
remote sensing  

Article

Land Use/Land Cover Mapping Using Multitemporal
Sentinel-2 Imagery and Four Classification
Methods—A Case Study from Dak Nong, Vietnam

Huong Thi Thanh Nguyen 1, Trung Minh Doan 1, Erkki Tomppo 2,3,* and Ronald E. McRoberts 4

1 Department of Forest resource & Environment management (Frem), Faculty of Agriculture and Forestry,
Tay Nguyen University, Le Duan Str. 567, Buon Ma Thuot City 63000, Daklak Province, Vietnam;
nguyenthithanhhuong@ttn.edu.vn (H.T.T.N.); doantrung@ttn.edu.vn (T.M.D.)

2 Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University,
P.O. Box 11000, 00076 Aalto, Finland

3 Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7,
P.O. Box 27 FI-00014 Helsinki, Finland

4 Raspberry Ridge Analytics, 15111 Elmcrest Avenue North, Hugo, MN 55038, USA; mcrob001@umn.edu
* Correspondence: erkki.tomppo@aalto.fi

Received: 23 March 2020; Accepted: 24 April 2020; Published: 26 April 2020
����������
�������

Abstract: Information on land use and land cover (LULC) including forest cover is important for
the development of strategies for land planning and management. Satellite remotely sensed data of
varying resolutions have been an unmatched source of such information that can be used to produce
estimates with a greater degree of confidence than traditional inventory estimates. However, use of
these data has always been a challenge in tropical regions owing to the complexity of the biophysical
environment, clouds, and haze, and atmospheric moisture content, all of which impede accurate
LULC classification. We tested a parametric classifier (logistic regression) and three non-parametric
machine learning classifiers (improved k-nearest neighbors, random forests, and support vector
machine) for classification of multi-temporal Sentinel 2 satellite imagery into LULC categories in
Dak Nong province, Vietnam. A total of 446 images, 235 from the year 2017 and 211 from the year
2018, were pre-processed to gain high quality images for mapping LULC in the 6516 km2 study
area. The Sentinel 2 images were tested and classified separately for four temporal periods: (i) dry
season, (ii) rainy season, (iii) the entirety of the year 2017, and (iv) the combination of dry and rainy
seasons. Eleven different LULC classes were discriminated of which five were forest classes. For
each combination of temporal image set and classifier, a confusion matrix was constructed using
independent reference data and pixel classifications, and the area on the ground of each class was
estimated. For overall temporal periods and classifiers, overall accuracy ranged from 63.9% to 80.3%,
and the Kappa coefficient ranged from 0.611 to 0.813. Area estimates for individual classes ranged
from 70 km2 (1% of the study area) to 2200 km2 (34% of the study area) with greater uncertainties for
smaller classes.

Keywords: classification; Sentinel 2; land use land cover; improved k-NN; logistic regression; random
forest; support vector machine

1. Introduction

1.1. Motivation

Most Vietnamese forests are classified as tropical with natural forest accounting for more than
70% of the total forest area [1]. Dak Nong province has the most abundant natural forest resources in
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Vietnam. The great diversity of this resource is primarily owing to a wide variety of environmental and
climatic factors, most of which are governed by latitude and topography [2]. However, Dak Nong’s
natural forests are being lost at an alarming rate owing to factors that include expanding agriculture,
conversion to commercial and plantation forest types, and increasing human population. For many
years, the Highland Plateau, which includes Dak Nong, has been a major “hot spot” for conversion of
forest to agriculture in Vietnam. During the 1990s and early 2000s, forest was lost at an average annual
rate of 15,000 ha per year [3], with forest cover declining from 75% in 1985 to 60% in 2009. During
this time, the annual rate of deforestation in the Highland Plateau was the greatest of all regions,
accounting for 46.3% of the entire national forest area lost.

The Highland Plateau is characterized by a complex topography with mountains, highlands,
valleys, deltas, and diversified soil types. Approximately 1.3 million ha are fertile soils, rich in organic
matter and nutrients, that facilitate development of high value industrial perennial crops such as coffee,
rubber, pepper, cashew, and fruit trees. Additionally, the distinct rainy and dry seasons in the south of
Vietnam cause differences in the rates of plant growth. Finally, climatic differences from north to south
in Vietnam cause vegetation to vary in physiognomy and lead to morphological differences among
land cover types, particularly between semi-evergreen and deciduous Dipterocarp forests.

Current, accurate, and detailed land cover information that reflects these unique topographic and
climatic conditions, particularly for natural forest types, is crucial for land managers, decision makers,
and policy makers tasked with developing forest management strategies and policies [4–6]. Forest
resource decision-making is characterized by a large degree of uncertainty regarding the outcomes
of alternative choices. The result is a wide variety of opinions regarding the different options that
impedes agreement on a clear way forward. Although there is usually agreement on general objectives
such as sustainable forest use, biodiversity conservation, and the alleviation of rural poverty, conflicts
among stakeholders over the best course of action for achieving these objectives almost always arise.
New issues or new actors may appear and influence discussions, external events may unexpectedly
require the revision of agreed policy proposals, and deadlocks can exist for long periods, all continuing
until pressing circumstances lead to settlements and decisions [7].

1.2. Remotely Sensed Data

Remote sensing offers a unique environmental capability for monitoring extensive geographical
areas in a cost-efficient manner, while simultaneously producing information related to the Earth’s land,
atmosphere, and oceans [8]. Land cover mapping represents one of the most common uses of remotely
sensed data [9–11], with satellite imagery serving as one of the most important data sources [11].

As previously, Dak Nong presents unique challenges for the construction of accurate remote
sensing-based land use land cover (LULC) maps [12]. The variation in vegetation owing to the rainy/dry
seasonal variation affects the spectral reflectance properties of vegetation. For example, deciduous
dipterocarp forests have spectral properties in the dry season that are similar to those of other cover
types such as industrial coffee and rubber crops, whereas the respective spectral properties are quite
different in the rainy season. Only a few studies have accommodated this kind of seasonal variation
when constructing satellite image-based land cover classifications. Sothe et al. (2017) [13] combined
multi-spectral fall and spring season images when mapping land cover with Landsat-8 data and found
that the inclusion of additional band data considerably improved classifications when compared with
the use of fall spectral bands alone. For both classifiers used by Sothe et al. (2017) [13], there were
meaningful increases in classification accuracy, by 4.8% and 2.9% for the random forests and support
vector machine classifiers, respectively, when the “spring” spectral bands were added.

Dak Nong’s seasonal growth variation, varying vegetation spectral signatures, and varying
topography suggest that Sentinel-2 satellite spectral data, with its fine spatial resolution (10–60 m), fine
temporal resolution (five days), and fine spectral resolution (13 spectral bands), may be particularly
well-suited for land cover classification purposes in the province. Although data from the Sentinel-2
sensor have been investigated for a variety of vegetation monitoring [14,15], terrestrial monitoring [16],



Remote Sens. 2020, 12, 1367 3 of 27

and forest classification [16] applications, only a few studies have used Sentinel-2 for land cover
mapping [17–19]. Therefore, additional studies that evaluate the utility of this imagery for land
cover classification for regions with extremely diverse conditions such as those in Dak Nong are
well-justified [20].

1.3. Classification Techniques

Factors that affect classification accuracy include sensor type, sources of training and accuracy
assessment data, the number of classes, and the classification method [21–23]. Of these factors,
the selection of a suitable algorithm that achieves acceptable classification accuracy with minimal
processing time can be crucial [24]. Many methods have been proposed for constructing satellite
image-based land cover maps [25,26], including both unsupervised and supervised methods and both
parametric and non-parametric methods. Although unsupervised algorithms such as IsoData and
K-Means clustering have been widely used for many years, general purpose clustering algorithms are
cumbersome and difficult to develop [27]. Parametric supervised algorithms such as linear discriminant
analysis [28–31] and multinomial logistic regression (MLR) have also been broadly used [32,33] and
are often considered standards for comparison purposes [29,30,34]. In the last decade, non-parametric
methods including support vector machine (SVM) [35–37], k-nearest neighbors (k-NN) [38,39], and
random forests (RF) [40–42] have gained attention for remote sensing-based land cover classification.
However, both SVM and RF require the selection of values for multiple parameters that affect their
efficacy, and both are computationally intensive [6,35]. For k-NN, Naidoo et al. (2012) [43] reported
difficulty in selecting the optimal value of k and that the genetic algorithms recommended for
optimization can be computationally intensive [44,45]. Finally, object-based classification has been
shown to be an effective method for classifying fine resolution imagery [46,47]. Object-based methods
have been used with both fuzzy sets [48,49] and neural networks [48,50] to map land cover using
satellite imagery. Although object-based classification methods have been shown to increase accuracy
for some land cover mapping applications, fine spatial resolution remotely sensed imagery remains
the most frequently used data source for these applications [51].

Because of the unique features of each study and study area including definitions, sample sizes,
and numbers and characteristics of the classes, comparisons of methods with respect to accuracy
among studies is difficult. Even so, not much effort has been committed to comparing methods with
respect to accuracy for diverse tropical forest regions such as Dak Nong. Meyfroidt et al., 2013 [52]
used MLR with Landsat data to assess classes of forest change and reported land cover classification
accuracies of 0.64 to 0.69. Use of RF for land cover classification has been reported for multiple studies
in Vietnam. Bourgoin et al. (in press) [53] used RF with both Landsat and Sentinel-2 data for multiple
land cover and land cover change classes and reported an overall accuracy of 0.81. Nguyen et al.
(2018) [6] used RF and Landsat data for 10 classes including multiple forest classes in Vietnam. Overall
accuracy was approximately 0.90. Ha et al. (2018) [54] used RF and Landsat data for seven land
cover classes including forest land and reported overall accuracies greater than 0.90. Finally, Phan
and Kappas (2018) [20] reported that SVM was more accurate than RF for classifying six types of land
cover types including one forest class in the North of Vietnam (Red River Delta) using Sentinel-2
data. In summary, although only a few studies using only a few methods have been used for the
classification of forest land in Vietnam, the reported accuracies are relatively large. Thus, there is merit
in a more comprehensive evaluation of classification methods, particularly for diverse tropical regions
such as in Dak Nong province, Vietnam, with their distinct seasonal effects.

1.4. Objectives

The overall objective was to evaluate the utility of multi-seasonal Sentinel-2 spectral data for land
cover classification and mapping in Dak Nong province, Vietnam. A subordinate objective was to
compare the parametric MLR and non-parametric ik-NN, SVM, and RF classification methods with
respect to both overall and class-level accuracies and with respect to whether the methods exploited
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the beneficial effects of the multi-seasonal Sentinel-2 data. Google Earth Engine was used for collecting
and pre-processing both training and accuracy assessment data. A second subordinate objective was
rigorous statistical estimation of the ground area of each land cover class.

2. Materials and Methods

2.1. Overview

The structure of this section has multiple components. First, the Dak Nong study area is described
in Section 2.2, the Sentinel-2 satellite imagery and its separation into temporal periods are described
in Section 2.2, and the land cover data from multiple sources and their separation into training and
validation subsets are described in Section 2.3. Next, brief descriptions of the four classifiers are
provided in Section 2.4, including descriptions of their statistical properties, details on their required
input parameters, and procedures for optimizing their performance. Finally, in Section 2.5, the two
analytical components used to compare all combinations of the four temporal image periods and the
four classifiers are described. The first component focuses on map accuracy assessment, while the
second component focuses on estimating LULC class areas and their corresponding uncertainties.
The overall research approach is summarized in Figure 1.
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Figure 1. Research approach as a flowchart. The Sentinel-2 2017 and 2018 data were collected for
different seasons: dry, rainy, whole year, and rainy and dry composited images. The MLR, ik-NN, SVM,
and RF classifiers were tested with the resulting uncertainty assessments used as criteria for comparing
combinations of seasonal datasets and classifiers. OA, overall accuracy; K, Kappa coefficient; PA,
producer’s accuracy; UA, user’s accuracy.
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2.2. Study Area

The study was conducted in Dak Nong Province in the Central Highlands of Vietnam (Figure 2).
The average elevation is between 600 and 700 m above sea level. The mean temperature is 24 degrees
Celsius. The climate conditions produce general characteristics of a subequatorial tropical monsoon
climate. The province has characteristics of humid tropical highland climate and is affected by dry-hot
southwest monsoons. There are two distinct annual seasons: the rainy season starts in April and ends
in November, and the dry season starts in December and ends in March the following year. The average
annual rainfall is 2500 mm, of which 90% occurs during the rainy season. The study area extends
over 6516 km2 and is characterized by substantial fragmentation, thereby making LULC classification
particularly challenging. Natural forest consists of patches of natural evergreen broad-leaved, mixed
bamboo, deciduous dipterocarp, and semi-deciduous forest with different levels of disturbance, mainly
human in origin.

Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 28 

 

2.2.  Study Area 

The study was conducted in Dak Nong Province in the Central Highlands of Vietnam (Figure 
2). The average elevation is between 600 and 700 m above sea level. The mean temperature is 24 
degrees Celsius. The climate conditions produce general characteristics of a subequatorial tropical 
monsoon climate. The province has characteristics of humid tropical highland climate and is affected 
by dry-hot southwest monsoons. There are two distinct annual seasons: the rainy season starts in 
April and ends in November, and the dry season starts in December and ends in March the following 
year. The average annual rainfall is 2500 mm, of which 90% occurs during the rainy season. The study 
area extends over 6516 km2 and is characterized by substantial fragmentation, thereby making LULC 
classification particularly challenging. Natural forest consists of patches of natural evergreen broad-
leaved, mixed bamboo, deciduous dipterocarp, and semi-deciduous forest with different levels of 
disturbance, mainly human in origin. 

 

  
Figure 2. The study area in Dak Nong province, Vietnam, with sample unit locations  

2.3. Data 

2.3.1. Sentinel-2 Imagery 

Sentinel-2 MSI (multi-spectral instrument, Level-1C) remotely sensed data were used for LULC 
classification. The Sentinel-2 mission was developed by the European Space Agency (ESA) as a part 
of the Copernicus Programme [55]. The mission’s wide swath, fine spatial resolution (10 m–60 m), 
multi-spectral features (13 spectral bands), and frequent revisit time (10 days at the equator with one 
satellite, and 5 days with two satellites) support monitoring vegetation changes within a growing 
season, forest monitoring, land cover change detection, and natural disaster management [56]. The 
spectrum characteristics of the Sentinel 2 images are described in Table 1. 

Table 1. Basic characteristics of Sentinel 2 multi-spectral instrument (MSI). 

Name Min Max Scale Resolution Wavelength Description 
B1 0* 10,000* 0.0001 60 Meters 443 nm Aerosols 
B2 0* 10,000* 0.0001 10 Meters 490 nm Blue 
B3 0* 10,000* 0.0001 10 Meters 560 nm Green 
B4 0* 10,000* 0.0001 10 Meters 665 nm Red 

Figure 2. The study area in Dak Nong province, Vietnam, with sample unit locations.

2.3. Data

2.3.1. Sentinel-2 Imagery

Sentinel-2 MSI (multi-spectral instrument, Level-1C) remotely sensed data were used for LULC
classification. The Sentinel-2 mission was developed by the European Space Agency (ESA) as a part
of the Copernicus Programme [55]. The mission’s wide swath, fine spatial resolution (10 m–60 m),
multi-spectral features (13 spectral bands), and frequent revisit time (10 days at the equator with one
satellite, and 5 days with two satellites) support monitoring vegetation changes within a growing season,
forest monitoring, land cover change detection, and natural disaster management [56]. The spectrum
characteristics of the Sentinel 2 images are described in Table 1.
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Table 1. Basic characteristics of Sentinel 2 multi-spectral instrument (MSI).

Name Min Max Scale Resolution Wavelength Description

B1 0 10,000 0.0001 60 Meters 443 nm Aerosols
B2 0 10,000 0.0001 10 Meters 490 nm Blue
B3 0 10,000 0.0001 10 Meters 560 nm Green
B4 0 10,000 0.0001 10 Meters 665 nm Red
B5 0 10,000 0.0001 20 Meters 705 nm Red Edge 1
B6 0 10,000 0.0001 20 Meters 740 nm Red Edge 2
B7 0 10,000 0.0001 20 Meters 783 nm Red Edge 3
B8 0 10,000 0.0001 10 Meters 842 nm Near infrared (NIR)

B8a 0 10,000 0.0001 20 Meters 865 nm Red Edge 4
B9 0 10,000 0.0001 60 Meters 940 nm Water vapor

B10 0 10,000 0.0001 60 Meters 1375 nm Cirrus
B11 0 10,000 0.0001 20 Meters 1610 nm Short-wave infrared (SWIR) 1
B12 0 10,000 0.0001 20 Meters 2190 nm SWIR 2

QA10 10 Meters Always empty
QA20 20 Meters Always empty
QA60 60 Meters Cloud mask

The difference in solar illumination geometry during image acquisition between the two seasons
was considered in the present study. Although vegetation in the study area presents reduced climatic
and phonological seasonality, the observed reflectance varies by season owing to changes in the solar
illumination geometry caused by the Earth’s translation movement [13]. Therefore, seasonal image
datasets were separately classified to evaluate these influences. Accordingly, the scenes of interest
included the following: (i) a collection of Sentinel-2 MSI scenes in the study area during the dry season
of 2017 and 2018 (1 January 2017 to 31 March 2017, and 1 December 2017 to 31 March 2018), designated
imagery 1 (IMG 1) (Table 2); (ii) a collection of Sentinel-2 MSI scenes during the rainy season of 2017
and 2018 (from 1 April 2017 to 30 November 2017 and 1 April 2018 to 30 June 2018), designated IMG 2;
(iii) a collection of Sentinel 2 MSI scenes for all months of 2017 (from 1 January 2017 to 31 December
2017), designated IMG 3; and (iv) a combination of all bands for the dry and rainy seasons (combination
of IMG 1 and IMG 2, designated IMG 4.

Table 2. Seasonal satellite images used in the classification.

Image Name Time Acquisition Date Number of Images
Involved Number of Bands

IMG 1 Dry season, 2017–2018
01/01/2017–03/31/2017

and
12/01/2017–03/31/2018

169 10

IMG 2 Rainy season, 2017–2018
04/01/2017–11/30/2017

and
04/01/2018–06/30/2018

277 10

IMG 3 All for year 2017 01/01/2017–12/31/2017 265 10

IMG 4
Combination of all bands

for both 2017 and 2018
(IMG 1 + IMG 2)

Dry season
2017–2018 + Rainy
season 2017–2018

446 20

The different seasonal image datasets represented for each season were considered for the analyses
based on the median value of the collection. The multi-spectral bands in the study included Blue
(B2), Green (B3), Red (B4), Red Edge 1 (B5), Red Edge 2 (B6), Red Edge 3 (B7), near infrared (NIR)
(B8), Red Edge 4 (B8A), short-wave infrared (SWIR) 1 (B11), and SWIR 2 (B12). In addition to these
spectral bands, the normalized difference vegetation index (NDVI) and a digital elevation model
(DEM) were added to the seasonal image data (IMG 1–4) with the objective of increasing classification
accuracy, as reported from previous studies [22,57]. These bands, including NDVI [58,59] and DEM,
were resampled at 10 m resolution. Image information is described in Table 2 below.
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To conduct the analyses, the JavaScript API Code Editor in the Google Earth Engine (GEE) was
used to collect data for a large number of images. GEE provides most freely available image data
and an application programming interface (API) to analyze and visualize the data [60,61]. Surface
reflectance (SR) images for 2017 were not available, and for 2018 images, approximately 50% of the
study area was covered by clouds. Hence, a top of atmosphere (TOA) dataset acquired for 2017 and
2018 was used for the study. The set of collected images was pre-processed to reduce the effects of
topography and bidirectional reflectance distribution function (BRDF). At the same time, cloud areas
were masked out and shadows were removed during this process.

All images underwent pixel-wise cloud and cloud shadow masking using the Google cloudScore
algorithm for cloud masking and temporal dark outlier mask (TDOM) for cloud shadows, both of
which built on ideas from Landsat TDOM and cloudScore algorithm. The original concept was written
by Carson Stam, adapted by Ian Housman, currently documented in [60], and described and evaluated
in a forthcoming paper [62]. This study implemented the correction of reflectance spectral values by
BRDF based on the method described by Roy et al. 2017a,b [63,64]. Topographic correction is the
process to account for diffuse atmospheric irradiance caused by slope, aspect, and elevation effects.
The sun-canopy-sensor + C (SCSc) correction method based on the C-correction, as described by Soenen
et al. [65], was applied for topographic correction in this study. The median function was then applied
to create an image object (single image) representing the median value of all images in the filtered
collection [66,67]. The median lies closer to the majority of values and is insensitive to extreme values
and has exactly half the values smaller and half the values greater than the median, as elaborately
applied by [68]. The post-processed images were then resampled to a spatial resolution of 10 m using
the nearest neighbor method [69], and subsetted to the study area. The entire pre-processing was
implemented on GEE based on the script available on “Open Geo Blog - Tutorials, Code snippets and
examples to handle spatial data” [61,70].

2.3.2. Training and Validation Data

Within the study area, 11 LULC classes were distinguished: (1) dense evergreen broadleaved
forest (the forest has been slightly impacted); (2) open evergreen broadleaved forest (the forest has
been moderately to heavily disturbed); (3) semi-evergreen forest (the forest that consists of a mixture
of evergreen and deciduous dipterocarp tree species); (4) deciduous dipterocarp forest; (5) plantation
forest; (6) mature rubber (≥3 years old); (7) perennial industrial plants; (8) croplands (annual crop
land); (9) residential area; (10) water surface; and (11) other lands including, but not limited to, other
types of grassland, shrubs, bare land, and abandoned land.

Acquiring adequate training and validation data is often challenging in tropical regions. Sothe
et al., 2017 [13] and Teluguntla et al., 2018 [71] both obtained good results using sample data from a
combination of sources including field investigations, very fine spatial resolution Google Earth imagery,
current Landsat and Sentinel imagery, and other sources such as maps. A similar approach was used for
this study for which three sets of sample data were acquired in 2017 and 2018: (1) field observations for
a purposive sample of size 232; (2) visual interpretations of fine and very fine resolution imagery from
sources that included Google Earth for a purposive sample size of 214; and (3) visual interpretations
of fine and very fine resolution imagery from sources that included Google Earth and Sentinel- 2A
imagery for a simple random sample size of 800. For the latter sample dataset, field observations and
data from the 2016 Dak Nong Forest Inventory Map were used to clarify and refine interpretations for
the LULC classes such as semi-evergreen forest, plantation forest, and some perennial industrial crops
that were difficult to distinguish in the imagery.

To obtain the probability sample necessary for validation, a systematic sample of the
probability-based third dataset was selected. The plots in the third dataset were first sorted by
their east and north coordinates, and then a systematic sample was selected from within each LULC
class. For each class, the proportion selected was arbitrary, but was guided by the desire for a minimum
sample size of 15, where possible, while yet retaining a sufficient sample size for training purposes.
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For the eleven LULC classes, the proportions were, in order, as follows: 0.20, 0.20, 0.50, 0.67, 1.00, 0.50,
0.11, 0.50, 0.67, 0.50, 0.20. Because the third dataset was selected using a simple random sample, and it
was systematically subsampled, each subsample can also be considered a simple random sample and,
therefore, can be used for validation. The remaining portion of the third dataset was used for training
purposes. The result was a sample size of 1036 for training and a sample size of 208 for validation.
The number of validation plots by LULC category was considered sufficient and generally complied
with the recommendation of Särndal et al. (1992) [72]. A summary of the training and validation
datasets is shown in Table 3 with the spatial distribution of sample locations shown in Figure 2.

Table 3. Training and validation data.

Dataset Use
Land Cover Class Total

1 2 3 4 5 6 7 8 9 10 11

1 Training 77 6 15 13 29 34 0 13 32 4 9 232
2 Training 6 8 52 33 11 14 19 21 20 4 25 213
3 Training 99 97 22 9 0 17 234 20 8 11 74 591

Total Training 182 111 89 55 40 65 253 54 60 19 108 1036
3 Validation 25 25 22 17 7 17 28 20 16 12 19 208

2.4. Classifiers

The MLR, ik-NN, RF, and SVM supervised classification algorithms were used to classify the
satellite image data as described above. The training areas for each LULC type were selected based on
Google Earth, field data, and prior knowledge, as well as available data. The models were used as
supervised classifiers to classify pixels based on their spectral signatures.

2.4.1. Multinomial Logistic Regression (MLR)

With MLR, the probability of class c for the ith plot, c=1,..., C, is estimated as follows:

p
(
yi = c

∣∣∣xi
)
=

exp(βc · xi)

1−
∑C−1

m=1 exp(βm · xi)
+ εi, for c = 1, . . . , C− 1 (1)

and
p
(
yi = C

∣∣∣xi
)
=

1

1−
∑C−1

m=1 exp(βm · xi)
+ εi, (2)

where C is the number of the LULC classes, xi is the vector of predictor variable observations for the ith

population unit, and βc is the vector of regression coefficients associated with LULC class c. The class
with the greatest probability is selected as the prediction for the ith population unit. Optimal estimates
for

{
βc : c = 1, . . . , C

}
can be obtained using any of multiple statistical software packages.

2.4.2. Improved k-Nearest Neighbors (ik-NN)

In the terminology of nearest neighbors techniques, the auxiliary or predictor variables are
designated feature variables and the space defined by the feature variables is designated the feature
space; the set of sample units for which observations of both response and feature variables are
available is designated the reference set; and the set of population units for which predictions of
response variables are desired is designated the target set (Chirici et al., 2016) [73]. All population
units for both the reference and target sets are assumed to have complete sets of observations for all
feature variables.

For the ith target unit, all forms of nearest neighbors algorithms entail selecting the k-nearest or

most similar neighbors,
{
yi

j : j = 1, 2, . . . , k
}
, from the reference set with respect to a distance metric, d,

formulated as a function of the feature variables. For categorical response variables such as land cover
classes, the prediction, ŷi, for the ith target unit is the most heavily weighted class among the k-nearest
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neighbors, a weighted median or mode in case of ordinal scale variables, or a mode in the case of
nominal variables. Implementation of nearest neighbors techniques requires multiple selections: (i)
the distance metric, d, to assess nearness or similarity in the feature space; (ii) a scheme for weighting
the predictor variables in the distance metric; (iii) a scheme for weighting individual neighbors when
calculating predictions; and (iv) a number, k, of nearest neighbors [73].

For this study, the distance metric was a simplified version of the metric proposed by Tomppo and
Halme (2004) [44], as used in the operational Finnish multi-source national forest inventory (MS-NFI),

dij =

√√√ p∑
m=1

w2
m ·

(
xim − xjm

)2
, (3)

where i denotes a target unit; j denotes a reference unit; dij is the distance between the units i and j;
m indexes the feature variables; xim and xjm are observations of the mth feature variable for the ith

target unit and jth reference unit, respectively; and wm is a feature variable weight. Neighbor weights
are typically formulated as powers, t ∈ [0, 2], of distances between target and reference units. Often,
the necessary selections to implement a nearest neighbor algorithm are made in an arbitrary method,
whereas improved k-NN (ik-NN) entails optimized selection of the weights, wm, using a technique
such as genetic algorithms [44,45,74]

2.4.3. Support Vector Machine (SVM)

The principle behind the SVM classifier is a hyperplane that separates the data for different classes.
The main focus is construction of the hyperplane by maximizing the distance from the hyperplane to
the nearest data point of either class. These nearest data points are known as support vectors [75].

According to Huang et al. (2002) [35] (p. 734), by mapping the input data into a high-dimensional
space, the kernel function converts non-linear boundaries in the original data space into linear
boundaries in the high-dimensional space, which can then be located using an optimization algorithm.
Therefore, selection of the kernel function and appropriate values for corresponding kernel parameters,
referred to as the kernel configuration, can affect the performance of the SVM.

The radial basis function kernel (RBF kernel) is one of the most popular kernels used to implement
the support vector machine algorithm and was used for this study. The squared Euclidean distance
metric was used to construct completely non-linear hyperplanes. The RBF kernel of the SVM classifier
is commonly used and has performed well. Polynomial kernels, especially high-order kernels, took far
more time to train than RBF kernels [35].

Meyer et al. (2002) [76] stated that, for classification tasks, C-classification is most likely used with
the RBF kernel because of its good general performance and the small number of parameters (only
two, C and γ). Therefore, the two parameters that must be defined for this classification algorithm
are the cost parameter (C) and the kernel width parameter (γ). According to Knorn et al. (2009) [77]
(p.960), C is a regularization parameter that controls the trade-off between maximizing the margin and
minimizing the training error. C is a preset penalty value for misclassification errors, while γ describes
the kernel width, which affects the smoothing of the shape of the class-dividing hyperplane.

The authors of LIBSVM suggest trying small and large values for C, such as 1 to 1000, then
using cross-validation to decide which is optimal for the data, and finally trying several γ’s for the
optimal C’s. A small C-value tends to emphasize the margin while ignoring the outliers in the training
data, while a large C-value may overfit the training data [77] (p.960). Optimal selection of C and γ
parameters was done by testing C parameters in the range 2−1 to 28 and γ parameters in the range 0.1
to 2.0.

2.4.4. Random Forests (RF)

The RF classifier developed by Breiman (2001) [78] requires selection of three parameters: ntree
(number of trees to grow), mtry (the number of variables to split each node), and variable importance
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(the number of variables/bands influences model performance). Liaw & Wiener (2002) [79] recommend
using the square root of the number of input variables as the default value for mtry. A large value for
ntree produces a stable result for variable importance, which is estimated using two indicators: (i) mean
decrease accuracy (MDA) and ii) mean decrease gini (MDG). MDA is the accuracy associated with each
predictor variable based on the out-of-bag error rate (OOB). Gini impurity is a measure of how often a
randomly chosen element from the set would be incorrectly labeled if it is randomly labeled according
to the distribution of labels in the subset. For this study, MDA values were investigated to determine
the importance of variables. Nguyen et al. (2018) [6] indicated that within the range 1 ≤ ntree ≤ 500,
ntree = 300 produced the best fit. In addition, Breiman (2001) [78] stated that using more than the
required number of trees may be unnecessary, albeit not harmful, because the relationship between
accuracy and ntree is asymptotic. The ‘RandomForest’ package in the R environment developed by
Liaw and Wiener (version 4.6–14 in 2018) was used in present study. Optimal values of mtry, ntree, and
variable importance were selected based on the smallest OOB error. The optimal variable importance
depended on the MDA value and accuracy of the model.

2.5. Analyses

2.5.1. Accuracy Assessment

Accuracy assessment is an important step before accepting a classification result [21].
The classification accuracy of a map product is estimated by constructing a confusion matrix between
reference and classified pixels. Classification accuracy was assessed using criteria such as overall
accuracy (OA), Kappa coefficient (K), producer’s accuracy (PA), and user’s accuracy (UA). Congalton
and Green (1999) [80] assert that analysis of the causes of differences in the confusion matrix can be one
of the most important and interesting steps in the construction of a map from remotely sensed data.

The objectives of the study included comparing the performance of classifiers as well as assessing
the effects of Sentinel-2 satellite images for different seasons, as described in Table 2. The number of
seasonal bands used with the four classifiers is reported in Table 4.

Table 4. Classifiers and seasonal bands. Ik-NN, improved k-nearest neighbors; MLR, multinomial
logistic regression; SVM, support vector machine; RF, random forests.

Classification Algorithm Image Set Number of Bands

ik-NN

IMG 1 10
IMG 2 10
IMG 3 10
IMG 4 20

MLR

IMG 1 10
IMG 2 10
IMG 3 10
IMG 4 20

SVM

IMG 1 10
IMG 2 10
IMG 3 10
IMG 4 20

RF

IMG 1 10
IMG 2 10
IMG 3 10
IMG 4 20

2.5.2. Land Cover Class Area Estimation

For each land cover class, an estimate of the class area and the corresponding standard error were
calculated using a combination of confusion matrices and stratified estimators [81,82]. For each class,
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C, a confusion matrix was constructed for two classes: (i) class C and (ii) the aggregation of all other
classes into a single class designated ~C (Table 5). Using estimates of proportions and corresponding
variances as indicated in Table 5, the stratified estimate of the area of class C was as follows:

ÂC = Atot ·
(
wt1 · p̂1 + wt2 · p̂2

)
, (4)

with standard error,
SE

(
ÂC

)
= Atot ·

[
wt2

1 · V̂ar
(
p̂1

)
+ wt2

2 · V̂ar
(
p̂2

)]
(5)

where wt1 is the proportion of the total map area in class C, wt2 = 1−wt1, and Atot is the total area of
interest. Approximate 95% confidence intervals for the class areas can be estimated as follows:

ÂC ± 2 · SE
(
ÂC

)
. (6)

Table 5. Confusion matrix.

Map Class
Reference Class

Total UA * ^
ph V̂ar(

^
ph)

C ~C

C n11 n12 n1· = n11 + n12 ua1 = n11
n1·

p̂1 = n11
n1· V̂ar

(
p̂1

)
=

p̂1·(1−p̂1)
n1·

~C n21 n22 n2· = n21 + n22 ua2 = n22
n2·

p̂2 = n21
n2· V̂ar

(
p̂2

)
=

p̂2·(1−p̂2)
n2·

Total n·1 = n11 + n21 n·2 = n12 + n22
PA * pa1 = n11

n·1 pa2 = n22
n·2

* UA = user’s accuracy, * PA = producer’s accuracy.

3. Results

3.1. Classifiers

3.1.1. Multinomial Logistic Regression (MLR)

The parameters of the multinomial logistic regression model (Equations (1) and (2)) were estimated
using the multinom function of the R packages [83]. All variables (spectral values of all bands of the
image set in the analysis) were included in the model. The log-likelihood stabilized after 100 iterations.
The importance of the variables was quite similar among different Sentinel-2 datasets. For the dry
season image (IMG 1) and for the all-month image (IMG 3), the most important variables were Blue
and SWIR 2, otherwise, the variable importance values were approximately the same. For the rainy
season image (IMG 2), the results were also similar, although the Blue and SWIR 2 importance values
were slightly less than for IMG 1 and IMG 3. Differences among importance values were small for the
two-season image (IMG 4).

3.1.2. Improved k-NN (ik-NN)

The improved k-NN (ik-NN) algorithm was applied as described in [45], except that only overall
accuracy was used in the fitness function. The value of k = 10 was used. For the genetic algorithm,
the number of the generations was 60, the population and medi-population sizes were 50, and the
maximum number of the random iterations was 4000. Otherwise, the genetic algorithm parameters
were as reported by Tomppo et al. (2009) [45]. Because genetic algorithms as a heuristic optimization
method may select a local optimum, several trial runs were used to find a near optimal solution.
Pixel-level estimates can be readily calculated with ik-NN when the weights of the variables have been
optimized. The importance for the different variables was similar for ik-NN and MLR. However, in the
case of predictor variables with large correlations, caution should be used when drawing conclusions
with either method.
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3.1.3. Support Vector Machine (SVM)

With the SVM algorithm using the RBF kernel, determination of the optimal cost (C) and Gamma
parameters for the model is important. Following Qian et al. (2015) [84] and using our actual dataset,
the R function ‘tune()’ was used to select these two SVM parameters. The optimal cost (C) value was
determined from the values: 2−1, 20, 21, 22, 23, 24, 25, 26, 27, 28, and the Gamma (γ) value was a free
parameter set from 0.1 to 2. The optimal parameters were determined based on classification error.
Figure 3 describes the performance of the SVM model using the different cost and Gamma parameters.
The darker the blue area, the better the performance of the model presented.
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For the IMG 2-SVM combination and the IMG 4-SVM combination, the optimal C of 23 and
Gamma of 0.1 produced classification errors of 0.2283 and 0.1525, respectively, while for the IMG
1-SVM and IMG 3-SVM combinations, the optimal C of 25 and 26, both with Gamma of 0.1, produced
classification errors of 0.2212 and 0.2145, respectively.

3.1.4. Random Forests (RF)

The three RF parameters, ntree, mtry, and variable importance, play important roles in classification.
The algorithm assesses the importance of each variable in the classification process by means of a
specific measure. ‘Importance()’ and ‘varImplot()’ functions were used to determine the MDA values
and to select the potential variables that were actually needed for the optimal RF models. Figure 4
shows the variable importance ranked in the direction of decreasing MDA from right to left for the
four seasonal images. The selection of variables was based on MDA using the backward selection
method [85]. With this method, the algorithm starts with all predictor variables and then sequentially
removes some variables until the greatest accuracy is achieved. Accordingly, the least MDAs were
attributed to two bands of IMG 1, 2, and 3: specifically, B6 and B8 for IMG 1 and B6 and B7 for both
IMG 2 and IMG 3. For IMG 4, the five bands were included: B5a, B2a, B2b, B7a, and B8b. In addition,
the NIR band reduced the accuracy for all images.
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The OOB errors associated with different mtry values are shown in Figure 6. The smallest OOB
error was obtained with mtry = 3 for the IMG 2/RF and IMG 3/RF combinations, with mtry = 6 for the
IMG 1/RF combination, and with mtry = 4 for the IMG4/RF combination.
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3.2. Analyses

3.2.1. Accuracy of Classification Results

OA, K, PA, and UA for each class for the different combinations of image groups and classifiers
are reported Table 6 and a comparison of the results is reported in Figure 7. In general, relatively large
accuracies were found with OA >60% and K >0.6. Of interest, the IMG 4 composite of rainy and dry
images produced the greatest accuracies for all classifiers. By contrast, the rainy season IMG 2 images
produced the smallest accuracies. Classification accuracies for IMG 1 and IMG 3 were less than for
IMG 4, but greater than for IMG 2.
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Table 6. Accuracy estimates: OA = overall accuracy, K = Kappa, PA = producer’s accuracy, UA = user’s accuracy, Â = class area estimate (km2), SE(Â) = standard
error of class area estimate.

Image Classifier OA Kappa Accuracy
Land Class *

1 2 3 4 5 6 7 8 9 10 11

IMG 1 MLR 68.3 0.657 PA 97.60 35.50 70.00 39.40 0.000 47.70 91.40 47.10 48.60 100.00 89.30
UA 58.50 66.70 66.70 80.00 0.000 68.80 75.90 70.00 100.00 85.70 61.50
Â 821.72 932.59 502.16 378.25 241.3 456.51 1923.88 502.16 202.17 91.3 469.56

SE(Â) 104.35 156.52 97.82 97.82 84.78 110.87 195.65 123.91 45.65 13.04 71.74
Ik-NN 72.1 0.732 PA 98.20 55.40 81.90 45.10 32.50 38.30 93.60 28.20 31.60 100.00 87.70

UA 80.00 65.20 80.80 80.00 60.00 84.60 68.60 91.70 91.70 92.30 62.10
Â

SE(Â)
886.94 808.68 404.34 541.29 202.17 463.04 1878.23 456.51 189.13 97.82 593.47

78.26 143.48 78.26 123.91 71.74 130.43 208.69 123.91 52.17 6.52 104.35
RF 67.7 0.67 PA 92.20 64.00 62.10 42.10 46.90 18.90 89.90 38.40 42.00 100.00 87.80

UA 77.40 63.00 85.70 81.80 66.70 100.00 59.50 85.70 91.70 92.30 58.10
Â

SE(Â)
886.94 763.03 502.16 515.21 182.61 697.81 1689.10 397.82 215.21 104.35 567.38

104.35 123.91 104.35 123.91 58.69 163.04 215.21 97.82 52.17 6.52 104.35
SVM 73.2 0.748 PA 94.90 54.30 73.60 47.10 26.80 36.20 94.40 42.80 46.50 100.00 84.80

UA 76.70 64.00 87.00 100.00 60.00 78.60 70.60 92.30 92.90 92.30 63.00
Â 880.42 886.94 404.34 456.51 189.13 397.82 1956.49 463.04 169.56 104.35 613.03

SE(Â) 91.3 163.04 84.78 110.87 71.74 117.39 215.21 104.35 52.17 6.52 110.87

IMG 2 MLR 63.9 0.611 PA 67.80 37.70 71.80 33.70 8.80 96.30 85.30 39.50 41.40 100.00 86.20
UA 54.50 58.80 66.70 53.30 10.00 84.20 67.90 70.00 90.90 92.30 64.30
Â 854.33 978.24 469.56 371.73 189.13 228.26 1813.01 645.64 280.43 104.35 586.95

SE(Â) 150.00 189.13 71.74 84.78 71.74 26.09 215.21 136.95 65.22 6.52 104.35
Ik-NN 64.3 0.673 PA 90.90 36.50 61.20 44.90 56.30 42.40 84.50 38.80 38.10 86.00 82.00

UA 74.20 80.00 62.10 85.70 83.30 85.70 51.20 81.30 92.30 91.70 63.00
Â 854.33 1317.37 417.38 404.34 104.35 365.21 1643.45 436.95 182.61 91.3 704.33

SE(Â) 104.35 202.17 91.3 84.78 39.13 110.87 228.26 110.87 58.69 13.04 123.91
RF 67.5 0.712 PA 86.30 39.40 65.90 66.30 53.10 58.60 85.00 42.00 28.00 100.00 80.200

UA 78.60 68.80 75.00 91.70 62.50 87.50 58.30 100.00 91.70 85.70 56.700
Â

SE(Â)
913.03 1180.41 404.34 319.56 104.35 293.47 1760.84 547.82 195.65 91.3 717.38

110.87 202.17 84.78 45.65 39.13 84.78 228.26 117.39 65.22 13.04 136.95
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Table 6. Cont.

Image Classifier OA Kappa Accuracy
Land Class *

1 2 3 4 5 6 7 8 9 10 11

SVM 68.4 0.717 PA 83.10 38.60 66.00 52.10 41.80 66.00 85.90 43.80 42.10 100.00 89.40
UA 67.70 64.70 72.00 81.80 80.00 88.20 63.60 100.00 92.90 85.70 64.30
Â 815.2 1180.41 436.95 345.65 130.43 247.82 1871.7 534.77 136.95 91.3 723.9

SE(Â) 104.35 208.69 91.3 65.22 45.65 78.26 228.26 123.91 52.17 13.04 117.39

IMG 3 MLR 64.2 0.611 PA 73.20 36.00 69.70 29.40 6.90 96.20 84.70 50.80 48.40 100.00 85.40
UA 54.50 58.80 66.70 53.30 10.00 84.20 67.90 70.00 90.90 92.30 64.30
Â

SE(Â)
939.11 971.72 430.43 384.78 221.74 254.34 1663.01 717.38 319.56 117.39 502.16

156.52 182.61 71.74 97.82 78.26 26.09 202.17 136.95 71.74 6.52 97.82
Ik-NN 66.9 0.684 PA 88.80 40.30 87.70 67.50 38.90 18.40 90.10 38.50 37.10 86.80 87.80

UA 75.90 60.00 69.00 78.60 100.00 54.50 60.00 81.30 85.70 91.70 70.80
Â 919.55 965.2 319.56 280.43 169.56 723.9 1754.32 443.47 182.61 97.82 658.68

SE(Â) 117.39 182.61 45.65 45.65 58.69 182.61 228.26 117.39 58.69 13.04 104.35
RF 69.5 0.721 PA 90.90 51.20 84.80 56.10 46.80 13.70 91.40 39.60 45.50 100.00 100.00

UA 82.10 61.50 74.10 90.90 100.00 80.00 60.50 85.70 92.90 92.30 67.90
Â

SE(Â)
913.03 893.46 313.04 352.17 176.08 743.46 1754.32 502.16 150 104.35 613.03

104.35 163.04 45.65 78.26 52.17 176.08 221.74 117.39 45.65 6.52 78.26
SVM 71.2 0.743 PA 92.20 42.60 86.00 68.40 50.60 25.80 94.50 37.10 43.20 88.90 97.70

UA 77.40 59.10 83.30 92.30 100.00 85.70 65.80 81.30 100.00 91.70 66.70
Â 886.94 1043.46 358.69 280.43 136.95 658.68 1819.53 469.56 169.56 117.39 586.95

SE(Â) 104.35 189.13 45.65 39.13 45.65 150 208.69 117.39 52.17 13.04 78.26

IMG 4 MLR 65.9 0.611 PA 69.30 39.40 78.70 26.60 1.20 98.70 85.50 31.30 58.80 100.00 83.30
UA 54.50 58.80 66.70 53.30 10.00 84.20 67.90 70.00 90.90 92.30 64.30
Â 854.33 1030.42 560.86 345.65 195.65 456.51 1799.97 449.99 273.91 71.74 489.12

SE(Â) 156.52 189.13 84.78 84.78 71.74 45.65 215.21 130.43 45.65 6.52 97.82
Ik-NN 74.3 0.781 PA 91.10 52.60 69.50 44.90 39.30 55.00 94.70 35.20 47.00 100.00 87.20

UA 75.00 81.30 90.00 92.90 57.10 87.50 67.60 93.30 92.90 92.30 70.80
Â 867.38 1036.94 449.99 449.99 123.91 280.43 2034.75 384.78 143.48 97.82 639.12

SE(Â) 110.87 176.08 84.78 130.43 52.17 84.78 228.26 104.35 45.65 6.52 104.35
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Table 6. Cont.

Image Classifier OA Kappa Accuracy
Land Class *

1 2 3 4 5 6 7 8 9 10 11

RF 80 0.802 PA 89.40 61.90 78.40 68.90 46.00 77.20 95.10 34.20 33.20 100.00 98.10
UA 85.20 69.20 83.30 92.30 62.50 100.00 82.10 83.30 100.00 92.30 69.20
Â 945.63 952.16 391.3 280.43 130.43 189.13 2204.31 482.6 176.08 91.3 678.25

SE(Â) 110.87 163.04 58.69 52.17 52.17 32.61 195.65 136.95 58.69 13.04 84.78
SVM 80.3 0.813 PA 89.40 63.30 77.80 70.20 42.20 81.00 95.10 39.60 39.30 100.00 97.50

UA 82.10 73.90 90.50 93.30 71.40 100.00 80.60 86.70 92.30 85.70 69.20
Â 932.59 971.72 391.3 358.69 123.91 234.78 2223.87 710.86 378.25 97.82 639.12

SE(Â) 113.48 163.04 58.69 104.35 52.17 39.13 208.69 182.61 143.48 13.04 84.78

* Class 1: dense evergreen; 2: open evergreen; 3: semi-evergreen; 4: dipterocarp; 5: plantation; 6: rubber; 7: industrial plants; 8: crop land; 9: residential. 10: water surface; 11: other land.
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The greatest accuracy was achieved for the composite two-season IMG 4 using the SVM classifier,
specifically OA = 80.3% and Kappa = 0.813. The smallest accuracy was for IMG 2 with the MLR
classifier. The differences between the greatest and smallest accuracies were 16.4% percentage points
for OA and 0.202 for K. With respect to the classification algorithms, differences between the greatest
and smallest accuracies for the four algorithms were 14.4% percentage points for OA and 0.202 for
K. For SVM, the differences were 11.9% percentage points and 0.096 for K; for ik-NN, the differences
were 10% percentage points for OA and 0.108 for K. The final LULC map was constructed using the
classification for the most accurate IMG 4/SVM combination and is shown in Figure 8.

Average UA and PA estimates were greater than 60%, apart from a few cases, but differed by
LULC class. For the forest cover classes, dense forest (1) had the greatest accuracy, while open forest (2)
had the smallest accuracies for the four methods for most seasons (Figure 9).
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3.2.2. Land Cover Class Area Estimates

Land cover class area estimates with corresponding standard errors are shown by class for the 16
seasonal image and prediction technique combinations in Table 6. Class area estimates ranged from
slightly greater than 70 km2 for class 10 for the IMG 4 and MLR combination to slightly greater than
2200 km2 for class 7 for the IMG 4 and SVM combination. Standard errors ranged from approximately
6 km2 to approximately 230 km2, with larger standard errors associated with larger area estimates
(Figure 10), although smaller ratios of standard errors to area estimates were associated with larger area
estimates. Regardless of the seasonal image and prediction technique combination, the three classes
with the greatest areas, in order, were class 7: perennial industrial plants, class 2: open evergreen
broadleaved forest, and class 1: dense evergreen broadleaved forest. For IMG 1, IMG 2, and IMG 3, the
sums of the estimated areas for these three classes as proportions of the total area ranged from slightly
more than 0.50 to approximately 0.63, but with larger estimates for IMG 4.
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4. Discussion

Errors are present in any classification, estimation, or prediction [21,86–88]. Comparison of the
results of this study and those of earlier studies is not straightforward because the numbers and
definitions of the vegetation classes differ by study. Thus, optimality differs by study and user [21,86–88].
There are also no generally accepted limits on how accurate a classification should be to be characterized
as reliable, because different users may have different concerns about accuracy. They may, for example,
be interested in the accuracy for a specific class or in accuracy for areal estimates [89]. In addition,
multiple factors influence classification accuracy: image quality, classifier, image composition, number
and details of classes, and sample size.

Andersen et al. (1976) [90] recommended that accuracies of 85% for mapping land cover are
acceptable. However, as Foody (2008) [91] noted, for many contemporary mapping applications,
the challenge may be more difficult than assessed by Anderson et al. (1976) [90], particularly when
attempting to distinguish among a large number of relatively detailed classes at a relatively local,
large cartographic scale. Consequently, in such applications, the use of the 85% target suggested by
Anderson et al. (1976) [90] may be inappropriate, as it may be unrealistically large.

Indeed, many studies have been conducted to select the most accurate classifier, either among
those simultaneously evaluated or with classifiers evaluated in other studies. Such works reach no
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consensus, because the performance of a classifier always depends on the specific site characteristics,
on the type and quality of the remotely sensed data, and also on the number and general aspects of the
classes of interest [13]. Using the RF, SVM, maximum likelihood, and neural network classification
algorithms to discriminate among four individual land cover classes based on two Landsat-8 OLI
scenes, Lowe and Kulkarni (2015) [40] reported overall classification accuracies of 96.25%, 86.88%,
83.13%, and 76.87%, respectively. Kennedy et al. (2015) [41] used RF to classify Landsat time-series
data from 1198 training patches for four classes (agriculture, forest, urbanization, and stream) and
reported OA greater than 80%, but most successfully for the numerically well-represented forest
management class. Meanwhile, Franco-Lopez (2001) [38] used k-NN to map 13 types of land cover
using Landsat TM and achieved OA = 64%. Tomppo et al. (2008) [92] reported OA between 70%
and 80% for classifying dominant tree species in one boreal forest test site in Finland when using two
adjacent Landsat 7 ETM+ scenes and the ik-NN method. Pelletier et al. (2016) [18] used RF and SVM
algorithms to classify SPOT-4 imagery and Landsat-8 HR-SITS images in southern France. The authors
reported an OA of 83.3% for RF and 77.1% for SVM. Research by Phan and Kappas (2017) [20] showed
different results among RF, SVM, and k-NN classifiers used to discriminate six types of LULC using
Sentinel-2 image data in the Red River Delta of Vietnam. This research reported that SVM produced
the greatest OA (95.29%) with the least sensitivity to the training sample sizes, followed consecutively
by RF (94.44%) and k-NN (94.13%). These results indicate that no standard of accuracy is appropriate
for all cases, because accuracy relevance depends on both the objective and the user.

Spatial information including remotely sensed data has been an excellent source of information
for decision makers in forest management, albeit in conjunction with an understanding of classification
uncertainties, whereby the probabilities of non-optimal and infeasible decisions are reduced. For this
study, OA ranged from 63.9% to 80.3% (Figure 7) when using Sentinel 2 data to classify 11 LULC
classes, with SVM producing the greatest accuracies. The difference between accuracies for the most
accurate SVM classifier and the least accurate MLR classifier was approximately 14.4%. Although
the results for SVM and RF were relatively similar, some authors recommend RF because training is
less time-consuming and parameter selection is easier [18], a recommendation that was confirmed in
our study.

Producer’s and user’s accuracies among the 11 LULC classes differed considerably (Figure 9).
In general, the open evergreen forest classes were confused more than the other forest cover classes.
This result is attributed to the heterogeneous conditions of natural tropical forests. In addition,
forests in the study area have been disturbed to different degrees [21]. Among the forest classes,
deciduous dipterocarp and semi-evergreen forest are considered the most challenging for remote
sensing classification because of the seasonal deciduous characteristics of these forest types in the dry
season [93]. However, this problem may be solved by using the combination of dry and rainy season
images, as investigated in the present study.

The Sentinel-2 images acquired for different seasons (plant growth stages) produced different
results. The greatest accuracies were for the composite rainy and dry season IMG 4; by contrast, the
lowest accuracies were for the rainy season IMG 2. The observed reflectance varied by season owing to
changes in the solar illumination geometry caused by the Earth’s translation movement. In addition,
the vegetation in the study area varies depending on the season, owing to the substantial rainfall
differences for the two seasons. Sothe et al. (2017) [13] assert that differences in classification accuracies
for the dry and rainy seasons can be attributed to the differences in solar illumination geometry between
the two seasons. For images acquired in the dry season, the incident sun radiation arrives in a more
perpendicular direction to the Earth’s surface, thus reducing the shadow effect caused by topography
and variations in the forest canopy height, and leading to greater pixel illumination. For the current
study, there was a substantial increase in classification accuracies when using a composite of dry and
rainy Sentinel 2 images (IMG 4). For the ik-NN, RF, and SVM classifiers, the greatest accuracies were
obtained for the combined rainy and dry IMG 4 relative to the rainy or dry season alone (Table 6).
The accuracy increase for the composite image may be explained by the fact that different seasons
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contain different information for the same kind of land cover (e.g., dipterocarp forest is deciduous in
dry seasons and green in rainy seasons). Combining the two season’s image bands captures additional
information on land cover.

Among all combinations of images, classification algorithms, and land classes, the smallest SE for
area estimates was for the water surface class owing to its stability, whereas the largest SE was for the
industrial plant class. In fact, because cultivation characteristics of industrial plants in the study area
are quite complex with a variety of species such as coffee, pepper, and cashew, all with uneven ages,
large SEs are inevitable. This complexity also explains the large difference among area estimates for
this class, ranging from 1643.45 km2 to 2223.87 km2, or from 25% to 34% of the total area (Figure 10).

Although classification accuracies for vegetation classes were not particularly large, the
classifications are still useful for complex tropical rain forests that have been disturbed to different
degrees such as in the Central Highlands of Vietnam. The area estimates and spatial distributions of
the LULC classes produced from the current study will assist local authorities, managers, and other
stakeholders in decision-making and planning regarding forest land cover and uses. The usual practice
is for the Institution of Forest inventory and Planning (FIPI) to conduct a forest inventory and construct
a forest map every five years. Local forest units such as Dak Nong receive the maps and update them
manually. However, the accuracy of the map has usually not been announced, and inaccuracies and
errors have been detected only by local forest staff when patrolling in the field. Moreover, LULC
changes, particularly for industrial land, occur quickly and easily owing to factors such as unstable
crop markets and increasing population resulting from migration. Thus, the results of this study will
not only provide authorities with updated information on current conditions, but will also serve as
a recommendation regarding methods for proactively updating LULC maps in a timely and costly
manner. Specifically, timely and updated maps assist authorities by serving as a basis for formulating
suitable solutions and policies for managing LULC including forest cover.

5. Conclusions

This research showed the utility of combining Sentinel-2, multi-spectral, and dry and rainy season
band data when mapping LULCs in Dak Nong Province, Vietnam. The greatest accuracies were
achieved for the composite IMG 4 obtained by combining dry and rainy season image sets using the
SVM classifier.

Among the classifiers, SVM produced the greatest accuracies, although RF, which had similar
accuracies, was simpler to train and apply, and was less computationally intensive. For IMG 4, the
greatest accuracies with SVM were OA = 80.3% and Kappa index = 0.813; for RF, the greatest accuracies
were OA = 80.0% and K = 0.802. Thus, the combination of dry and rainy season imagery used
with the SVM or RF may contribute to potentially new ways for classifying the complex tropical
forest of Vietnam and similar areas. The area estimates and spatial distributions of the LULC classes
produced from the current study will assist local authorities, managers, and other stakeholders in
decision-making and planning regarding forest land cover and uses.

In conclusion, the two-season, multi-spectral Sentinel-2 images provided useful data for classifying
LULC classes in areas with substantial fragmentation, especially for natural forests that have been
disturbed and degraded at different levels such as in Dak Nong, Vietnam. The SVM and RF machine
learning algorithms were both accurate classifiers when used with the Sentinel 2 imagery. The methods
developed for this study are applicable to boreal and temporal forests with different classes in addition
to the tropical forests for the current study. However, the model parameters always need to be
re-estimated for each application.

Author Contributions: Conceptualization, H.T.T.N., E.T., and R.E.M.; methodology, H.T.T.N., E.T., and R.E.M.;
software, H.T.T.N., T.M.D., E.T., and R.E.M.; validation, H.T.T.N., E.T., R.E.M., and T.M.D.; formal analysis,
H.T.T.N., R.E.M., E.T., and T.M.D.; investigation, T.M.D. and H.T.T.N.; resources, H.T.T.N.; data curation, H.T.T.N.
and T.M.D.; writing—original draft preparation, H.T.T.N. and T.M.D.; writing—review and editing, R.E.M. and
E.T.; visualization, T.M.D.; supervision, H.T.T.N.; project administration, H.T.T.N.; funding acquisition, H.T.T.N.
All authors have read and agreed to the published version of the manuscript.



Remote Sens. 2020, 12, 1367 23 of 27

Funding: This research was funded by UNITED STATES AGENCY FOR INTERNATIONAL DEVELOPMENT,
grant number AID-OAA-A-11-00012.

Acknowledgments: This work is part of the research project under the PEER program (Partnerships for Enhanced
Engagement in Research), a U.S. government program to fund scientific research in developing countries. This is a
program sponsored by USAID in partnership with several other U.S. Government agencies and administered
by the U.S. National Academy of Sciences (NAS). The authors would like to thank all of the people involved in
collecting field data for classification and validation. The authors thank also the editor and three anonymous
reviewers for the constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ministry of Agriculture and Rural Development. Decision on the Declaration of Forest Status of the Country in
2018; Decision No. 911/QD-BNN-LN; Ministry of Agriculture and Rural Development: Hanoi, Vietnam, 2019.

2. Thai, V.T. Vietnamese Forest Vegetation, 1st ed.; Science and Technique Publishing House: Hanoi, Vietnam, 1978.
3. Hoang, M.H.; Do, T.H.; van Noordwijk, M.; Pham, T.T.; Palm, M.; To, X.P.; Doan, D.; Nguyen, T.X.;

Hoang, T.V.A. An Assessment of Opportunities for Reducing Emissions from All Land Uses–Vietnam Preparing for
REDD. Final National Report; ASB Partnership for the Tropical Forest Margins: Nairobi, Kenya, 2010; p. 85.

4. Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets.
Ecol. Indic. 2012, 21, 17–29. [CrossRef]

5. Gebhardt, S.; Wehrmann, T.; Ruiz, M.A.M.; Maeda, P.; Bishop, J.; Schramm, M.; Kopeinig, R.; Cartus, O.;
Kellndorfer, J.; Ressl, R.; et al. MAD-MEX: Automatic wall-to-wall land cover monitoring for the Mexican
REDD-MRV program using all Landsat data. Remote Sens. 2014, 6, 3923–3943. [CrossRef]

6. Nguyen, T.T.H.; Doan, M.T.; Volker, R. Applying random forest classification to map land use/land cover
using landsat 8 OLI. Int. Soc. Photogramm. Remote Sens. 2018, XLII-3/W4, 363–367. [CrossRef]

7. Arnold, F.E.; van der Werf, N.; Rametsteiner, E. Strengthening Evidence-Based Forest Policy-Making: Linking
Forest Monitoring With National Forest Programmes; Forestry Policy and Institutions Working; FAO: Rome,
Italy, 2014; p. 33.

8. Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised
pixel-based land cover image classification processes: General guidelines for practitioners and future research.
Remote Sens. Environ. 2016, 177, 89–100. [CrossRef]

9. Jensen, J.R.; Cowen, D.C. Remote sensing of urban/suburban infrastructure and socioeconomic attributes.
Photogramm. Eng. Remote Sens. 1999, 65, 611–622.

10. Deka, J.; Tripathi, O.P.; Khan, M.L. Study on land use/land cover change dynamics through remote sensing
and GIS–A case study of Kamrup District, North East India. J. Remote Sens. GIS 2014, 5, 55–62.
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