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Abstract
Two types of nominal classifications are distinguished, namely regular nominal clas-
sifications and dichotomous-nominal classifications. The first type does not include an
‘absence’ category (for example, no disorder), whereas the second type does include
an ‘absence’ category. Cohen’s unweighted kappa can be used to quantify agreement
between two regular nominal classifications with the same categories, but there are
no coefficients for assessing agreement between two dichotomous-nominal classi-
fications. Kappa coefficients for dichotomous-nominal classifications with identical
categories are defined. All coefficients proposed belong to a one-parameter family. It
is studied how the coefficients for dichotomous-nominal classifications are related and
if the values of the coefficients depend on the number of categories. It turns out that
the values of the new kappa coefficients can be strictly ordered in precisely two ways.
The orderings suggest that the new coefficients are measuring the same thing, but to
a different extent. If one accepts the use of magnitude guidelines, it is recommended
to use stricter criteria for the new coefficients that tend to produce higher values.

Keywords Cohen’s unweighted kappa · Weighted kappa · Unordered classifications ·
Agreement studies · Inter-rater agreement · Inter-rater reliability

Mathematics Subject Classification 62H17 · 62H20 · 62H30 · 62P25

1 Introduction

In data analysis and classification similarity coefficients are commonly used to quantify
the strength of a relationship between two objects, variables, features or classifications
(Goodman and Kruskal 1954; Gower and Warrens 2017). Similarity coefficients may
be used to summarize parts of a research study, for example, an agreement or reliability

B Matthijs J. Warrens
m.j.warrens@rug.nl

1 Groningen Institute for Educational Research, University of Groningen, Grote Rozenstraat 3,
9712 TG Groningen, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11634-020-00394-8&domain=pdf
http://orcid.org/0000-0002-7302-640X


194 M. J. Warrens

study. They can also be used as input formethods ofmultivariate analysis such as factor
analysis and cluster analysis (Bartholomew et al. 2011; Hennig et al. 2016).

Well-known examples of similarity coefficients are the Pearson correlation, which
is a standard tool for assessing linear association between two variables, coefficient
alpha (Cronbach 1951; Hoekstra et al. 2019), which is frequently used in classical test
theory to estimate the reliability of a test score, the Jaccard coefficient (Jaccard 1912),
which is commonly used for assessing co-occurrence of two species types, and the
Hubert-Arabie adjusted Rand index (Hubert and Arabie 1985; Steinley et al. 2016),
which is a standard tool for measuring agreement between two partitions of the same
set of objects.

In social, behavioral and biomedical sciences kappa coefficients are commonly used
for quantifying agreement between two classifications with identical categories (Van-
belle 2016; Warrens 2014, 2017). Agreement between classifications with nominal
categories is usually assessed with Cohen’s kappa (Cohen 1960; Brennan and Predi-
ger 1981; Maclure and Willett 1987; Kundel and Polansky 2003; Hsu and Field 2003;
Conger 2017), whereas agreement between classifications with ordinal categories is
commonly assessed with weighted kappa coefficients (Cohen 1968; Vanbelle and
Albert 2009; Warrens 2011, 2012; Yang and Zhou 2015; Vanbelle 2016; Moradzadeh
et al. 2017). These commonly used kappa coefficients have been extended in various
directions. Kappa coefficients have been developed for multiple raters (Conger 1980;
Warrens 2010), for hierarchical data (Vanbelle et al. 2012;Yang andZhou 2014, 2015),
for fuzzy classifications (Dou et al. 2007; Warrens 2016), for circular classifications
(Warrens and Pratiwi 2016), and for situations with missing data (Strijbos and Stahl
2007; De Raadt et al. 2019).

Categories of nominal classifications are mutually exclusive and (usually) col-
lectively exhaustive. There are, basically, two types of nominal classifications. The
distinction hinges uponwhether the classification does or does not include an ‘absence’
category.When there is no ‘absence’ category, a classification can be described as hav-
ing three, four or more unordered categories of ‘presence’ that specify, for example,
various disorders. This type of classification can be compared to a classification that
contains an ‘absence’ category (for example, no disorder) and two or more ‘pres-
ence’ categories. The first type of classification will simply be referred to as a regular
nominal classification. The second type of classification will be called a dichotomous-
nominal classification, following terminology used inCicchetti et al. (1992) for ordinal
classifications.

Let us consider two examples of dichotomous-nominal classifications. The first
example comes from the diagnosis of movement disorders (Son et al. 2014). Move-
ment disorders are clinical syndromes that cause abnormal increased movements, or
reduced or slow movements. Examples of movement disorders are dyskinesia (exces-
sive, often repetitive, involuntary movement), akinesia (lack of voluntary movement)
and hypokinesia (reduced amplitude of movement) (Fahn et al. 2011). Table 1 presents
hypothetical pairwise classifications of 169 individuals with assumed movement dis-
order into four categories by two classifiers. The first three categories A1, A2 and A3
correspond to movement disorders. The last category A4 is the ‘absence’ category.
Because the categories of the rows and columns of Table 1 are in the same order, the
elements on the main diagonal are the number of individuals on which the classifiers
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Kappa coefficients for dichotomous-nominal classifications 195

Table 1 Hypothetical pairwise
classifications of 169 individuals
with assumed movement
disorder by two human
classifiers

Classifier 1 Classifier 2

A1 A2 A3 A4 Total

A1 = Dyskinesia 30 4 5 0 39

A2 = Akinesia 6 32 7 2 47

A3 = Hypokinesia 3 4 28 1 36

A4 = No movement disorder 1 2 3 41 47

Total 40 42 43 44 169

Table 2 Hypothetical pairwise classifications of 255 individuals with assumed suspicious personality dis-
order by two human classifiers

Classifier 1 Classifier 2

A1 A2 A3 A4 A5 Total

A1 = Paranoid 21 4 2 4 1 32

A2 = Schizoid 2 37 7 3 3 52

A3 = Schizotypal 3 5 24 8 2 42

A4 = Antisocial 4 7 2 47 4 64

A5 = No suspicious disorder 1 3 3 4 54 65

Total 31 56 38 66 64 255

agreed. All off-diagonal elements are numbers of individuals on which the classifiers
disagreed.

As a second example we consider the diagnosis of personality disorders (Spitzer
and Fleiss 1974; Loranger et al. 1997). These are mental disorders characterized by
enduring maladaptive patterns of behavior and cognition. Personality disorders are
usually grouped into three types, suspicious disorders, emotional and impulsive dis-
orders, and anxious personality disorders. The first type further consists of paranoid,
schizoid, schizotypical and antisocial personality disorders. Table 2 presents hypothet-
ical pairwise classifications of 255 individuals with assumed suspicious personality
disorder into five categories by two classifiers. The first four categories A1, A2, A3
and A4 correspond to suspicious personality disorders. The last category A5 is the
‘absence’ category.

Cohen’s kappa coefficient (Cohen 1960; Warrens 2011, 2015) can be used for
assessing agreement between two regular nominal classifications. If one uses Cohen’s
kappa to quantify agreement between the classifications, the distances between all
categories are considered equal, and this makes sense if all nominal categories reflect
different types of ‘presence’. However, there are no coefficients for assessing agree-
ment between two dichotomous-nominal classifications with the same categories. Up
till now Cohen’s kappa (and its extensions) have been used to analyze agreement
between these classifications.

However, disagreement between classifiers on a ‘presence’ category and the
‘absence’ category may be much more serious than disagreement on two ‘presence’
categories, for example, for clinical treatment. The crucial clinical implication is that
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196 M. J. Warrens

in the quantification of agreement distances between a ‘presence’ category and the
‘absence’ category should be dealtwith differently thanwith two ‘presence’ categories.
Cohen’s kappa does not accomplish this. In this manuscript we therefore develop new
kappa coefficients for assessing agreement between dichotomous-nominal classifica-
tions. In addition, we present various properties of the coefficients.

The manuscript is organized as follows. In Sect. 2 we introduce the notation and
present several definitions. A family of kappa coefficients for dichotomous-nominal
classifications with identical categories is defined in Sect. 3. In Sect. 4 we present
various properties of the coefficients. Among other things it is shown that the values
of the new kappa coefficients can be ordered in two ways. One ordering is more likely
to occur in practice. The second ordering is the reverse ordering of the first one. In
Sect. 5 it is shown that the values of the new kappa coefficients increase with the
number of categories for a class of agreement tables with constant values observed
agreement and disagreement.A discussion and several recommendations are presented
in Sect. 6.

2 Notation and weighted kappa

Suppose that two fixed classifiers (for example, expert observers, algorithms, rating
instruments) have independently classified the same set of n objects (for example, indi-
viduals, scans, products) into c ≥ 2 unordered categories A1, A2, . . . , Ac, that were
defined in advance.We assume that the first c−1 categories, labeled A1, A2, . . . , Ac−1,
are the ‘presence’ categories, and that the last category, labeled Ac, denotes the
‘absence’ category.

For a population of objects, let πi j denote the proportion of objects that is classified
into category Ai by the first classifier and into category A j by the second classifier,
where i, j ∈ {1, 2, . . . , c}. We assume that the categories of the rows and columns
of the table

{
πi j

}
are in the same order, so that the diagonal elements πi i reflect the

exact agreement between the two classifiers. In the context of agreement studies the
table

{
πi j

}
is sometimes called an agreement table. The table

{
πi j

}
summarizes the

pairwise information between the two nominal classifications (by classifiers 1 and 2).
Furthermore, table

{
πi j

}
contains all information needed to define and calculate kappa

coefficients.
Define the marginal totals

πi+ :=
c∑

j=1

πi j and π+i :=
c∑

j=1

π j i . (1)

The marginal probabilities πi+ and π+i reflect how often the categories were used by
the first and second classifier, respectively. Furthermore, if the ratings between the two
classifiers are statistically independent the expected value of πi j is given by πi+π+ j .
The table

{
πi+π+ j

}
contains the expected values of the elements of table

{
πi j

}
under

statistical independence of the classifiers.
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Kappa coefficients for dichotomous-nominal classifications 197

In the next section we define kappa coefficients for dichotomous-nominal classifi-
cations as special cases of weighted kappa (Cohen 1968). Weighted kappa allows the
user to describe the closeness between categories using weights (Vanbelle and Albert
2009; Warrens 2011, 2012; Yang and Zhou 2015; Vanbelle 2016; Moradzadeh et al.
2017). Let the real number 0 ≤ wi j ≤ 1 denote the weight corresponding to cell (i, j)
of tables

{
πi j

}
and

{
πi+π+ j

}
. The weighted kappa coefficient is defined as (Warrens

2011)

κ := O − E

1 − E
. (2)

where

O =
c∑

i=1

c∑

j=1

wi jπi j , and E =
c∑

i=1

c∑

j=1

wi jπi+π+ j . (3)

The cell probabilities of the table
{
πi j

}
are not directly observed. Let table

{
ni j

}
denote

the contingency table of observed frequencies. Tables 1 and 2 are two examples of{
ni j

}
. Assuming a multinominal sampling model with the total number of objects

n fixed, the maximum likelihood estimate of πi j is given by π̂i j = ni j/n (Yang
and Zhou 2014, 2015). Furthermore, under the multinominal sampling model, the
maximum likelihood estimate of κ is

κ̂ = Ô − Ê

1 − Ê
. (4)

where

Ô =
c∑

i=1

c∑

j=1

wi j
ni j

n
, and Ê =

c∑

i=1

c∑

j=1

wi j
ni+n+ j

n2 . (5)

The estimates in (4) and (5) are obtained by substituting π̂i j = ni j/n for the cell
probabilities πi j in (2) and (3), respectively.

Next, we define several quantities for notational convenience. Consider the table{
πi j

}
with cell probabilities, and define the quantities

λ0 :=
c∑

i=1

πi i , (6a)

λ1 :=
c−2∑

i=1

c−1∑

j=i+1

(πi j + π j i ), (6b)

λ2 := 1 − λ0 − λ1. (6c)

Quantity λ0 is the total observed agreement, the proportion of objects that have been
classified into the same categories by both classifiers. Furthermore, quantity λ1 is the
proportion of observed disagreement between the ‘presence’ categories A1, . . . , Ac−1.
Moreover, quantity λ2 is the proportion of observed disagreement between ‘absence’
category Ac on the one hand, and the ‘presence’ categories on the other hand.
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198 M. J. Warrens

Next, consider the table
{
πi+π+ j

}
, and define the quantities

μ0 :=
c∑

i=1

πi+π+i , (7a)

μ1 :=
c−2∑

i=1

c−1∑

j=i+1

(πi+π+ j + π j+π+i ), (7b)

μ2 := 1 − μ0 − μ1. (7c)

Quantities μ0, μ1 and μ2 are the expected values of quantities λ0, λ1 and λ2, respec-
tively, under statistical independence of the classifiers.

3 New kappa coefficients

In this section we define a family of kappa coefficients that can be used for quantifying
agreement between twodichotomous-nominal classificationswith the samecategories.
The kappas differ only by one parameter. To model the agreement and disagreement
between the categoriesweuse three different numbers.Asusualwith kappa coefficients
we will give full weight 1 to the entries on the main diagonal of

{
πi j

}
(Cohen 1968;

Warrens 2012, 2013). Furthermore, let u ∈ [0, 1] be a real number. We give a partial
weight u to model the disagreement among ‘presence’ categories A1, . . . , Ac−1. All
other weights are set to zero: the weight 0 is used to model the disagreement between
all ‘presence’ categories and the single ‘absence’ category Ac. The weighting scheme
is then given by

wi j :=

⎧
⎪⎨

⎪⎩

1, if i = j;
u, if i, j ∈ {1, 2, . . . , c − 1} with i �= j;
0, otherwise.

(8)

The weighting scheme in (8) makes sense if we expect that disagreement between
the classifiers on the ‘presence’ categories A1, . . . , Ac−1 is similar for all pairs of
categories, and if disagreement among A1, . . . , Ac−1 is less serious than between
A1, . . . , Ac−1 on the one hand and Ac on the other hand.

Using the quantities in (6) the weighted observed agreement with parameter u is
defined as

Ou := λ0 + uλ1. (9)

Furthermore, using the quantities in (7) the expected value of (9) under statistical
independence is given by

Eu := μ0 + uμ1. (10)

By using higher values of u in (9) and (10) more weight is given to the disagreement
among categories A1, . . . , Ac−1.
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Kappa coefficients for dichotomous-nominal classifications 199

Using (9) and (10) a family of kappas with parameter u can be defined as

κu := Ou − Eu

1 − Eu
= λ0 + uλ1 − μ0 − uμ1

1 − μ0 − uμ1
. (11)

The value of (11) is equal to 1 if there is perfect agreement between the classifiers (i.e.
λ0 = 1), and 0 when λ0 + uλ1 = μ0 + uμ1. Formula (11) is also obtained if one uses
weighting scheme (8) in the general formula (2). Under the multinominal sampling
model, the maximum likelihood estimate of κu is, using (4) and (5),

κ̂u = Ôu − Êu

1 − Êu
, (12)

where

Ôu =
c∑

i=1

nii

n
+ u

c−2∑

i=1

c−1∑

j=i+1

ni j + n ji

n
, (13)

and

Êu =
c∑

i=1

ni+n+i

n2 + u
c−2∑

i=1

c−1∑

j=i+1

ni+n+ j + n j+n+i

n2 . (14)

A large sample variance estimator for (12) is given by (Fleiss et al. 1969; Yang and
Zhou 2015)

ˆvar(κ̂u) = 1

n(1 − Ôu)4

[
M −

(
Ôu Êu − 2Êu + Ôu

)2]
, (15)

where the quantity M is given by

M =
c∑

i=1

c∑

j=1

ni j

n

[
wi j

(
1 − Êu

)
− (w̄i+ + w̄+ j )

(
1 − Ôu

)]2
, (16)

and quantities w̄i+ and w̄+ j are given by

w̄i+ =
c∑

j=1

wi j
n+ j

n
, and w̄+ j =

c∑

i=1

wi j
ni+
n

. (17)

Formula (15), together with (16) and (17), will be used to estimate 95% confidence
intervals of the point estimate κ̂u (see Table 3 below).

Let us consider two special cases of (11). For u = 0 we obtain

κ0 = λ0 − μ0

1 − μ0
=

∑c
i=1(πi i − πi+π+i )

1 − ∑c
i=1 πi+π+i

. (18)
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200 M. J. Warrens

Table 3 Point and interval estimates of various versions of the coefficient in (12) for the data in Tables 1
and 2

Value of u Point estimate 95% confidence interval

Table 1 0 0.70 0.62−0.78

0.25 0.72 0.65−0.80

0.50 0.76 0.68−0.83

0.75 0.80 0.73−0.88

1 0.86 0.78−0.95

Table 2 0 0.64 0.57−0.71

0.25 0.66 0.59−0.73

0.50 0.69 0.62−0.75

0.75 0.72 0.65−0.80

1 0.78 0.69−0.87

The coefficient in (18) is Cohen’s ordinary kappa (Cohen 1960; Yang and Zhou 2014;
Warrens 2011, 2015), a standard tool for assessing agreement in the case of regular
nominal classifications. The value of (18) is equal to 1 when there is perfect agreement
between the classifiers (i.e. λ0 = 1), 0 when the observed agreement is equal to that
expected under independence (i.e. λ0 = μ0), and negative when agreement is less
than expected by chance.

For u = 1 we obtain

κ1 = λ0 + λ1 − μ0 − μ1

1 − μ0 − μ1
. (19)

At first sight it is unclear how the kappa coefficient in (19) may be interpreted. An
interpretation of coefficient (19) is presented in Theorem 2 in the next section. Table 3
presents point and interval estimates of (12) for the data in Tables 1 and 2, and for five
values of parameter u. The values in Table 3 illustrate that the value of the coefficient
in (12) increases in the parameter u for the data in Tables 1 and 2. This property is
formally proved in Theorem 6 in the next section.

4 Properties of the kappa coefficients

In this section several relationships between thenewkappa coefficients for dichotomous-
nominal classifications are presented.

Theorem 1 shows that if the classifiers do not use the ‘absence’ category, then the
kappa coefficient in (11) is identical to Cohen’s ordinary kappa (Cohen 1960). This
propertymakes a lot of sense, since if the ‘absence’ category is not used, dichotomous-
nominal classifications are de facto regular nominal classifications, and Cohen’s kappa
is a standard tool for quantifying agreement between regular nominal classifications
with identical categories.

Theorem 1 If ‘absence’ category Ac is not used by the classifiers, then κu = κ0.
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Kappa coefficients for dichotomous-nominal classifications 201

Proof If only ‘presence’ categories are used we have πc+ = π+c = 0. In this case we
have λ2 = 0 and μ2 = 0, and thus the identities λ1 = 1−λ0 and μ1 = 1−μ0. Using
these identities in (11) we obtain

κu = λ0 + u(1 − λ0) − μ0 − u(1 − μ0)

1 − μ0 − u(1 − μ0)
= (1 − u)λ0 − (1 − u)μ0

1 − u − (1 − u)μ0
. (20)

Dividing all terms on the right-hand side of (20) by (1 − u) yields the coefficient in
(18). ��

Theorem 2 shows that the kappa coefficient in (19) is identical to the coefficient
that is obtained if we combine all the ‘presence’ categories A1, . . . , Ac−1 into a single
‘presence’ category, and then calculate Cohen’s ordinary kappa for the collapsed 2×2
table.

Theorem 2 Coefficient κ1 is obtained if we combine the ‘presence’ categories
A1, . . . , Ac−1, and then calculate coefficient (18) for the collapsed 2 × 2 table.

Proof Let λ∗
0, μ∗

0 and κ∗
0 denote, respectively, the values of λ0, μ0 and κ0 for the

collapsed 2× 2 table. If we combine categories A1, . . . , Ac−1 we have λ∗
0 = λ0 + λ1

and μ∗
0 = μ0 +μ1. Hence, the coefficient in (18) for the collapsed 2×2 table is equal

to

κ∗
0 = λ∗

0 − μ∗
0

1 − μ∗
0

= λ0 + λ1 − μ0 − μ1

1 − μ0 − μ1
, (21)

which is equivalent to the coefficient in (19). ��
Theorem 2 provides several ways to interpret coefficient κ1 in (19). First of all,

the coefficient may be interpreted as a ‘presence’ versus ‘absence’ kappa coefficient.
Furthermore, the procedure of combining all other categories (in this case all ‘presence’
categories) except a category of interest (in this case the ‘absence’ category), followed
by calculating Cohen’s ordinary kappa for the collapsed 2×2 table, defines a category
kappa for the category of interest (in this case the ‘absence’ category) (Kraemer 1979;
Warrens 2011, 2015). Category kappas can be used to quantify agreement between
the classifiers for individual categories. Hence, coefficient κ1 in (19) is the kappa
coefficient for the ‘absence’ category.

Theorem 3 presents an alternative formula for coefficient κ1. It turns out that we
only need three numbers to calculate this coefficient, regardless of the size of the total
number of categories, namely, the values of πcc, πc+ and π+c.

Theorem 3 Coefficient κ1 can be calculated using

κ1 = πcc − πc+π+c
πc+ + π+c

2
− πc+π+c

. (22)

Proof Using identities (6c) and (7c), the coefficient in (19) can be expressed as

κ1 = 1 − λ2 − (1 − μ2)

1 − (1 − μ2)
= μ2 − λ2

μ2
. (23)
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202 M. J. Warrens

Using the identities λ2 = πc+ +π+c −2πcc and μ2 = πc+(1−π+c)+π+c(1−πc+)

in (23) yields

κ1 = 2(πcc − πc+π+c)

πc+ + π+c − 2πc+π+c
. (24)

Dividing all terms on the right-hand side of (24) by 2, we get the expression in (22).

Theorem 4 shows that all special cases of (11) coincide with c = 2 categories.

Theorem 4 If c = 2, then κu = κ0.

Proof If A1 is the only ‘presence’ category and A2 is the ‘absence’ category, there is
no disagreement between the classifiers on ‘presence’ categories, that is, λ1 = 0 and
μ1 = 0. Using λ1 = 0 and μ1 = 0 in (11) we obtain

κu = λ0 − μ0

1 − μ0
, (25)

which is the coefficient in (18).

Since all special cases coincide with c = 2 categories (Theorem 4), we assume
from here on that c ≥ 3.

Theorem 5 states that the kappa coefficient in (11) is a weighted average of the
kappa coefficients in (18) and (19). The proof of Theorem 5 follows from simplifying
the expression on the right-hand side of (26).

Theorem 5 Coefficient κu is a weighted average of κ0 and κ1 using, respectively,
(1 − u)(1 − μ0) and u(1 − μ0 − μ1) as weights:

κu = (1 − u)(1 − μ0)κ0 + u(1 − μ0 − μ1)κ1

(1 − u)(1 − μ0) + u(1 − μ0 − μ1)
. (26)

Since κu is a weighted average of κ0 and κ1 (Theorem 5) all values of κu for
u ∈ (0, 1) are between κ0 and κ1 when κ0 �= κ1. Coefficients κ0 and κ1 are the
minimumandmaximumvalues of κu on u ∈ [0, 1]. For example, consider the numbers
inTable 3. For bothTables 1 and 2 coefficient κ0 is theminimumand κ1 is themaximum
value.

Theorem 6 shows that there exist precisely two orderings of the kappa coefficients
for dichotomous-nominal classifications, as long as κ0 �= κ1. If we have κ0 = κ1 the
value of κu does not depend on u, or in other words, the values of all kappa coefficients
for dichotomous-nominal classifications coincide.

Theorem 6 If κ0 < κ1, then κu is strictly increasing and concave upward on u ∈ [0, 1].
Conversely, if κ0 > κ1, then κu is strictly decreasing and concave downward on
u ∈ [0, 1].
Proof The first derivative of (26) with respect to u is given by

dκu

du
= (κ1 − κ0)(1 − μ0)(1 − μ0 − μ1)

[(1 − u)(1 − μ0) + u(1 − μ0 − μ1)]2 , (27)
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Kappa coefficients for dichotomous-nominal classifications 203

and the second derivative of (26) with respect to u is given by

d2κu

du2 = 2μ1(κ1 − κ0)(1 − μ0)(1 − μ0 − μ1)

[(1 − u)(1 − μ0) + u(1 − μ0 − μ1)]3 . (28)

Since the quantities (1 − μ0) and (1 − μ0 − μ1) in the numerators of (27) and (28),
together with the denominators of (27) and (28), are strictly positive, (27) and (28) are
strictly positive if κ0 < κ1. Since (27) is strictly positive if κ0 < κ1, (26) and (11) are
strictly increasing on u ∈ [0, 1]. Furthermore, since (28) is strictly positive if κ0 < κ1,
(26) and (11) are concave upward on u ∈ [0, 1]. ��

The properties presented in Theorem 6 can be illustrated with the numbers in
Table 3. For both Tables 1 and 2 the values of the new coefficients are strictly increasing
from κ0 to κ1. Furthermore, the coefficient values near u = 0 (i.e. near κ0) are closer
together than the coefficient values near u = 1 (i.e. near κ1). The latter illustrates the
concave upward property.

Theorem 7 presents a condition that is equivalent to the inequality κ0 < κ1. The
latter inequality holds if the ratio of observed disagreement between the ‘presence’
categories A1, . . . , Ac−1 to the corresponding expected disagreement under inde-
pendence of the classifiers, exceeds the ratio of the observed disagreement between
‘absence’ category Ac on the one hand, and the ‘presence’ categories on the other
hand, to the corresponding expected disagreement (i.e. condition ii. of Theorem 7).

Theorem 7 The following conditions are equivalent.

i. κ0 < κ1;

ii.
λ1

μ1
>

λ2

μ2
.

Proof Using identities (6c) and (7c) we have

κ0 = μ1 + μ2 − λ1 − λ2

μ1 + μ2
= 1 − λ1 + λ2

μ1 + μ2
(29)

and

κ1 = μ2 − λ2

μ2
= 1 − λ2

μ2
. (30)

Hence, condition i. (inequality κ0 < κ1) is equivalent to

λ1 + λ2

μ1 + μ2
>

λ2

μ2
. (31)

Condition ii. is then obtained by cross multiplying the terms of (31), followed by
deleting terms that are on both sides of the inequality, and finally rearranging the
remaining terms. ��

Theorems 6 and 7 show that if one of the two conditions of Theorem 7 holds then
all special cases of (11) are strictly ordered. Moreover, the kappa coefficients can be
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ordered in precisely twoways. Furthermore, Theorem7also provides a condition under
which all the new kappa coefficients obtain the same value, which can be empirically
checked:

λ1

μ1
= λ2

μ2
. (32)

If (32) holds, we have κ0 = κ1 and all the new kappa coefficients produce the same
value.

5 Dependence on the number of categories

In this section, a possible dependence of the new kappa coefficients on the number
of categories is studied. In Theorem 8, it is assumed that data can be described by
the specific structure presented in (33). Theorem 8 presents an example of a class
of agreement tables for which all kappa coefficients for dichotomous-nominal clas-
sifications are increasing in the number of categories c. The agreement tables in this
class vary in size (i.e. have different number of categories), but they have the same
observed agreement, the same observed disagreement between the ‘presence’ cate-
gories A1, . . . , Ac−1, and the sameobserved disagreement between ‘absence’ category
Ac on the one hand, and the ‘presence’ categories on the other hand. The specific val-
ues of the proportions of observed agreement and disagreements (denoted by b0, b1
and b2) are however not fixed.

Theorem 8 Let c ≥ 3 and let 0 ≤ b0, b1, b2 ≤ 1 with b0 +b1 +b2 = 1. Furthermore,
let the elements of

{
πi j

}
be given by

πi j :=

⎧
⎪⎨

⎪⎩

b0/c, for i = j;
b1/(c − 1)(c − 2), for i, j ∈ {1, 2, . . . , c − 1} with i �= j;
b2/2(c − 1), otherwise.

(33)

Then κu is strictly increasing in c for all u ∈ [0, 1].
Proof Under the conditions of the theorem we have λ0 = b0, λ1 = b1 and λ2 = b2,
and thus the quantity

Ou = λ0 + uλ1 = b0 + ub1. (34)

Formula (34) shows that, for all u ∈ [0, 1], the quantity Ou is not affected by the
number of categories c. We also have

πi+ = π+i = b0
c

+ (c − 2)b1
(c − 1)(c − 2)

+ b2
2(c − 1)

= b0
c

+ 2b1 + b2
2(c − 1)

, (35)

for i ∈ {1, 2, . . . , c − 1}, and

πc+ = π+c = b0
c

+ (c − 1)b2
2(c − 1)

= b0
c

+ b2
2

. (36)
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Since (35) and (36) are strictly decreasing in c, the quantity Eu = μ0 + uμ1, with μ0
and μ1 defined in (7a) and (7b), respectively, is also strictly decreasing in c, under the
conditions of the theorem, for all u ∈ [0, 1].

Finally, the first order partial derivative of (11) with respect to Eu is given by

∂κu

∂ Eu
= Ou − 1

(1 − Eu)2
. (37)

If agreement is not perfect (i.e. λ0 < 1), (37) is strictly negative. Hence, (11) is strictly
decreasing in Eu . Since Eu is strictly decreasing in c and since Ou is not affected by
c, κu in (11) is strictly increasing in c for all u ∈ [0, 1]. ��

Theorem 8 shows that if we consider a series of agreement tables of a form (33)
and keep the values of λ0 and λ1 fixed, then the values of the new kappa coefficients
increase with the size of the table.

6 Discussion

A family of kappa coefficients for assessing agreement between two dichotomous-
nominal classifications with identical categories was presented. This type of classifi-
cation includes an ‘absence’ category in addition to two or more ‘presence’ categories.
Cohen’s unweighted kappa (Cohen 1960;Warrens 2011, 2015) can be used to quantify
agreement between two regular nominal classifications (i.e. classifications without an
‘absence’ category). However, Cohen’s kappa may not be appropriate for quantify-
ing agreement between two dichotomous-nominal classifications, since disagreement
between classifiers on a ‘presence’ category and the ‘absence’ category may be much
more serious than disagreement on two ‘presence’ categories, for example, for clinical
treatment.

The following properties of the new kappa coefficients for dichotomous-nominal
classifications were formally proved. If the ‘absence’ category is not used, the
dichotomous-nominal classifications reduce to regular nominal classifications, and
all kappa coefficients are identical to Cohen’s kappa (Theorem 1). The values of the
kappa coefficients for dichotomous-nominal classifications all coincide if the agree-
ment table has two categories (Theorem 4). Furthermore, the values of the new kappa
coefficients can be strictly ordered in precisely two ways (Theorem 6). Finally, for a
particular, yet general class of agreement tables it was shown that the values of the
kappa coefficients for dichotomous-nominal classifications increase with the number
of categories (Theorem 8).

The values of the new kappa coefficients can be strictly ordered in two different
ways. In practice, one ordering is more likely to occur than the other. Tables 1 and 2
and the associated numbers in Table 3 give examples of the likely ordering. In this
likely ordering Cohen’s kappa produces the minimum value, and the values of the new
kappa coefficients increase as more weight is assigned to the disagreement between
the ‘presence’ categories. The strict ordering of their values suggests that the new
kappa coefficients are measuring the same concept, but to a different extent.
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The new kappa coefficients for dichotomous-nominal classifications allow the user
to specify how much weight should be assigned to the disagreement between the
‘presence’ categories, using a value between 0 and 1. The higher the value of the
weight the bigger the difference between the disagreement between the ‘presence’
categories and the disagreement between the ‘absence’ category on the one hand
and the ‘presence’ categories on the other hand. Finding the optimal value of the
weight for real-world applications is a necessary topic for future research. If one does
not use the new kappa coefficients, but uses Cohen’s unweighted kappa for regular
nominal classifications instead for quantifying agreement, the agreement will likely be
underestimated, since Cohen’s kappa will usually produce a lower value. How much
the agreement is underestimated depends on the data at hand.

Several authors have presented magnitude guidelines for evaluating the values of
kappa coefficients (Landis and Koch 1977; Altman 1991; Fleiss et al. 2003). For
example, it has been suggested that a value of 0.80 forCohen’s kappamay indicate good
or even excellent agreement. However, there is general consensus in the literature that
uncritical application of such target values leads to practically questionable decisions
(Vanbelle and Albert 2009; Warrens 2015). Since kappa coefficients for dichotomous-
nominal classifications that give a large weight to the total disagreement between the
‘presence’ categories appear to produce values that are substantially higher than the
values of the kappa coefficients that give a small weight to the disagreement between
the ‘presence’ categories, the same magnitude guidelines cannot be used for all the
new kappa coefficients. If it is desirable to use magnitude guidelines, then it seems
reasonable to use stricter criteria for kappa coefficients that tend to produce high
values.
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