experimental Psychology: General, 115(2), 107-117. doi:10.1037/0096-3445.115.2.107Dixson, B. J. W., Sulikowski, D., Gouda‐Vossos, A., Rantala, M. J., & Brooks, R. C. (2016). The masculinity paradox: facial masculinity and beardedness interact to determine women’s ratings of men’s facial attractiveness. Journal of Evolutionary Biology, 29(11), 2311-2320. doi:10.1111/jeb.12958Dunn†, J. C. (1974). Well-Separated Clusters and Optimal Fuzzy Partitions. Journal of Cybernetics, 4(1), 95-104. doi:10.1080/01969727408546059Eberhardt, J. L., Davies, P. G., Purdie-Vaughns, V. J., & Johnson, S. L. (2006). Looking Deathworthy. Psychological Science, 17(5), 383-386. doi:10.1111/j.1467-9280.2006.01716.xFink, B., Neave, N., Manning, J. T., & Grammer, K. (2006). Facial symmetry and judgements of attractiveness, health and personality. Personality and Individual Differences, 41(3), 491-499. doi:10.1016/j.paid.2006.01.017Fox, E., & Damjanovic, L. (2006). The eyes are sufficient to produce a threat superiority effect. Emotion, 6(3), 534-539. doi:10.1037/1528-3542.6.3.534Fuentes-Hurtado, F., Diego-Mas, J. A., Naranjo, V., & Alcañiz, M. (2019). Automatic classification of human facial features based on their appearance. PLOS ONE, 14(1), e0211314. doi:10.1371/journal.pone.0211314Gill, D. (2017). Women and men integrate facial information differently in appraising the beauty of a face. Evolution and Human Behavior, 38(6), 756-760. doi:10.1016/j.evolhumbehav.2017.07.001Gosselin, F., & Schyns, P. G. (2001). Bubbles: a technique to reveal the use of information in recognition tasks. Vision Research, 41(17), 2261-2271. doi:10.1016/s0042-6989(01)00097-9Hagiwara, N., Kashy, D. A., & Cesario, J. (2012). The independent effects of skin tone and facial features on Whites’ affective reactions to Blacks. Journal of Experimental Social Psychology, 48(4), 892-898. doi:10.1016/j.jesp.2012.02.001Hayward, W. G., Rhodes, G., & Schwaninger, A. (2008). An own-race advantage for components as well as configurations in face recognition. Cognition, 106(2), 1017-1027. doi:10.1016/j.cognition.2007.04.002Jack, R. E., & Schyns, P. G. (2015). The Human Face as a Dynamic Tool for Social Communication. Current Biology, 25(14), R621-R634. doi:10.1016/j.cub.2015.05.052Jones, B. C., Little, A. C., Burt, D. M., & Perrett, D. I. (2004). When Facial Attractiveness is Only Skin Deep. Perception, 33(5), 569-576. doi:10.1068/p3463Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception. The Journal of Neuroscience, 17(11), 4302-4311. doi:10.1523/jneurosci.17-11-04302.1997Keating, C. F., & Doyle, J. (2002). The faces of desirable mates and dates contain mixed social status cues. Journal of Experimental Social Psychology, 38(4), 414-424. doi:10.1016/s0022-1031(02)00007-0Keil, M. S. (2009). «I Look in Your Eyes, Honey»: Internal Face Features Induce Spatial Frequency Preference for Human Face Processing. PLoS Computational Biology, 5(3), e1000329. doi:10.1371/journal.pcbi.1000329Kwart, D. G., Foulsham, T., & Kingstone, A. (2012). Age and Beauty are in the Eye of the Beholder. Perception, 41(8), 925-938. doi:10.1068/p7136Langlois, J. H., Kalakanis, L., Rubenstein, A. J., Larson, A., Hallam, M., & Smoot, M. (2000). Maxims or myths of beauty? A meta-analytic and theoretical review. Psychological Bulletin, 126(3), 390-423. doi:10.1037/0033-2909.126.3.390Levine, T. R., & Hullett, C. R. (2002). Eta Squared, Partial Eta Squared, and Misreporting of Effect Size in Communication Research. Human Communication Research, 28(4), 612-625. doi:10.1111/j.1468-2958.2002.tb00828.xLittle, A. C., Burriss, R. P., Jones, B. C., & Roberts, S. C. (2007). Facial appearance affects voting decisions. Evolution and Human Behavior, 28(1), 18-27. doi:10.1016/j.evolhumbehav.2006.09.002Lundqvist, D., Esteves, F., & Ohman, A. (1999). The Face of Wrath: Critical Features for Conveying Facial Threat. Cognition & Emotion, 13(6), 691-711. doi:10.1080/026999399379041Ma, D. S., Correll, J., & Wittenbrink, B. (2015). The Chicago face database: A free stimulus set of faces and norming data. Behavior Research Methods, 47(4), 1122-1135. doi:10.3758/s13428-014-0532-5Maloney, L. T., & Dal Martello, M. F. (2006). Kin recognition and the perceived facial similarity of children. Journal of Vision, 6(10), 4. doi:10.1167/6.10.4McKone, E., & Yovel, G. (2009). Why does picture-plane inversion sometimes dissociate perception of features and spacing in faces, and sometimes not? Toward a new theory of holistic processing. Psychonomic Bulletin & Review, 16(5), 778-797. doi:10.3758/pbr.16.5.778Meyers, E., & Wolf, L. (2007). Using Biologically Inspired Features for Face Processing. International Journal of Computer Vision, 76(1), 93-104. doi:10.1007/s11263-007-0058-8Miller, G. A. (1994). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 101(2), 343-352. doi:10.1037/0033-295x.101.2.343Pallett, P. M., Link, S., & Lee, K. (2010). New «golden» ratios for facial beauty. Vision Research, 50(2), 149-154. doi:10.1016/j.visres.2009.11.003Paunonen, S. V., Ewan, K., Earthy, J., Lefave, S., & Goldberg, H. (1999). Facial Features as Personality Cues. Journal of Personality, 67(3), 555-583. doi:10.1111/1467-6494.00065Petrican, R., Todorov, A., & Grady, C. (2014). Personality at Face Value: Facial Appearance Predicts Self and Other Personality Judgments among Strangers and Spouses. Journal of Nonverbal Behavior, 38(2), 259-277. doi:10.1007/s10919-014-0175-3Piepers, D. W., & Robbins, R. A. (2012). A Review and Clarification of the Terms «holistic,» «configural,» and «relational» in the Face Perception Literature. Frontiers in Psychology, 3. doi:10.3389/fpsyg.2012.00559Rakover, S. S. (2002). Featural vs. configurational information in faces: A conceptual and empirical analysis. British Journal of Psychology, 93(1), 1-30. doi:10.1348/000712602162427Rhodes, G., Ewing, L., Hayward, W. G., Maurer, D., Mondloch, C. J., & Tanaka, J. W. (2009). Contact and other-race effects in configural and component processing of faces. British Journal of Psychology, 100(4), 717-728. doi:10.1348/000712608x396503Richardson, J. T. E. (2011). Eta squared and partial eta squared as measures of effect size in educational research. Educational Research Review, 6(2), 135-147. doi:10.1016/j.edurev.2010.12.001Ritz-Timme, S., Gabriel, P., ObertovĂ , Z., Boguslawski, M., Mayer, F., Drabik, A., 
 Cattaneo, C. (2010). A new atlas for the evaluation of facial features: advantages, limits, and applicability. International Journal of Legal Medicine, 125(2), 301-306. doi:10.1007/s00414-010-0446-4Rojas Q., M., Masip, D., Todorov, A., & Vitria, J. (2011). Automatic Prediction of Facial Trait Judgments: Appearance vs. Structural Models. PLoS ONE, 6(8), e23323. doi:10.1371/journal.pone.0023323Rossion, B. (2008). Picture-plane inversion leads to qualitative changes of face perception. Acta Psychologica, 128(2), 274-289. doi:10.1016/j.actpsy.2008.02.003Russell, R. (2003). Sex, Beauty, and the Relative Luminance of Facial Features. Perception, 32(9), 1093-1107. doi:10.1068/p5101Saavedra, C., Smith, P., & Peissig, J. (2013). The Relative Role of Eyes, Eyebrows, and Eye Region in Face Recognition. Journal of Vision, 13(9), 410-410. doi:10.1167/13.9.410Sadr, J., Jarudi, I., & Sinha, P. (2003). The Role of Eyebrows in Face Recognition. Perception, 32(3), 285-293. doi:10.1068/p5027Said, C., Sebe, N., & Todorov, A. (2009). «Structural resemblance to emotional expressions predicts evaluation of emotionally neutral faces»: Correction to Said, Sebe, and Todorov (2009). Emotion, 9(4), 509-509. doi:10.1037/a0016784Scharff, A., Palmer, J., & Moore, C. M. (2011). Evidence of fixed capacity in visual object categorization. Psychonomic Bulletin & Review, 18(4), 713-721. doi:10.3758/s13423-011-0101-1Schobert, A.-K., Corradi-Dell’Acqua, C., FrĂŒhholz, S., van der Zwaag, W., & Vuilleumier, P. (2017). Functional organization of face processing in the human superior temporal sulcus: a 7T high-resolution fMRI study. Social Cognitive and Affective Neuroscience, 13(1), 102-113. doi:10.1093/scan/nsx119Sirovich, L., & Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A, 4(3), 519. doi:10.1364/josaa.4.000519Tanaka, J. W., & Farah, M. J. (1993). Parts and Wholes in Face Recognition. The Quarterly Journal of Experimental Psychology Section A, 46(2), 225-245. doi:10.1080/14640749308401045Taubert, J., Apthorp, D., Aagten-Murphy, D., & Alais, D. (2011). The role of holistic processing in face perception: Evidence from the face inversion effect. Vision Research, 51(11), 1273-1278. doi:10.1016/j.visres.2011.04.002Terry, R. L. (1977). Further Evidence on Components of Facial Attractiveness. Perceptual and Motor Skills, 45(1), 130-130. doi:10.2466/pms.1977.45.1.130Todorov, A., Dotsch, R., Wigboldus, D. H. J., & Said, C. P. (2011). Data-driven Methods for Modeling Social Perception. Social and Personality Psychology Compass, 5(10), 775-791. doi:10.1111/j.1751-9004.2011.00389.xTodorov, A., Mandisodza, A. N., Goren, A., & Hall, C. C. (2005). Inferences of Competence from Faces Predict Election Outcomes. Science, 308(5728), 1623-1626. doi:10.1126/science.1110589Todorov, A., Said, C. P., Engell, A. D., & Oosterhof, N. N. (2008). Understanding evaluation of faces on social dimensions. Trends in Cognitive Sciences, 12(12), 455-460. doi:10.1016/j.tics.2008.10.001Tsankova, E., & Kappas, A. (2015). Facial Skin Smoothness as an Indicator of Perceived Trustworthiness and Related Traits. Perception, 45(4), 400-408. doi:10.1177/0301006615616748Turk, M., & Pentland, A. (1991). Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 3(1), 71-86. doi:10.1162/jocn.1991.3.1.71Wang, R., Li, J., Fang, H., Tian, M., & Liu, J. (2012). Individual Differences in Holistic Processing Predict Face Recognition Ability. Psychological Science, 23(2), 169-177. doi:10.1177/0956797611420575Wilson, J. P., & Rule, N. O. (2015). Facial Trustworthiness Predicts Extreme Criminal-Sentencing Outcomes. Psychological Science, 26(8), 1325-1331. doi:10.1177/0956797615590992Yamaguchi, M. K., Hirukawa, T., & Kanazawa, S. (2013). Judgment of Gender through Facial Parts. Perception, 42(11), 1253-1265. doi:10.1068/p240563nMcArthur, L. Z., & Baron, R. M. (1983). Toward an ecological theory of social perception. Psychological Review, 90(3), 215-238. doi:10.1037/0033-295x.90.3.21
    • 

    corecore