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This study evaluated habitat parameters for the red-cockaded woodpecker (RCW; 

Picoides borealis) on three tracts in Hoke County, North Carolina.  Multi-spectral 

imagery was used to classify shadow, non-vegetation, herbaceous, hardwoods, and 

loblolly and longleaf pine trees.  Field data were collected for image classification 

training and validation. Overall classification accuracy for separating hardwood from 

pine trees, was 80.8%.  When separating longleaf (Pinus palustris Mill.) and loblolly 

(Pinus taeda L.) pine from hardwoods the accuracy was 73.7%.  Field-based 

height/diameter relationships were applied to LiDAR-identified trees to predict diameter 

classes.  Due to differences in management regimes and site conditions, each tract had 

different majority pine diameter classes.  Average height, diameter, basal area, and stem 

density per plot were reported from matched, unmatched, and total LiDAR trees to field 



 

 

trees.  Differences between the height, diameter, basal area, and stem density values 

occurred between the matched and unmatched LiDAR- and field-identified trees.  



 

ii 

DEDICATION 
 
 

I would like to dedicate this research to my parents, John and Susan Carney, and 

to my very close friends: Jen Mannas, Jennifer Jacobs, and Clint Smith. 



 

iii 

ACKNOWLEDGEMENTS 
 
 

I would like to express my sincere gratitude to not only my major professor Dr. 

David L. Evans but to many others as well. First, I’d like to give special thanks to Dr. 

Evans for his endless patience and willingness to offer his guidance and insight 

throughout the duration of this project. I am forever indebted to him for taking the chance 

and, offering me the opportunity to earn a graduate degree. To the rest of my committee, 

Dr. Scott Roberts and Dr. Steve Grado I would like to offer thanks for always extending 

their expertise and offering useful comments. In addition, thank you to Alexis Londo for 

the many hours spent aiding me with computer software and analysis. I would also like to 

express my appreciation to several individuals for their assistance in helping to collect 

field data: Theresa Arnold, Tabatha Kelly, Alexis Londo, and Scott Tweddale. I would 

also like to show appreciation to the other individuals in the Spatial Information 

Technologies Lab in the Forestry Department at Mississippi State University for their 

technical advice and support.  

This project was a collaboration between the U.S. Army Corps of Engineer 

Research and Development Center – Construction Engineering Research Laboratory 

(ERDC-CERL) and the Forest and Wildlife Research Center, Mississippi State 

University (MSU).  It was begun in November 2004 as a cooperative research project 

administered by the Upper Middle Mississippi Valley Cooperative Ecosystems Studies 

Unit



 

iv 

TABLE OF CONTENTS 

 
DEDICATION .................................................................................................................... ii 
 
ACKNOWLEDGEMENTS ............................................................................................... iii 
 
LIST OF TABLES ............................................................................................................. vi 
 
LIST OF FIGURES .............................................................................................................x 
 
CHAPTER 
 
 I. INTRODUCTION AND BACKGROUND ............................................................1 
 
  The Red-cockaded Woodpecker (Picoides borealis) ..............................................1 
  Multi-spectral Imagery for Forest Assessments ......................................................3 
  Forest Measurements with LiDAR ..........................................................................4 
  Objectives ................................................................................................................6 
 
 II.  METHODS ..............................................................................................................7 
 
  Site Description ........................................................................................................7 
  Field Data .................................................................................................................8 
  Remote Sensing Data ...............................................................................................9 

   LiDAR Data .................................................................................................9 
   Multi-spectral Imagery...............................................................................10 
  Object-oriented Classification of Multi-spectral Imagery .....................................11 
   Image Segmentation ...................................................................................12 
   Classification Hierarchy and Membership Functions ................................15 
   Image Classification Accuracy Assessment ..............................................18 
  Height-diameter Relationship Analysis .................................................................20 
  LiDAR-based Tree Identification and Measurements ...........................................20 
  Diameter-height Mapping ......................................................................................22 
  Pine Height, DBH, Basal Area, and Stem Density Output ....................................23 
   



 

v 

 III. RESULTS ..............................................................................................................24 
 
  Image Classification Accuracy Assessment ..........................................................24 
  Pine Tree Height to Diameter Relationship ...........................................................29 
  Tree Finding Model Output ...................................................................................29 
  Pine Size Class Determination ...............................................................................34 
   Average Height, DBH, BA and Stem Density per Plot Categorized 

by Diameter Class Output ..............................................................37 
   Summary Statistics for Pine Height, DBH, BA, and Stem Density 

per Plot ...........................................................................................44 
 
  IV.  DISCUSSION ........................................................................................................48 
 
  Image Classification Accuracy Assessment ..........................................................48 
  Tree Finding Model ...............................................................................................51 
  Pine Size Class Determination ...............................................................................53 
   Average Height, DBH, Basal Area and Stems per Plot .............................54 
 
 V.  SUMMARY AND CONCLUSIONS ....................................................................56 
 
 VI.  RECOMMENDATIONS .......................................................................................58 
 
  Future Research .....................................................................................................58 
  Multi-spectral Imagery...........................................................................................58 
  LiDAR....................................................................................................................59 
   
LITERATURE CITED ......................................................................................................61 

 



 

vi 

LIST OF TABLES 
 

 3.1 Classification error matrix for all classes including the separation of 
the pine class into loblolly and longleaf pine ( Pinus taeda L. 
and Pinus palustri Mill.) cover types for the 2005 images of the 
three study areas (McCain, Ft. Bragg, Blue Farm) in North 
Carolina ................................................................................................26 

 
 3.2 Classification accuracy and Kappa statistics derived from the 

classification error matrix of the separated pine classes into 
loblolly and longleaf pine (Pinus taeda L. and Pinus palustris 
Mill.) and other cover types for the 2005 images of the three 
study areas (McCain, Ft. Bragg, Blue Farm) in North Carolina ..........27 

 
 3.3 Subset of original color-infrared multi-spectral imagery of portion of 

McCain Tract located in Hoke County, North Carolina (left) 
and image segmentation of the canopy tree crowns (right). ................27 

 
 3.4 Classification accuracy and Kappa statistics derived from the 

classification error matrix of the combined pine class (loblolly 
Pinus taeda L. and longleaf Pinus palustris Mill. combined) and 
other cover types for the 2005 images of the three study areas 
in North Carolina .................................................................................28 

 
 3.5 Commission and omission errors in matching field-identified to 

LiDAR-predicted samples of hardwood and pine species 
(loblolly pine Pinus taeda L. and longleaf pine Pinus palustris 
Mill.) canopy trees for the entire forest canopy on the McCain, 
Ft. Bragg, and Blue Farm Tracts in Hoke County, North 
Carolina in 2007 ...................................................................................30 

 
 3.6 Commission and omission errors in matching field-identified to 

LiDAR-predicted samples of hardwood and pine species 
(loblolly pine Pinus taeda L. and longleaf pine Pinus palustris 
Mill.) canopy trees for the entire forest canopy on the McCain 
Tract in Hoke County, North Carolina in 2007 ...................................31 

 
 
 



 

vii 

 3.7 Commission and omission errors in matching field-identified to 
LiDAR-predicted samples of hardwood and pine species 
(loblolly pine Pinus taeda L. and longleaf pine Pinus palustris 
Mill.) canopy trees for the entire forest canopy on the Ft. Bragg 
Tract in Hoke County, North Carolina in 2007 ...................................31 

 
 3.8 Commission and omission errors in matching field-identified to 

LiDAR- predicted samples of hardwood and pine species 
(loblolly pine Pinus taeda L. and longleaf pine Pinus palustris 
Mill.) canopy trees for the entire forest canopy on the Blue 
Farm Tract in Hoke County, North Carolina in 2007 ..........................32 

 
 3.9 Commission and omission errors in matching field-identified to 

LiDAR- predicted samples of hardwood and pine species 
(loblolly pine Pinus taeda L. and longleaf pine Pinus palustris 
Mill.) canopy trees for the upper 25% forest canopy on the 
McCain, Ft. Bragg, and Blue Farm Tracts in Hoke County, 
North Carolina in 2007 ........................................................................33 

 
 3.10 Commission and omission errors in matching field-identified to 

LiDAR- predicted samples of hardwood and pine species 
(loblolly pine Pinus taeda L. and longleaf pine Pinus palustris 
Mill.) canopy trees for the upper 25% forest canopy on the 
McCain Tract in Hoke County, North Carolina in 2007 .....................33 

 
 3.11 Commission and omission errors in matching field-identified to 

LiDAR-predicted samples of hardwood and pine species 
(loblolly pine Pinus taeda L. and longleaf pine Pinus palustris 
Mill.) canopy trees for the upper 25% forest canopy on the Ft. 
Bragg Tract in Hoke County, North Carolina in 2007.........................34 

 
 3.12 Commission and omission errors in matching field-identified to 

LiDAR-predicted samples of hardwood and pine species 
(loblolly pine Pinus taeda L. and longleaf pine Pinus palustris 
Mill.) canopy trees for the upper 25% forest canopy on the 
Blue Farm Tract in Hoke County, North Carolina in 2007 .................34 

 
 3.13 Comparison for the percent matched pine trees (loblolly pine Pinus 

taeda L. and longleaf pine Pinus palustris Mill.) for the field 
and LiDAR/multi-spectral tree samples per diameter size class 
for the entire forest canopy for the combined tracts (McCain, 
Blue Farm, and Fort Bragg Tracts) in Hoke County, North 
Carolina in 2007 ...................................................................................36 

 



 

viii 

 3.14 Summary of mean tree height, mean DBH, mean BA, and mean stem 
density for both the field and LiDAR pine species (loblolly 
pine Pinus taeda L. and longleaf pine Pinus palustris Mill.) 
samples per plot for the entire forest canopy for the combined 
tracts (McCain, Blue Farm, and Fort Bragg Tracts) in Hoke 
County, North Carolina in 2007...........................................................39 

 
 3.15 Summary of mean tree height, mean DBH, mean BA, and mean stem 

density for both the field and LiDAR pine species (loblolly 
pine Pinus taeda L. and longleaf pine Pinus palustris Mill.) 
samples per plot for  the entire forest canopy on the McCain 
Tract in Hoke County, North Carolina in 2007 ...................................40 

 
 3.16 Summary of mean tree height, mean DBH, mean BA, and mean stem 

density for both the field and LiDAR pine species (loblolly 
pine Pinus taeda L. and longleaf pine Pinus palustris Mill.) 
samples per plot for  the entire forest canopy on the Blue Farm 
Tract in Hoke County, North Carolina in 2007 ...................................41 

 
 3.17 Summary of mean tree height, mean DBH, mean BA, and mean stem 

density for both the field and LiDAR pine species (loblolly 
pine Pinus taeda L. and longleaf pine Pinus palustris Mill.) 
samples per plot for the entire forest canopy on the Fort Bragg 
Tract in Hoke County, North Carolina in 2007 ...................................43 

 
 3.18 Summary statistics of comparing field to LiDAR mean tree height, 

mean DBH, mean BA, and mean stem density for both the field 
and LiDAR pine species (loblolly pine Pinus taeda L. and 
longleaf pine Pinus palustris Mill.) samples per plot for the 
entire forest canopy for the Combined Tracts (McCain, Blue 
Farm, and Fort Bragg Tracts) Hoke County, North Carolina in 
2007......................................................................................................45 

 
 3.19 Summary statistics of comparing field to LiDAR mean tree height, 

mean DBH, mean BA, and mean stem density for both the field 
and LiDAR pine species (loblolly pine Pinus taeda L. and 
longleaf pine Pinus palustris Mill.) samples per plot for the 
entire forest canopy on the McCain Tract in Hoke County, 
North Carolina in 2007 ........................................................................46 

 
 
 
 
 



 

ix 

 3.20 Summary statistics of comparing field to LiDAR mean tree height, 
mean DBH, mean BA, and mean stem density for both the field 
and LiDAR pine species (loblolly pine Pinus taeda L. and 
longleaf pine Pinus palustris Mill.) samples per plot for the 
entire forest canopy on the Blue Farm Tract in Hoke County, 
North Carolina in 2007 ........................................................................46 

 
 
 3.21 Summary statistics of comparing field to LiDAR mean tree height, 

mean DBH, mean BA, and mean stem density for both the field 
and LiDAR pine species (loblolly pine Pinus taeda L. and 
longleaf pine Pinus palustris Mill.) samples per plot for the 
entire forest canopy on the Ft. Bragg Tract in Hoke County, 
North Carolina in 2007 ........................................................................47 

 



 

x 

LIST OF FIGURES 
 
 

 3.1 Blue Farm, McCain, and Fort Bragg Tracts and overall ownerships in 
the red cockaded woodpecker (Picoides borealis; RCW) study 
area location in Hoke County, North Carolina ......................................8 

 
 3.2 First return LiDAR canopy surface (upper left), color-infrared multi-

spectral imagery (upper right) and 3-D depiction of the two 
combined (bottom) for a small section of the McCain Tract in 
Hoke County, North Carolina. .............................................................11 

 
 3.3 Subset of original color-infrared multi-spectral imagery of portion of 

McCain Tract located in Hoke County, North Carolina (left) 
and image segmentation of the canopy tree crowns (right). ................14 

 
 3.4 Classification hierarchy for red-cockaded woodpecker (Picoides 

borealis) canopy assessment in Hoke County, North Carolina. 
Classification of features in color-infrared multi-spectral 
imagery was based on object properties. .............................................16 

 
 3.5 Example of shadow membership function derived from image objects 

in multi-spectral data processed through eCognition™ 
segmentation routine. This function is based on the relative 
object brightness value.  Membership probability for the 
shadow class peaks at 1.0 (100 % probability of class 
membership) at values of 64 or lower with a 0.5 probability at 
65..........................................................................................................17 

 
 3.6 Membership functions based on Normalized Difference Vegetation 

Index (NDVI) for longleaf pine (Pinus palustris Mill.), and 
hardwoods.  Membership probability peaks (1.0; 100 % 
probability) for longleaf pine at 0.12 and hardwoods at 0.27.  
Fuzzy membership probability overlaps at values generally 
centered at 0.26 for hardwoods, and 0.125 for longleaf pine for 
0.5 probability associated with the two classes. ..................................17 

 
 
 



 

xi 

 3.7 Classified imagery of all three (Blue Farm, McCain, Ft. Bragg) 
ownership tracts and enlarged portion of part of the McCain 
Tract illustrating detail in the object-based classified output 
product (lower left) as compared to the original color-infrared 
imagery (lower right). ..........................................................................24 

 
 3.8 Multi-spectral imagery of a small portion of the McCain Tract 

rendered as color-infrared image (left), and results of tree 
finding algorithm (green spots on canopy model; right) for a 
small portion of the McCain Tract within the Red-cockaded 
woodpecker (Picoides borealis) study area in 2006 .............................30 

 
 3.9 Recoded object-based classified multi-spectral imagery of Blue Farm 

Tract (upper left) and, a zoomed in portion of the Blue Farm 
Tract with results of  LiDAR identified by tree type and 
recoded classified multi-spectral imagery (center bottom) ..................37 

 
 



 

 1

CHAPTER I 
 

INTRODUCTION AND BACKGROUND 

 

The Red-cockaded Woodpecker (Picoides borealis)

In 1970, the red-cockaded woodpecker (RCW; Picoides borealis) was listed as an 

endangered species by the U.S. Fish and Wildlife Service (USFWS) and received 

protection under the Endangered Species Act of 1973.  This woodpecker ranges from 

Virginia to Texas and nests and forages in mature, open-grown pine forests with little 

understory vegetation.  The RCW is the only species of woodpecker to excavate nest 

cavities within the trunks of living pine trees old enough to have developed sufficient 

heartwood (Zwicker and Walters 1999).  Although it will utilize different southern pine 

species for nest cavities, it prefers mature longleaf pine (Pinus palustris).  This habitat 

preference is undoubtedly a contributing factor in the RCW population decline in that 

longleaf pine has been greatly diminished in geographic extent throughout its former 

natural range.  The decline in the longleaf pine ecosystem was largely due to overlogging 

and fire suppression during the turn of the 20th century (Conner et al. 2001; Frost 1993; 

Martin and Boyce 1993).  Management practices conducive to maintenance of mature 

pine habitat have led to RCWs being present on several Department of Defense 

installations, national wildlife refuges, and state parks and forests throughout the southern 

United States.  Generally, RCWs prefer open pine savannas and woodlands with large old 
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pines for their nesting and roosting habitat and low densities of small pines, little to no 

hardwood or pine mid-story, very little to no overstory hardwoods, and abundant native 

bunchgrasses and forb groundcovers (USFWS 2003).  Older large pines are preferred for 

excavating cavities because the heartwood keeps the cavity interior free of resin so as not 

to entrap the RCWs as they excavate and raise their young (USFWS 2003).  

Floristic structure influences both nesting and foraging habitat quality for 

terrestrial birds, and plays an important part in habitat selection (Beier and Drennan 1997; 

Fuller and Henderson 1992).  Several studies have noted the strong importance of mid-

story and understory vegetation height and composition in characterizing RCW habitat 

quality.  Variability of these habitat attributes directly affects RCW fitness and breeding 

success rates.  Rudolph et al. (2002) reported that RCWs exhibited overall reduced 

foraging behavior on areas where hardwood vegetation was well developed.  They found 

RCWs preferred to forage in stands with a low density of mid-story vegetation. Foraging 

occurred at greater heights above ground on tracts with greater mid-story heights and 

densities.  Zwicker and Walters (1999) suggested that RCWs select foraging trees based 

on individual tree age or size (or both).  RCW selection of overall habitat preference was 

based on tree species composition at the landscape and/or stand levels.  Furthermore, 

Zwicker and Walters (1999) stated RCWs were found to have preferences for pines >23 

cm diameter at breast height (DBH) and avoided pines <13 cm DBH.  Komarek (1974) 

found RCWs would abandon cavity tree clusters when the height of the mid-

story/understory approached nest cavity heights.  

Descriptive information on forest vegetation has traditionally been collected by 

manual assessments of DBH, tree heights, stand structure, and vegetation composition.  
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Basic information required for describing forest structure is often expensive and time 

consuming to collect and requires periodic updates to remain valid (Xiao and McPherson 

2004).  Comprehensive measurements may be possible (although expensive) on 

individual stands, but are rarely feasible at the landscape level.  

The use of remote sensing is an alternative to field measurements for forest (i.e., 

habitat) assessments over large land areas and can provide detailed information at 

reduced costs (Evans et al. 2006).  The purpose of this study was to determine ways to 

utilize multi-spectral imagery and LiDAR (Light Detection and Ranging) data to evaluate 

a series of forest stand parameters associated with RCW habitat that cannot be feasibly 

assessed with traditional inventories across extensive landscapes.  Pine stem density and 

basal area by size class are key biophysical parameters in assessing RCW nesting and 

foraging habitat (Tweddale and Allen 2005).  Identification of requisite habitat, or areas 

that could be modified to generate such habitat, at the landscape level would provide 

wildlife management professionals options to potentially expand the range of this species.  

This would also provide pathways for interaction between isolated populations, thereby 

potentially strengthening the species gene pool. 

 

Multi-spectral Imagery for Forest Assessments 

Vegetation has unique spectral reflectance characteristics with strong absorption 

in red wavelengths and strong reflectance in near-infrared wavelengths, which allow 

separation of plants from other ground surface covers (Xiao et al. 2004).  Research has 

shown basic forest type maps could be produced with film-based, color-infrared imagery 

sensitive to these spectral ranges (Evans et al. 1985; Hill et al. 1982; Onufer 1981).  More 
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detailed identification of individual tree species or species groups has also been 

demonstrated in analysis of digital multi-spectral imagery (Batten and Evans 1998; Casey 

1999; Hughes et al. 1986; Knight et al. 2004).  In addition, fusing spectral imagery with 

LiDAR data can take advantage of the strengths of both sensors for the purpose of 

improving estimates of forest stand characteristics (Leckie et al. 2003; McCombs et al. 

2003).  Utilizing multi-spectral and LiDAR data, processing methods, data storage, and 

computing power needed for data analysis are approaching the point where large area 

surveys over management units are possible (Leckie et al. 2003). 

 

Forest Measurements with LiDAR 

Typical small-footprint (<1 m) LiDAR systems have been described by Baltsavias 

1999; Dubayah et al. 2000; and Lefsky et al. 2002.  Modern LiDAR systems utilize 

highly accurate positioning systems generate x, y, z coordinate data from aerial platforms 

by laser at pulse rates of over 100 kHz.  The laser ranging device measures the distance 

from the aircraft to the ground based on exact timing between each outgoing pulse and its 

received reflection.  Pulses are directed to the ground in a side-to-side pattern across the 

flight path.  Aircraft location and orientation are determined by use of a Differential 

Global Positioning System (DGPS) and an Inertial Measurement Unit (IMU).  Data from 

these devices are used to determine the exact position of the LiDAR pulses on the Earth’s 

surface (Evans et al. 2006).  LiDAR sensors generally utilize laser wavelengths between 

900-1064 nm which correspond with high vegetation reflectance (Lefsky et al. 2002).  

The spatial resolution (up to several points per m2), measurement accuracy, and spectral 

response of these systems to vegetation have led to a significant body of research on the 
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use of small-footprint LiDAR data for forest assessments (Brandtberg et al. 2003; 

Eggleston 2001; Evans et al. 2006; Lefsky et al 2002; McCombs et al. 2002; Popescu et 

al. 2003; Zimble et al. 2003).  These sensors directly measure the three-dimensional 

distribution of plant canopies as well as subcanopy topography.  They have the ability to 

provide accurate estimates of vegetation height, cover, and canopy structure (Lefsky et al. 

2002).  The location of trees and their heights derived from LiDAR intuitively have a 

number of possible uses in defining the structural character of a stand, and thus the 

habitat suitability for various wildlife species such as the RCW.  This conceptual 

framework of spatial habitat assessment has been demonstrated over a landscape area in 

central Idaho by (Zimble et al. 2003).   

The most commonly cited forest measurement determined with LiDAR is tree 

height.  St-Onge (1999), working in boreal forests in the Abitibi region of Quebec, 

Canada, compared tree heights measured from the ground with tree heights measured by 

small-footprint high-density LiDAR.  This study demonstrated that laser measurements 

have accuracies comparable to that of ground measurements.  

To determine individual tree heights using LiDAR, an analyst must first identify 

target trees within the LiDAR data.  Recent studies have illustrated a variety of different 

approaches taken towards tree recognition and height determination (Brandtberg et al. 

2003; Eggleston 2001; Persson et al. 2002; Popescu et al. 2004; Zimble 2002).  The 

approach of identifying LiDAR canopy trees used in this project was based on the one 

described by McCombs et al. (2003).  Their methodology identified groups of pixels (i.e., 

assumed tree crowns) in a LiDAR-derived first-return surface that were higher than 

neighboring pixels.  The highest value within each group defined the tree peak and its 
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height above a LiDAR-derived ground surface. Specifically the highest value within each 

group defined the tree peak and its height above a LiDAR-derived ground surface.  Their 

method evaluated high- and low-density planting spacings in a 15 year old loblolly stands 

located in Mississippi State University’s Starr Memorial Forest in east central 

Mississippi.  

 

Objectives 

The primary goal of this study was to utilize high-resolution multi-spectral 

imagery and LiDAR remote sensing technologies to aid in generating a landscape-scale 

habitat suitability model for RCWs.  To help achieve this goal, the following questions 

were defined for this research:   

1) Is it possible to generate a classified image layer from the multi-spectral 

imagery to differentiate pine [i.e., longleaf (Pinus palustris) and loblolly (Pinus taeda)] 

from hardwood canopy species composition within forest stands?  

2) Could a geospatial layer produced from LiDAR data be used to determine the 

average size (i.e., diameter distribution) of pine dominated stands classified from the 

multi-spectral imagery?  
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CHAPTER II 
 

METHODS 

 

Site Description 

The rectangular (E-W oriented) study area encompassed three separate forest 

tracts located on, or adjacent to, Fort Bragg (United States Army Installation Base) in 

Hoke County, North Carolina.  The area was approximately 30 km2 in size.  Tracts 

included: Blue Farm, a private forest land managed partly for pine straw production; and 

McCain Tract, a state owned conservation area, and the southwest corner of Fort Bragg 

(Figure 3.1).  The study area located on the Coastal Plain within the Sand Hill region of 

North Carolina is characterized by flat land to gently rolling hills and valleys.  

Predominant vegetation typically associated with this region includes grassland and 

early-succession habitats, pine woodland, and river bottoms.  Elevation ranges from sea 

level near the coast to about 182.9 m in the Sand Hills of the Southern Inner Coastal Plain 

(Outcalt and Sheffield 1996; North Carolina Geographical Survey 2005).  Mean annual 

temperature is about 16.2° C with annual precipitation averaging 118.6 cm (State Climate 

Office of North Carolina 2006). 
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Figure 3.1   Blue Farm, McCain, and Fort Bragg Tracts and overall ownerships in the    
red-cockaded woodpecker (Picoides borealis; RCW) study area location in 
Hoke County, North Carolina.  

Field Data 

Field data were collected in November and December 2006 for all woody cover 

classes.  A total of sixty-nine 0.04 ha circular plots were randomly placed across the three  

tracts; 22 plots on McCain, 23 plots on Ft. Bragg, and 24 plots on Blue Farm.  

Information recorded on overstory/mid-story trees (>0.9 m tall, >2.54 cm DBH) on each 

plot consisted of: total height (taken to nearest 0.1m), DBH (taken to nearest 0.3cm), 

location (i.e., distance and azimuth from plot center to determine tree location using GPS 
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coordinates from each plot center), height to live crown (taken to nearest 0.1m), crown 

diameter (taken to nearest 0.1m), and species identification.   

Remote Sensing Data  

LiDAR Data 

Airborne LiDAR data were provided by Land Air Mapping1 at a nominal posting 

density of 4.0 points per m2 and were recorded as first, only (meaning just 1 return was 

recorded), second, and third returns.  Data were delivered in Universal Transverse 

Mercator (UTM; NAD83, GRS80) x, y, z coordinates.  Data were originally provided in 

tiled format (i.e., regular grids of all data points) across the study area, which included all 

points in overlapping regions of flight lines.  The data were re-processed by the vendor to 

remove points beyond the flight-line overlap boundaries.  Thus, points from one flight 

line would not overlap points from adjacent flight lines. 

LiDAR data from each tract were used to generate canopy and ground elevation 

raster models at a resolution of 0.5 m.  Canopy models were created using the first and 

only returns by use of linear interpolation methods (grid derived from a Triangular 

Irregular Network [TIN]) using Imagine (ERDAS, 2001)1.  Ground models were 

generated using a surface of first returns and a surface of last returns then processed using 

LiDAR Analyst 3.05.02 module of ArcGIS 9.0 (ESRI, 2005).  These elevation models 

were later used to determine locations of trees and their associated heights for evaluation 

of stand structure. 
                                                 
1 Mention of company or product names is made for information purposes only and does not constitute 

offical endorsement by Mississippi State University or its employees. 
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Multi-spectral Imagery 

Airborne multi-spectral imagery provided by GeoData Airborne Mapping and 

Measurement2 was acquired with CCD (charged coupled device) cameras in the summer 

(July) 2005 at 0.25 m resolution in four spectral channels: blue (450 nm), green (550 nm), 

red (650 nm), and Near Infrared (850 nm).  Individual frames were ortho-rectified to a 

ground digital elevation model (DEM) by the provider then pieced together in a mosaic 

for each of the three study tracts.  Upon subsequent processing of the multi-spectral 

imagery, positive matching of tree crowns visible in the imagery to specific ground- or 

LiDAR-derived tree locations was not adequate using this rectification process.  The 

mosaics were re-registered to a canopy-based, LiDAR-derived DEM of the study area by 

utilizing a 3rd order polynomial model.  This model, based on several hundred manually 

selected control points, improved registration between the imagery and LiDAR surface 

(Figure 3.2) yet still fell short of registration accuracy needed for individual tree analysis 

based on simultaneous use of both data sets.  This shortcoming, however, was not crucial 

to the project’s outcome.  

 

 

 

 

 

 

                                                 
2 Mention of company or product names is made for information purposes only and does not constitute 

offical endorsement by Mississippi State University or its employees. 
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Figure 3.2   First return LiDAR canopy surface (upper left), color-infrared multi-spectral  
imagery (upper right) and 3-D depiction of the two combined (bottom) for a 
small section of the McCain Tract in Hoke County, North Carolina. 

Object-oriented Classification of Multi-spectral Imagery 

Ground inspections of the three tracts provided guidance as to classification 

techniques that would be successful in species identification of individual trees or groups 

of trees.  In general, most longleaf pines occurred as either open-grown individuals or in 

small groups.  Loblolly pine tended to occur near bottomlands and depressions – wet 
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tracts that could be readily distinguished from other targets.  Broadleaf hardwoods 

occurred either in clumps in canopy gaps between pines or in contiguous stands at lower 

slope positions and along drainages.  Given the tendency of these targets of interest to 

occur as groups rather than individuals, classification based on objects (group) rather than 

pixel-based techniques was deemed appropriate.   

The object oriented classification method used in this research was essentially that 

described by Repaka et al. (2004) in which relationships of several categories of object 

characteristics are used and each may be assigned weighting factors. Classification of 

imagery was performed with eCognition™ version 4.0 software (Definiens 2004).  

Procedures involved four basic steps: object generation through image segmentation, 

development of a classification hierarchy and membership function definitions, 

classification of image objects, and validation. 

Field data were used to validate areas of hardwoods from pine (i.e., loblolly and 

longleaf) cover types.  After areas exhibiting differing vegetation types were recorded 

with a GPS unit, the spectral reflectance values were examined to determine appropriate 

cut-off values for each membership function. 

 

Image Segmentation 

Image segmentation was instrumental in the isolation of groups of pixels with 

similar attributes that represented majority of the overstory tree crowns, making it 

possible to develop membership functions based on individual trees or groups of trees 

rather than the classic pixel-based training techniques utilized in other classification 

protocols.  The segmentation process in eCognition™ utilized three distinct parameters 
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for object creation: scale, color/shape, and smoothness/compactness.  Scale dictates the 

relative final size of image objects, the larger the scale parameter the larger objects 

appear to become.  Color and shape were complementary parameters that controlled the 

grouping of pixels (Oruc et al. 2004).  Color was a weighting factor that dictated to what 

extent the spectral value influenced object pixel aggregation.  Shape has a value in 

inverse proportion to color; a high color weight will have a low shape weight.  Shape 

value was also modified by two components, compactness and smoothness, that 

influenced the contiguity of image objects by changing shape textures.  Scale, color, and 

shape parameters were manually manipulated to generate image objects that covered 

individual tree crowns or groups of trees visible in the imagery (Figure 3.3).  For the 

original pixel size of 0.25 m, the following segmentation parameters generated the best 

(i.e., visually compared to original imagery) representation of tree cover: scale = 12, 

color = 0.9, and shape = 0.1 (with shape being qualified by values of compactness = 0.5 

and smoothness = 0.5).  Spectral bands used in segmentation were blue (450 nm), green 

(550 nm), red (650 nm), and NIR (850 nm).  All four bands were treated equally given a 

weight value of 1.0 when considered for contribution. 
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Figure 3.3   Subset of original color-infrared multi-spectral imagery of portion of McCain 
Tract located in Hoke County, North Carolina (left) and image segmentation 
of the canopy tree crowns (right). 

 
 
 
Characteristics of resulting image objects were used to classify species groups (i.e., 

pine: longleaf vs. loblolly, hardwood, other vegetation), non-vegetation, and shadow 

classes.  Object-based statistical descriptors were generated from pixels that comprised the 

object.  This included the mean value in each reflectance band, the standard deviation of 

each band, relative brightness compared to overall image brightness, and ratio of mean 

reflectance value compared to image mean in each band.  One derived object value, 

normalized difference vegetation index (NDVI; infrared-red/(infrared+red), was generated 

for use in vegetation discrimination and classification.  NDVI values, were viewed 

interactively to develop the classification schema for both hierarchy of the classification 

and the classification decision logic used to identify classes of interest.   
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Classification Hierarchy and Membership Functions 

Unlike typical pixel-based classification schemes, an object based approach was 

used. The software utilized was eCognition™  to generate a more intuitive set of 

classification rules that in some instances take on a form similar to the mental processes 

used in aerial photography interpretation.  To meet the project’s objective, objects were 

first differentiated into shadow and non-shadow.  Cover classes shadow, non-vegetation, 

and herbaceous were broken out based on the logic diagram given in Figure 3.4. 

Membership functions used for classification take the form of class probability 

based on values or ranges determined from assessment of object values compared to 

known targets.  For example, the shadow class was defined as all objects with a 

brightness value < 65 (Figure 3.5).  Note that some functions do not have a hard cut-off 

value.  The fuzzy decision probability was determined by both class function and its 

interaction with other class membership functions.  Class assignment for a given object 

was based on class membership function that returns the highest class probability value 

(range 0.0-1.0). 

The hierarchical classification scheme (Figure 3.4) that used membership 

functions (See Figures 3.5, 3.6) was a combination of logical ordering of image elements 

based on spectral and photo-interpretive properties.  Shadow and non-shadow were 

differentiated by use of mean brightness for each image object.  This object value was the 

relative brightness (i.e., magnitude of reflectance) of all input channels taken together.  

The function used for shadow distinction had a cut-off value of 65; object brightness 

values above this number were considered non-shadow.  

 



 

 16

 

Figure 3.4   Classification hierarchy for red-cockaded woodpecker (Picoides borealis) 
canopy assessment in Hoke County, North Carolina. Classification of 
features in color-infrared multi-spectral imagery was based on object 
properties.  

*Final classes for which accuracy was reported.  
 

 

Shadow Class *

Non-shadow

Non Vegetation *

Hardwoods *

Herbaceous *

Woody

Vegetation 

Pines

Longleaf Pine *

Loblolly Pine *
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Figure 3.5   Example of shadow membership function derived from image objects in 
multi-spectral data processed through eCognition™ segmentation routine.  
This function is based on the relative object brightness value.  Membership 
probability for the shadow class peaks at 1.0 (100 % probability of class 
membership) at values of 64 or lower with a 0.5 probability at 65. 

 
 
 

 
 
Figure 3.6   Membership functions based on Normalized Difference Vegetation Index 

(NDVI) for longleaf pine (Pinus palustris Mill.), and hardwoods.  
Membership probability peaks (1.0; 100 % probability) for longleaf pine at 
0.12 and hardwoods at 0.27.  Fuzzy membership probability overlaps at 
values generally centered at 0.26 for hardwoods, and 0.125 for longleaf pine 
for 0.5 probability associated with the two classes. 

 
 

The non-shadow class was further subdivided by use of a membership function 

based on NDVI to separate non-vegetation and vegetation.  Green vegetation had high 

reflectance in the near-infrared and low reflectance in the visible red wavelength of light, 

thus making it highly distinguishable from non-vegetation by use of the NDVI function.  
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The vegetation class was further subdivided into herbaceous and woody classes. The 

woody class was then subdivided into hardwood and pine classes.  Finally, the pine class 

was subdivided into loblolly and longleaf pine classes.  

 

Image Classification Accuracy Assessment 

Classification was performed based on membership functions defined for the 

classes indicated in Figure 3.4 then tested for accuracy by use of a priori or known 

individual tree locations in the plot data and non-tree classes designated throughout the 

study area since.  Non-woody categories of shadow, herbaceous, and non-vegetation were 

identified from prior knowledge of these areas.  Seventy-five samples or verification sites 

taken with GPS were taken from each woody category (i.e., hardwood, and pine). All 

non-woody categories (i.e., shadow, non-vegetation, herbaceous) were interpreted from 

the CIR imagery and verified through prior knowledge and from the ground referenced 

data.  These feature classes are dynamic in nature and often change (i.e., shadow on an 

image changes depending on the time of day the image was taken).  Congalton and Green 

(1999) suggested at least a minimum of 50 samples should be collected for vegetation or 

land cover category for use in an error matrix.  Chipman et al (2004) suggested the 

number of samples per category might be adjusted based on the relative importance of 

that category for a particular application such as assessing woody vegetation for RCW 

habitat.  One hundred and nine sample verification sites per woody category (i.e., 

longleaf, loblolly, hardwood) were derived from GPS points taken in the field.  Due to 

geospatial registration issues, individual trees in the classification did not always 

precisely match trees in field plot shapefiles.  This was due to both inaccuracy of image 
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rectification and inherent inaccuracy in GPS plot locations, and associated imprecision in 

determining azimuth and distance from those positions to individual trees.  However, due 

to spatial pattern similarity between field plot trees and those in the classification, 

positive visual matches for validation could be made for most canopy tree field samples.  

Classification accuracy was calculated from samples based on commonly reported 

methods of error matrix calculations (Congalton et al. 1999).

The matrix used in this study compared, on a category-by-category basis, the 

relationship between known reference data (e.g., ground truth or field samples) to the 

corresponding results of an object-based supervised classification.  The matrix 

determined how well the classification categorized the representative subset of the 

objects used in the training process of the supervised classification.  The matrix listed the 

known cover types used for training (i.e., columns) versus objects actually classified into 

each cover type category by the classifier (i.e., rows) (Chipman et al. 2004).  Commission 

errors were assessed by non-diagonal rows whereas omission errors were assessed by 

non-diagonal columns.  Overall accuracy was found by dividing the total number of 

correctly classified objects by the total number of reference objects.  In addition, 

individual accuracies (i.e., producer’s and user’s accuracies) for each category were 

calculated by dividing the number of correctly classified objects for the particular 

category by either the total number of objects from the corresponding column (i.e., 

producer’s accuracy) or row (i.e., user’s accuracy) (Chipman et al. 2004). A Kappa 

statistic is then used to measure the difference between the actual agreement between 

reference data and an automated classifier and the chance agreement between the 

reference data and a random classifier (Chipman et al. 2004). 
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Height-diameter Relationship Analysis  

Total height of all plot trees was determined to the nearest 0.1 m while stem 

diameter was measured to the nearest 0.3 cm (0.1 inch).  Individual tree data (pines only) 

from the field plots were analyzed to determine the relationship between stem diameter 

and tree heights.  This regression function used the inverse value of tree heights which 

provided a prediction function that more closely tracked the continuum of height values 

associated with pine tree heights obtained on LiDAR-identified trees.  The regression 

function was applied to LiDAR-identified trees to predict stem diameter for each LiDAR 

tree based on LiDAR estimated height.   

 

LiDAR-based Tree Identification and Measurements 

Canopy trees were identified and mapped within the three study tracts by use of 

LiDAR elevation models and modified procedures adopted from those described by 

McCombs et al. (2003).  Spectral data were not incorporated into the tree identification 

function as described by McCombs et al. (2003) due to problems of inadequate 

registration between the imagery and LiDAR canopy surfaces.  Their tree finding model 

was slightly modified to better identify canopy pine trees from an open natural stand 

instead of a loblolly plantation.  Their version of the tree finding model subtracted the 

canopy and non-vegetation surfaces from one another then integerized the values before 

matching the maximum value per clump (a group of pixels with higher values than their 

neighbors that likely represent a tree location) to the original surface value to output tree 

peak values.   
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The tree finding model consisted of two spatial process models that identify and 

estimate height measurements of probable tree locations in the main canopy of forest 

stands.  A smoothing filter was used across the canopy elevation model to eliminate 

“holes” in the canopy surface caused by LiDAR points that penetrated the main canopy 

thereby generating low points in the resulting surface model.  Clumps of pixels were 

identified that could be trees based on user inputs of three radial search filters to identify 

small, medium, and large crown radii.  These values were determined from field 

observations at representative tracts.  Those values created aggregated groups of pixels 

(i.e., clumps) where the pixels in the identified clumps were higher than a set percentage 

of neighboring pixels based on the radial search criteria and probable height of live crown 

determined from a relative stem density function.  Clumps were subjected to a sieving 

operation to eliminate small groups of pixels that did not likely represent real trees.   

Output clumps were passed to the second algorithm which extracted the location 

and height value of the highest pixel in each clump as a tree location.  A distance function 

was used to delete trees adjacent to, but shorter than, nearby neighbors (i.e., probable 

false trees identified) based on tree height.  Short trees were allowed to be closer together 

than tall trees.   

Summary tables were compiled outputting the number and percentages for 

matched field to LiDAR-derived trees, omission and commission values per tract location 

and for combined tracts to assess how well the tree finding model performed at separating 

canopy trees from non-canopy trees.  The upper quartile, or 25% canopy trees were 

separated from the rest of the canopy trees to evaluate the model’s performance at finding 

the dominant and codominant canopy trees.  This was done strictly on the basis of 
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evaluating the performance of the tree finding model’s ability to correctly identify upper 

canopy trees. 

 

Diameter-height Mapping 

The classification developed from the multi-spectral data was used to label all 

LiDAR-identified trees as to tree type (i.e., longleaf pine, loblolly pine, or hardwood). 

The DBH/height relationship equation developed from field data was applied to all 

LiDAR-identified pine trees to attribute those tree locations with a predicted DBH.  This 

height-diameter output was used as the basis for determining dominant stand type by 

diameter size class in the RCW habitat evaluation process.  The last step to identifying 

size classes geospatially was to examine the relative size of LiDAR-identified pines on a 

unit area basis to compare tree sizes grouped by the U.S. Fish and Wildlife Service 

Recovery Guidelines: (1) < 24.5 cm (< 10”), Basal Area (BA)= <2.3 m²/ha, and < 50 

stems/ha; (2) �24.5 to �35 cm (�10 – �14”), BA 0 – 9.2 m²/ha; (3) > 35 cm (> 14”), BA= 

>4.6 m²/ha, and >45 stems/ha; and pine type (i.e., loblolly or longleaf) (USFWS 2003).  

These three pine size classes formed the basis for determining areas of currently suitable 

RCW habitat or areas that, through proper management, could be made suitable for use 

by RCWs. 

 

Pine Height, DBH, Basal Area, and Stem Density Output 

All field and LiDAR-derived samples were summarized on a per plot basis by 

tract location and combined across all three tracts, including measured attributes: 

diameter at breast height (DBH), total height, and stem density.  Linear regression 
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analysis was preformed between the LiDAR- and field-derived measurements per plot 

and per tree for DBH, total height, and stem density to evaluate how well the LiDAR-

derived estimates compared to the field-based measurements, and whether field and 

LiDAR values were significantly different. 
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CHAPTER III 
 

RESULTS 

 

Image Classification Accuracy Assessment 

 The resulting classification (Figure 3.7) provided a detailed spatial representation 

of the vegetative components on the study tracts.  

 

 
 
Figure 3.7   Classified imagery of all three (Blue Farm, McCain, Ft. Bragg) ownership 

tracts and enlarged portion of part of the McCain Tract illustrating detail in 
the object-based classified output product (lower left) as compared to the 
original color-infrared imagery (lower right). 
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Overall accuracy of the multispectral image classification of all classes including 

separating the pine cover type into loblolly and longleaf pine was 73.7% (Table 3.1).  The 

overall Kappa statistic was 0.7 while individual cover type Kappa values ranged from 0.5 

for the loblolly pine cover type to 0.9 for the longleaf pine cover type when the 

classification separated the pine cover type into loblolly and longleaf (Table 3.2).  The 

overall classification accuracy when loblolly and longleaf were combined into one pine 

cover type was 80.8% (Table 3.3), and the overall Kappa statistic increased to 0.7 (Table 

3.4).   

For accuracies given in Table 3.2; producer’s accuracy for longleaf pine was 

90.8% with a user’s accuracy of 58.9%.  Producer’s accuracy for loblolly pine was 61.5% 

with a user’s accuracy of 69.1%.  Hardwoods had a producer’s accuracy of 57.8% and a 

user’s accuracy of 80.8%.  When the pine species were combined into a pine class (Table 

3.4), producer’s accuracy was 94.0% and user’s accuracy 77.4%.  For shadow, producer’s 

accuracy was 93.3% with a user’s accuracy of 81.4%.  Producer’s accuracy for non-

vegetation was 80.0% and user’s accuracy was 95.2%.  The herbaceous class had a 

producer’s accuracy of 64.0% with a user’s accuracy of 80.0%. Individual Kappas 

(Tables 3.2, 3.4) were: longleaf = 0.9, loblolly = 0.5, hardwoods = 0.5, pines = 0.9, 

shadow = 0.9, non-vegetation = 0.8, and herbaceous = 0.6. 
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Pine Tree Height to Diameter Relationship 

 The regression equation for predicting DBH from total height was as follows: 

ln(DBH) = -0.640235 + 1.0165769*ln(total height)                                (Equation 3.1)  

This field-based equation was used to predict DBH for LiDAR-identified tree heights.  

The relationship had an associated R2 of 0.73 with an RMSE of 0.26.   

Tree Finding Model Output 

A validation check was performed on the tree finding model output.  Omission 

(i.e., field trees not identified in LiDAR data), commission (i.e., trees falsely identified in 

LiDAR data) and correctly matched trees were reported for the entire canopy and for the 

tallest 25% canopy trees.  

Figure 3.9 illustrates that canopy trees were identified in the LiDAR data and 

some smaller trees in canopy gaps and open areas were also detected.  Omission errors 

were calculated for reporting how well the LiDAR data matched to the field data.  Table 

3.5 is a combination of results obtained on all tracts for the entire canopy and pines were 

matched at 52.3 % with the hardwoods matching at 12.8 %. Loblolly pines were matched 

at 44.7 % with longleaf pines matched at 54.5 %.  For all tracts combined, the total 

number of LiDAR-identified trees was 722 and total number of field data trees was 

1,243.   
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Figure 3.8  Multi-spectral imagery of a small portion of the McCain Tract rendered as 
color-infrared image (left), and results of tree finding algorithm (green spots 
on canopy model; right) for a small portion of the McCain Tract within the 
Red-cockaded woodpecker (Picoides borealis) study area in 2006.  

 
 
 
Table 3.5   Commission and omission errors in matching field-identified to LiDAR-

predicted samples of hardwood and pine species (loblolly pine Pinus taeda L. 
and longleaf pine Pinus palustris Mill.) canopy trees for the entire forest 
canopy on the McCain, Ft. Bragg, and Blue Farm Tracts in Hoke County, 
North Carolina in 2007. 

 
  All Three Tracts   

Field-Identified Samples LiDAR-Predicted Samples 
 Hardwood Pine Loblolly Longleaf  Model 

Matched 62 397 76 321 Matched 459 
Omission 422 362 94 268 Commission 263 

Total 484 759 170 589 Total 722 
% Matched 12.8 52.3 44.7 54.5 % Matched 63.6 
% Omission 87.2 47.7 55.3 45.5 % Commission 36.4 

Note: Model refers to Tree Finding Model developed by McCombs et al 2003. 
 

 
On the McCain Tract (Table 3.6), pines were found at 60.2 % and hardwoods at 

9.8 % accuracy.  Loblolly pines were matched at 59.3 % with longleaf pine matched at 

60.2 %.  Pines on Fort Bragg were found with 35.7 % and hardwoods at 15.2 % accuracy 
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(Table 3.7).  Loblolly pines were matched at 28.0 % with longleaf pine matched at 38.6 

%.  On the Blue Farm Tract (Table 3.8), pines were found with 63.9 % accuracy and 

hardwoods with 12.4 % accuracy.  Loblolly pines were matched at 44.4 % with longleaf 

pine matched at 64.7 %.   

 
 
Table 3.6    Commission and omission errors in matching field-identified to LiDAR-   

predicted samples of hardwood and pine species (loblolly pine Pinus taeda L. 
and longleaf pine Pinus palustris Mill.) canopy trees for the entire forest 
canopy on the McCain Tract in Hoke County, North Carolina in 2007. 

 
  McCain Tract   

Field-Identified Samples LiDAR-Predicted Samples 
 Hardwood Pine Loblolly Longleaf  Model 

Matched 13 160 51 109 Matched 173 
Omission 120 106 35 71 Commission 85 

Total 133 266 86 181 Total 259 
% Matched 9.8 60.2 59.3 60.2 % Matched 66.8 
% Omission 90.2 39.8 40.7 39.2 % Commission 32.8 

Note: Model refers to Tree Finding Model developed by McCombs et al 2003. 
 

 
Table 3.7   Commission and omission errors in matching field-identified to LiDAR-

predicted samples of hardwood and pine species (loblolly pine Pinus taeda L. 
and longleaf pine Pinus palustris Mill.) canopy trees for the entire forest 
canopy on the Ft. Bragg Tract in Hoke County, North Carolina in 2007. 

 
  Ft. Bragg Tract   

Field-Identified Samples LiDAR-Predicted Samples 
 Hardwood Pine Loblolly Longleaf  Model 

Matched 30 99 21 78 Matched 129 
Omission 168 178 54 124 Commission 120 

Total 198 277 75 202 Total 249 
% Matched 15.2 35.7 28.0 38.6 % Matched 51.8 
% Omission 84.8 64.3 72.0 61.4 % Commission 48.2 

Note: Model refers to Tree Finding Model developed by McCombs et al 2003. 
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Table 3.8   Commission and omission errors in matching field-identified to LiDAR-
predicted samples of hardwood and pine species (loblolly pine Pinus taeda L. 
and longleaf pine Pinus palustris Mill.) canopy trees for the entire forest 
canopy on the Blue Farm Tract in Hoke County, North Carolina in 2007. 

 
 Blue Tract   

Field-Identified Samples LiDAR-Predicted Samples 
 Hardwood Pine Loblolly Longleaf  Model 

Matched 19 138 4 134 Matched 157 
Omission 134 78 5 73 Commission 58 

Total 153 216 9 207 Total 215 
% Matched 12.4 63.9 44.4 64.7 % Matched 73.0 
% Omission 87.6 36.1 55.6 35.3 % Commission 27.0 

Note: Model refers to Tree Finding Model developed by McCombs et al 2003. 
 

 
The number of unmatched LiDAR-derived trees the tree finding model found that 

were not recorded in the field data (commission) are given as a percentage for each Tract.  

For all tracts combined, the commission error was 36.4% (Table 3.5); 32.8% (Table 3.6) 

at McCain, 48.2% (Table 3.7) at Fort Bragg, and 27.0% (Table 3.8) at Blue Farm. 

The upper 25 % of the canopy was assessed to evaluate if the model was able to 

find the larger trees as expected.  Pines matched (field- to LiDAR-derived samples) at 

72.0% accuracy and hardwoods at 42.9 % accuracy, with loblolly pines matched at 75.0 

% and longleaf pines matched at 71.0 % overall (Table 3.9).  On the McCain Tract, 

(Table 3.10) pines were matched at 84.9 % with hardwoods at 66.7 % and loblolly pines 

matched at 88.9 % and longleaf pines matched at 81.5 %.  On the Fort Bragg Tract (Table 

3.11) pines were matched at 54.6 % and hardwoods at 57.7 % with loblolly pines 

matched at 57.1 % and longleaf pines matched at 53.8 %.  On the Blue Farm (Table 

3.12), pines were matched at 80.2 % and hardwoods matched at 21.4 % with the loblolly 

pines matched at 57.1 % and longleaf pines matched at 82.0 %.  Commission errors were 
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reported as well for the upper 25% canopy.   In all three tracts, percent commission for 

both hardwoods and pines was  33.5% (Table 3.9), McCain at 26.8% (Table 3.10), Fort 

Bragg at 47.1% (Table 3.11), and Blue Farm at 22.3% (Table 3.12). 

 
 
Table 3.9   Commission and omission errors in matching field-identified to LiDAR-

predicted samples of hardwood and pine species (loblolly pine Pinus taeda L. 
and longleaf pine Pinus palustris Mill.) canopy trees for the upper 25% forest 
canopy on the McCain, Ft. Bragg, and Blue Farm Tracts in Hoke County, 
North Carolina in 2007. 

 
  All Three Tracts   

Field-Identified Samples LiDAR-Predicted Samples 
 Hardwoods Pine Loblolly Longleaf  Model 

Matched 27 231 60 171 Matched 258 
Omission 36 90 20 70 Commission 130 

Total 63 321 80 241 Total 388 
% Matched 42.9 72.0 75.0 71.0 % Matched 66.5 
% Omission 57.1 28.0 25.0 29.1 % Commission 33.5 

      Note: Model refers to Tree Finding Model developed by McCombs et al 2003. 
 
 
 
Table 3.10   Commission and omission errors in matching field-identified to LiDAR-

predicted samples of hardwood and pine species (loblolly pine Pinus taeda L. 
and longleaf pine Pinus palustris Mill.) canopy trees for the upper 25% forest 
canopy on the McCain Tract in Hoke County, North Carolina in 2007. 

 
  McCain Tract   

Field-Identified Samples LiDAR-Predicted Samples 
 Hardwoods Pine Loblolly Longleaf  Model 

Matched 6 84 40 44 Matched 90 
Omission 3 15 5 10 Commission 33 

Total 9 99 45 54 Total 123 
% Matched 66.7 84.9 88.9 81.5 % Matched 73.2 
% Omission 33.3 15.2 11.1 18.5 % Commission 26.8 

      Note: Model refers to Tree Finding Model developed by McCombs et al 2003. 
 
 
 
 



 

 34

Table 3.11   Commission and omission errors in matching field-identified to LiDAR-
predicted samples of hardwood and pine species (loblolly pine Pinus taeda L. 
and longleaf pine Pinus palustris Mill.) canopy trees for the upper 25% forest 
canopy on the Ft. Bragg Tract in Hoke County, North Carolina in 2007. 

 
  Ft. Bragg Tract   

Field-Identified Samples LiDAR-Predicted Samples 
 Hardwoods Pine Loblolly Longleaf  Model 

Matched 15 66 16 50 Matched 81 
Omission 11 55 12 43 Commission 72 

Total 26 121 28 93 Total 153 
% Matched 57.7 54.6 57.1 53.8 % Matched 52.9 
% Omission 42.3 45.5 42.9 46.2 % Commission 47.1 
 

       Note: Model refers to Tree Finding Model developed by McCombs et al 2003. 
 

 
Table 3.12   Commission and omission errors in matching field-identified to LiDAR-

predicted samples of hardwood and pine species (loblolly pine Pinus taeda L. 
and longleaf pine Pinus palustris Mill.) canopy trees for the upper 25% forest 
canopy on the Blue Farm Tract in Hoke County, North Carolina in 2007. 

 
  Blue Tract   

Field-Identified Samples LiDAR-Predicted Samples 
 Hardwoods Pine Loblolly Longleaf  Model 

Matched 6 81 4 77 Matched 87 
Omission 22 20 3 17 Commission 25 

Total 28 101 7 94 Total 112 
% Matched 21.4 80.2 57.1 82.0 % Matched 77.7 
% Omission 78.6 19.8 42.9 18.1 % Commission 22.3 

      Note: Model refers to Tree Finding Model developed by McCombs et al 2003. 
 

 
Pine Size Class Determination 

For each tract, field-to-LiDAR correctly matched canopy pine trees were grouped 

into pre-assigned diameter size classes based on the RCW Recovery Guidelines.  Due to 

matched trees not having the same diameter values, many of the LiDAR predicted 

diameters fell into separate classes than the field diameters. Figure 3.9 illustrates the 
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results of combining the classified multi-spectral imagery with the output from the tree 

finding model. 

For all three tracts combined (Table 3.13), 29.7% field trees and 31.2% LiDAR 

trees fell into the < 24.5 cm DBH class, 36.3% field trees and 52.1% LiDAR trees fell in 

the 24.5 – 35 cm class, and 34.0% field trees and 16.6% LiDAR trees in the > = 35 cm 

class. For the McCain Tract, 22.5% field trees and 16.9% LiDAR trees fell into the < 

24.5 cm DBH class, 35% field trees and 47.5% LiDAR trees fell in the 24.5 – 35 cm 

class, and 42.5% field trees and 35.6% LiDAR trees in the > = 35 cm class. For Fort 

Bragg, 56.6% field trees and 67.7% LiDAR trees fell in the < 24.5 cm class, 20.2% field 

trees and 31.3% LiDAR trees in the 24.5 – 35 cm class, and 23.2% field trees and 1.0% 

matched LiDAR tree in the > 35 cm class.  For this tract in general, LiDAR 

overestimated the number of trees compared to the field data in the < 24.5 cm and 24.5 – 

35 cm diameter classes.  Blue Farm had 18.8% field trees and 21.7% LiDAR trees in the 

< 24.5 cm class, 49.3% field trees and 72.5% LiDAR trees in the 24.5 – 35 cm class, and 

31.9% field trees and 5.8% LiDAR trees in the >= 35 cm class.  In general for this tract, 

the LiDAR model overestimated number of trees compared to the field data in the < 24.5 

cm and 24.5 – 35 cm classes and underestimated in the > =35 cm class. 
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Table 3.13   Comparison for the percent matched pine trees (loblolly pine Pinus taeda L. 
and longleaf pine Pinus palustris Mill.) for the field and LiDAR/multi-
spectral tree samples per diameter size class for the entire forest canopy for 
the combined tracts (McCain, Blue Farm, and Fort Bragg Tracts) in Hoke 
County, North Carolina in 2007. 

 
Percent Matched Pine Trees per Diameter Size Class 

 < 24.5cm 24.5-35cm >=35cm 
All Three Tracts - 69 Plots    

Field 29.7 36.3 34.0 
LiDAR 31.2 52.1 16.6 

McCain Tract - 22 Plots    
Field 22.5 35.0 42.5 

LiDAR 16.9 47.5 35.6 
Fort Bragg Tract - 23 Plots    

Field 56.6 20.2 23.2 
LiDAR 67.7 31.3 1.0 

Blue Farm Tract - 24 Plots    
Field 18.8 49.3 31.9 

LiDAR 21.7 72.5 5.8 
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Figure 3.9   Recoded object-based classified multi-spectral imagery of Blue Farm Tract 

(upper left) and, a zoomed in portion of the Blue Farm Tract with results of 
LiDAR identified by tree type and recoded classified multi-spectral imagery 
(center bottom). 

 
 

Average Height, DBH, BA and Stem Density per Plot  

Categorized by Diameter Class Output 

Average pine height, DBH, BA and stem density per plot for each diameter class 

based on the RCW Recovery Guidelines were assessed for LiDAR and field data for the 

canopy values.  For all three tracts (Table 3.14), average height per plot for matched trees 

ranged from 13.4 – 28.1 m, combined total average tree heights ranged from 11.3 – 27.9 

Recoded Imagery with Tree Type Identified LiDAR Data 
for a Portion of Blue Farm Tract, NC
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m, and both missed and commission tree heights ranged from 9.7 – 27.4 m.  Mean DBH 

for all three tracts for matched trees ranged from 18.5 – 41.6 cm, combined total average 

tree diameters ranged from 13.6 – 41.5 cm, and both missed and committed  trees ranged 

from 11.6 – 40.9 cm diameter.  Mean BA for all three tracts (Table 3.14) for matched 

trees ranged from 1.2 – 6.7m²/ha, combined total average BA ranged from 2.5 – 8.9 

m2/ha, and both missed and committed BA ranged from 0.8 – 3.0 m²/ha.  Mean stem 

density for all three tracts (Table 3.14) for matched trees ranged from 42.3 – 75.7 

trees/ha, combined total average mean stem density ranged from 28.0 – 143.9 stems/ha, 

and both missed and committed mean stem density ranged from 6.5 – 101.5 stems/ha.  



 

 39

Table 3.14   Summary of mean tree height, mean DBH, mean BA, and mean stem density 
for both the field and LiDAR pine species (loblolly pine Pinus taeda L. and 
longleaf pine Pinus palustris Mill.) samples per plot for the entire forest 
canopy for the combined tracts (McCain, Blue Farm, and Fort Bragg Tracts) 
in Hoke County, North Carolina in 2007. 

 
All Three Tracts - 69 Plots 

 Matched Trees 
All Identified 

Trees Commission Omission 
Field LiDAR Field LiDAR Field LiDAR 

Mean Height (m) / Plot       
DBH  < 24.5    cm 14.6 13.4 11.3 11.3 9.7* 9.9* 
DBH  24.5 - 35 cm 21.5 22.0 21.2 21.9 21.7* 20.2* 
DBH  >= 35     cm 24.9 28.1 24.3 27.9 27.4* 21.2* 

Mean DBH (cm) / Plot       
DBH  < 24.5    cm 18.5 18.7 13.6* 15.9* 13.6* 11.6* 
DBH  24.5 - 35 cm 31.0 31.1 30.7* 30.9* 31.6* 30.0* 
DBH  >= 35     cm 41.6 39.7 41.5* 39.5* 38.8* 40.9* 

Mean BA (m²/ha) / Plot       
DBH  < 24.5    cm 1.2 1.3 2.6* 2.5* 1.1* 1.3* 
DBH  24.5 - 35 cm 4.0 5.8 5.3* 8.9* 3.0* 1.3* 
DBH  >= 35     cm 6.7 2.7 7.9* 3.5* 0.8* 1.2* 

Mean Stem Density (stems/ha) 
/ Plot       

DBH  < 24.5    cm 42.3 45.2 143.9 102.2 57.0 101.5 
DBH  24.5 - 35 cm 51.7 75.7 69.6 116.2 40.5 17.9 
DBH  >= 35     cm 48.4 21.5 57.0 28.0 6.5 8.6 

Note:   Means followed by an * are significantly different at an alpha of 0.05. 

 

 
For the McCain Tract (Table 3.15), average height per plot for matched trees 

ranged from 13.5 – 28.4 m, combined total average tree heights ranged from 10.1 – 28.2 

m, and both missed and commission tree heights ranged from 7.7 – 27.6 m.  Mean DBH 

for McCain Tract for matched trees ranged from 18.3 – 42.1 cm, combined total average 

tree diameters ranged from 11.4 – 42.1 cm, and both missed and commission diameter 

trees ranged from 8.6 – 41.6 cm.  Mean BA for McCain Tract (Table 3.15) for matched 

trees ranged from 1.0 – 10.9 m²/ha, combined total average BA ranged from 1.7 – 11.7 

m2/ha, and both missed and invented BA ranged from 0.7 – 3.7 m²/ha.  Mean stem 
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density for McCain Tract (Table 3.15) for matched trees ranged from 32.6 – 88.9 

stems/ha, combined total average mean stem density ranged from 76.5 – 140.6 stems/ha, 

and both missed and invented mean stem density ranged from 5.6 – 100.4 stems/ha.  

 
 
Table 3.15   Summary of mean tree height, mean DBH, mean BA, and mean stem density 

for both the field and LiDAR pine species (loblolly pine Pinus taeda L. and 
longleaf pine Pinus palustris Mill.) samples per plot for the entire forest 
canopy on the McCain Tract in Hoke County, North Carolina in 2007. 

 
McCain Tract - 22 Plots 
Matched 

Trees
All Identified 

Trees Commission Omission 
Field LiDAR Field LiDAR Field LiDAR 

Mean Height (m) / Plot       
DBH  < 24.5    cm 16.5 13.5 10.3 10.1 7.7* 7.7* 
DBH  24.5 - 35 cm 23.0 22.6 22.6 22.6 22.6* 20.7* 
DBH  >= 35     cm 27.1 28.4 27.0 28.2 27.6* 25.7* 

Mean DBH (cm) / Plot       
DBH  < 24.5    cm 18.3 18.9 11.4* 14.2* 10.8* 8.6* 
DBH  24.5 - 35 cm 31.3 31.9 31.2* 39.9* 31.9* 30.5* 
DBH  >= 35     cm 42.1 40.2 42.1* 16.7* 39.0* 41.6* 

Mean BA (m²/ha) / Plot       
DBH  < 24.5    cm 1.2 1.0 2.0* 1.7* 0.7* 0.8* 
DBH  24.5 - 35 cm 4.9 7.2 5.9* 11.0* 3.7* 1.0* 
DBH  >= 35     cm 10.9 7.6 11.7* 9.7* 2.2* 0.8* 

Mean Stem Density (stems/ha) 
/ Plot       

DBH  < 24.5    cm 40.5 32.6 140.6 78.8 46.1* 100.4* 
DBH  24.5 - 35 cm 63.0 88.9 76.5 135.0 46.1* 13.5* 
DBH  >= 35     cm 76.5 58.5 82.1 76.5 18.0* 5.6* 

Note:   Means followed by an * are significantly different at an alpha of 0.05. 
 

 

 For the Blue Farm Tract (Table 3.16), average height per plot for matched trees 

ranged from 14.6 – 25.9 m, combined total average tree heights ranged from 11.2 – 26.0 

m, and both missed and committed tree heights ranged from 7.9 – 26.3 m.  Mean DBH 

for the Blue Farm Tract for matched trees ranged from 18.1 – 40.6 cm, combined total 

average tree diameters ranged from 14.8 – 40.7 cm, and both missed and committed 
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diameter trees ranged from 11.1 – 41.7 cm.  Mean BA for the Blue Farm Tract (Table 

3.16) for matched trees ranged from 0.8 – 7.9 m²/ha, combined total average BA ranged 

from 1.0 – 10.3 m²/ha, and both missed and invented BA ranged from 0.5 – 2.3 m²/ha.  

Mean stem density for the Blue Farm Tract (Table 3.16) for matched trees ranged from 

7.2 – 104.2 stems/ha, combined total average mean stem density ranged from 9.3 – 135.1 

stems/ha, and both missed and committed mean stem density ranged from 2.1 – 59.8 

stems/ha.  

 
 
Table 3.16   Summary of mean tree height, mean DBH, mean BA, and mean stem density 

for both the field and LiDAR pine species (loblolly pine Pinus taeda L. and 
longleaf pine Pinus palustris Mill.) samples per plot for the entire forest 
canopy on the Blue Farm Tract in Hoke County, North Carolina in 2007. 

 
Blue Farm Tract - 24 Plots 

Matched 
Trees

All Identified 
Trees Commission Omission 

Field LiDAR Field LiDAR Field LiDAR 
Mean Height (m) / Plot       

DBH  < 24.5    cm 15.9 14.6 12.8 11.2 7.9* 11.4* 
DBH  24.5 - 35 cm 20.9 21.9 21.1 21.9 21.8* 22.2* 
DBH  >= 35     cm 22.9 25.9 22.9 26.0 26.3* 23.4* 

Mean DBH (cm) / Plot       
DBH  < 24.5    cm 18.1 20.5 14.8 15.7 11.1* 13.3* 
DBH  24.5 - 35 cm 30.8 30.9 30.7 30.8 30.7* 30.2* 
DBH  >= 35     cm 40.6 36.5 40.7 36.7 37.2* 41.7* 

Mean BA (m²/ha) / Plot       
DBH  < 24.5    cm 0.8 1.1 1.7* 1.6* 0.5* 1.0* 
DBH  24.5 - 35 cm 5.3 7.9 6.3* 10.3* 2.3* 1.0* 
DBH  >= 35     cm 6.0 0.8 6.9* 1.0* 0.2* 0.9* 

Mean Stem Density (stems/ha) 
/ Plot       

DBH  < 24.5    cm 26.8 30.9 86.6 62.9 32.0 59.8 
DBH  24.5 - 35 cm 70.1 104.2 83.5 135.1 30.9 13.4 
DBH  >= 35     cm 45.4 7.2 51.6 9.3 2.1 6.2 

Note:   Means followed by an * are significantly different at an alpha of 0.05. 
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For the Fort Bragg Tract (Table 3.17), average height per plot for matched trees 

ranged from 12.7 – 26.2 m, combined total average tree heights ranged from 11.3 – 26.2 

m, and both missed and invented tree heights ranged from 0.0 – 20.7 m.  Mean DBH for 

the Fort Bragg Tract for matched trees ranged from 17.8 – 42.0 cm, combined total 

average tree diameters ranged from 14.5 – 41.4 cm, and both missed and committed trees 

had diameters from 0.0 – 40.2 cm.  Mean BA for Fort Bragg Tract (Table 3.17) for 

matched trees ranged from 0.1 – 3.5 m²/ha, combined total average BA ranged from 0.1 – 

5.4 m²/ha, and both missed and committed BA ranged from 0.0 – 3.1 m²/ha.  Mean stem 

density for Fort Bragg Tract (Table 3.17) for matched trees ranged from 1.1 – 72.1 

stems/ha, combined total average mean stem density ranged from 1.1 – 206.6 stems/ha, 

and both missed and invented mean stem density ranged from 0.0 – 146.4 stems/ha.  
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Table 3.17   Summary of mean tree height, mean DBH, mean BA, and mean stem density 
for both the field and LiDAR pine species (loblolly pine Pinus taeda L. and 
longleaf pine Pinus palustris Mill.) samples per plot for the entire forest 
canopy on the Fort Bragg Tract in Hoke County, North Carolina in 2007. 

 
Fort Bragg Tract - 23 Plots 

Matched 
Trees

All Identified 
Trees Commission Omission 

Field LiDAR Field LiDAR Field LiDAR 
Mean Height (m) / Plot       

DBH  < 24.5    cm 12.7 12.7 11.3 11.9 11.4* 10.7* 
DBH  24.5 - 35 cm 19.4 21.1 19.1 20.9 20.7* 18.8* 
DBH  >= 35     cm 22.0 26.2 20.7 26.2 0.0* 18.5* 

Mean DBH (cm) / Plot       
DBH  < 24.5    cm 18.8 17.8 14.5* 16.7* 15.9* 12.7* 
DBH  24.5 - 35 cm 30.6 29.7 30.1* 29.4* 29.1* 29.7* 
DBH  >= 35     cm 42.0 37.1 41.4* 37.1* 0.0* 40.2* 

Mean BA (m²/ha) / Plot       
DBH  < 24.5    cm 1.8 1.9 4.0* 4.1* 2.2* 2.3* 
DBH  24.5 - 35 cm 1.6 2.4 3.5* 5.4* 3.1* 1.9* 
DBH  >= 35     cm 3.5 0.1 5.3* 0.1* 0.0* 1.8* 

Mean Stem Density (stems/ha) 
/ Plot       

DBH  < 24.5    cm 60.3 72.1 206.6* 165.7* 93.6* 146.4* 
DBH  24.5 - 35 cm 21.5 33.4 48.4* 78.6* 45.2* 26.9* 
DBH  >= 35     cm 24.8 1.1 38.7* 1.1* 0.0* 14.0* 

Note:   Means followed by an * are significantly different at an alpha of 0.05. 
 

 
For all three tracts (Table 3.14), McCain (Table 3.15), Blue Farm (Table 3.16), 

and Fort Bragg (Table 3.17)] significant differences were found in the omission and 

commission values for height, DBH, and BA.  McCain (Table 3.15) and Fort Bragg 

(Table 3.17) had a significant difference in omission and commission values for stem 

density.  For all identified trees, significant differences were found in DBH and BA 

values for all tracts combined (Table 3.14), McCain (Table 3.15), Blue Farm (Table 

3.16), and Fort Bragg (Table 3.17) as well as for stem density in Fort Bragg (Table 3.17).  
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Summary Statistics for Pine Height, DBH, BA, and Stem Density per Plot

Regression analysis, p-values, and RMSE values were used to compare the 

LiDAR to field measurements for the entire canopy of matched trees, all trees, and 

unmatched canopy pine trees per plot for the height, DBH, BA, and stem density.  For 

DBH the R² was 0.73 and for  BA the R² was 0.54.  For all three tracts - 69 Plots (Table 

3.18), height samples had an R² of 0.53, DBH samples had an R² of 0.24, BA samples 

had an R² of 0.29, and stem density had an R² of 0.30.  The unmatched height samples 

had an R² of 0.03, R² for DBH was 0.13, BA had an R² of 0.04, and stem density had an 

R² of 0.16.  

For the McCain Tract - 22 Plots (Table 3.19), height samples, R² was 0.98 for 

DBH samples, the R² was 0.59, BA the R² was 0.55. For all trees matched and unmatched 

combined, height samples had an R² of 0.60, DBH samples had an R² of 0.28, BA 

samples had an R² of 0.36, and stem density had an R² of 0.36.  The unmatched height 

samples had an R² of 0.00, R² for DBH was 0.00, BA had an R² of 0.05, and stem density 

had an R² of 0.06.  

For the Blue Farm Tract - 24 Plots (Table 3.20), height samples, R² was 0.95 for 

DBH samples, the R² was 0.38, BA the R² was 0.25. For all trees matched and unmatched 

combined, height samples had an R² of 0.44, DBH samples had an R² of 0.11, BA 

samples had an R² of 0.12, and stem density had an R² of 0.59.  The unmatched height 

samples had an R² of 0.11, R² for DBH was 0.06, BA had an R² of 0.05, and stem density 

had an R² of 0.18.  

For the Fort Bragg Tract – 23 Plots (Table 3.21), height samples, R² was 0.96, for 

DBH samples, the R² was 0.81, BA the R² was 0.63. For all trees matched and unmatched 
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combined, height samples had an R² of 0.32, DBH samples had an R² of 0.16, BA 

samples had an R² of 0.16, and stem density had an R² of 0.10.  The unmatched height 

samples had an R² of 0.1, R² for DBH was 0.05, BA had an R² of 0.00, and stem density 

had an R² of 0.19.  

 

Table 3.18    Summary statistics of comparing field to LiDAR mean tree height, mean 
DBH, mean BA, and mean stem density for both the field and LiDAR pine 
species (loblolly pine Pinus taeda L. and longleaf pine Pinus palustris Mill.) 
samples per plot for the entire forest canopy for the Combined Tracts 
(McCain, Blue Farm, and Fort Bragg Tracts) Hoke County, North Carolina 
in 2007. 

 
All Three Tracts - 69 Plots 

Matched 
Trees

All
Identified 

Trees
Unmatched 

Trees
Mean Height (m) / Plot    

R-square 0.97 0.53 0.03 
RMSE 1.05 3.75 7.81 

Mean DBH (cm) / Plot     
R-square 0.73 0.24 0.13 

RMSE 4.93 6.84 11.17 
Mean BA (m/ha) / Plot     

R-square 0.54 0.29 0.04 
RMSE 0.57 0.65 0.83 

Mean Stem Density (ha) / Plot     
R-square - 0.30 0.16 

RMSE - 101.91 76.49 
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Table 3.19    Summary statistics of comparing field to LiDAR mean tree height, mean 
DBH, mean BA, and mean stem density for both the field and LiDAR pine 
species (loblolly pine Pinus taeda L. and longleaf pine Pinus palustris Mill.) 
samples per plot for the entire forest canopy on the McCain Tract in Hoke 
County, North Carolina in 2007. 

 
McCain Tract - 22 Plots 

Matched 
Trees

All Identified 
Trees

Unmatched 
Trees

Mean Height (m) / Plot    
R-square 0.98 0.60 0.00 

RMSE 0.77 4.01 8.29 
Mean DBH (cm) / Plot     

R-square 0.59 0.28 0.00 
RMSE 5.10 7.86 12.46 

Mean BA (m/ha) / Plot     
R-square 0.55 0.36 0.05 

RMSE 0.64 0.78 1.01 
Mean Stem Density (ha) / Plot     

R-square - 0.36 0.06 
RMSE - 126.79 79.85 

 
 
 
Table 3.20    Summary statistics of comparing field to LiDAR mean tree height, mean 

DBH, mean BA, and mean stem density for both the field and LiDAR pine 
species (loblolly pine Pinus taeda L. and longleaf pine Pinus palustris Mill.) 
samples per plot for the entire forest canopy on the Blue Farm Tract in Hoke 
County, North Carolina in 2007. 

 
Blue Farm Tract - 24 Plots 

Matched 
Trees

All Identified 
Trees

Unmatched 
Trees

Mean Height (m) / Plot    
R-square 0.95 0.44 0.11 

RMSE 0.77 3.65 8.74 
Mean DBH (cm) / Plot     

R-square 0.38 0.11 0.06 
RMSE 3.83 6.53 12.68 

Mean BA (m/ha) / Plot     
R-square 0.25 0.12 0.05 

RMSE 0.44 0.54 0.87 
Mean Stem Density (ha) / Plot     

R-square - 0.59 0.18 
RMSE - 60.50 47.68 
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Table 3.21    Summary statistics of comparing field to LiDAR mean tree height, mean 
DBH, mean BA, and mean stem density for both the field and LiDAR pine 
species (loblolly pine Pinus taeda L. and longleaf pine Pinus palustris Mill.) 
samples per plot for the entire forest canopy on the Ft. Bragg Tract in Hoke 
County, North Carolina in 2007. 

 
Fort Bragg Tract - 23 Plots 

Matched 
Trees

All Identified 
Trees

Unmatched 
Trees

Mean Height (m) / Plot    
R-square 0.96 0.32 0.05 

RMSE 1.56 3.92 5.76 
Mean DBH (cm) / Plot     

R-square 0.81 0.16 0.00 
RMSE 4.85 5.99 8.22 

Mean BA (m/ha) / Plot     
R-square 0.63 0.16 0.00 

RMSE 0.42 0.50 0.59 
Mean Stem Density (ha) / Plot     

R-square - 0.10 0.19 
RMSE - 96.60 91.00 
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CHAPTER IV 

DISCUSSION 

 

Image Classification Accuracy Assessment 

Overall, accuracy assessment results (Tables 3.1-3.4) for the object-based 

classification showed relatively high accuracies and Kappa values when separating 

longleaf from loblolly pines and hardwood canopy trees.  Oruc et al. (2004), using 

Landsat - 7 spectral imagery in Zonguldak, Turkey, compared classic pixel–based versus 

object–based classifications and found the object-based approach to have better results in 

accuracy.  In the present study, separating pines from hardwoods showed a higher 

accuracy at 80.8% with a Kappa of 73.3 versus a lower accuracy at 73.7% and Kappa of 

0.7  (The Kappa measures the proportion of correctly classified pixels after the 

probability of chance agreement has been removed Congalton 1991.) when separating the 

two pine classes from each other.  The decrease in percent accuracy was attributed to 

pines having more similarities to each other in the NIR spectral reflectance band which 

created overlap in the membership functions thus difficulties in correctly labeling 

individual canopy pine tree species.  

Individual class accuracies and associated Kappas indicated 90.8% of the known 

reference locations used to classify longleaf were correctly identified (producers 

accuracy). Of all sites visited in the field (user’s accuracy) that were labeled on the 
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classification as longleaf, 58.9% were found to be longleaf (Table 3.2).  This confusion 

was mainly due to software misclassifying 31 longleaf trees as loblolly and 24 longleaf 

trees as hardwoods.  The associated Kappa value was 0.9.  The confusion between the 

pine classes might have occurred because loblolly and longleaf pines have similar 

morphology resulting in similar reflectance properties of the tree species. 

Individual class accuracies and associated Kappas indicated 61.5% of the known 

reference locations used to classify loblolly were correctly identified (producer’s 

accuracy). Of all sites visited in the field (user’s accuracy) that were labeled on the 

classification as loblolly, 69.1% were found to be loblolly (Table 3.2).  Most of the 

confusion was due to mislabeling 22 loblolly trees as hardwoods and 8 as longleaf trees.  

The Kappa value calculated at 0.5 suggested a higher chance of random correctness than 

was seen for longleaf.   

Individual class accuracies and associated Kappas indicated 57.8% of the known 

reference locations used to classify hardwoods were correctly identified (producer’s 

accuracy). Of all sites visited in the field (user’s accuracy) that were labeled on the 

classification as hardwoods, 80.8% were found to be hardwoods (Table 3.2). The 

confusion mainly came from mislabeling 11 trees as loblolly and 2 as longleaf.  The 

associated Kappa value for hardwoods was found to be at 0.5 suggesting again a higher 

chance of random correctness. A possible reason for the class confusion may have been 

due to the closeness in reflectance values between the hardwoods and loblolly resulting in 

the software having a difficult time in distinguishing between trees in the high crown 

density areas. 
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For the combined pine class, 94.0% of the reference trees were identified with 

77.4% of the locations on the map actually being pines (Table 3.4). Confusion came 

mainly from the hardwood class with 46 mislabeled as pine and 12 trees mislabeled as 

herbaceous (Table 3.3).  The confusion with the herbaceous class occurred because 

young longleaf pines were not easily distinguishable from the herbaceous background 

due to image resolution.  The associated Kappa for the pine class was found to be at 0.9 

suggesting a high chance of actual correctness. 

The other three cover classes: herbaceous, non-vegetation, and shadow were 

important in helping to separate out the canopy tree types of interest.  The accuracy of 

separating out the canopy tree species from each other, and from the other cover classes, 

was illustrated in Tables 3.1-3.4.  The shadow class had 70 of its 75 samples correctly 

identified with a user’s accuracy of 81.4%, a producer’s accuracy of 93.3%, and a Kappa 

of 0.9.  This class was ambiguous in that it changes depending upon time of day and year 

the imagery was collected.  The shadow class was interpreted from images only and, the 

interpreter would not be able to field validate the work it was done at the same instant 

images were acquired since shadows continuously change over time.  The non-vegetation 

class had 60 of its 75 samples correctly identified with a user’s accuracy of 95.2%, a 

producer’s accuracy of 80.0%, and a Kappa of 0.8.  Again, this class was ambiguous to 

some degree in areas where the imagery was collected frequently experienced prescribed 

burning or other disturbances.  This accuracy assessment often exposed what appeared to 

be non-vegetation, yet in many cases, had those areas not been burned, they would be 

labeled as herbaceous.  Therefore, in areas other than roads or deep sand, the 

classification process misclassified areas as either non-vegetation or shadow when those 
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areas were no longer shadow or non-vegetation due to field data being collected a year 

after the imagery was flown allowing vegetation changes to occur.  The herbaceous class 

had 48 of its 75 samples correctly identified with a user’s accuracy of 80.0%, a 

producer’s accuracy of 64.0%, and a Kappa of 0.6.  In identifying this class, many 

samples were confused with young longleaf pines coming out of the grass stage, shadow, 

and a few non-vegetation locations.  In many areas, there was longleaf pine regeneration 

ranging from the grass stage to the sapling size.  To adequately identify individual trees 

using object-based classification, the crowns must be image segments composed of 

multiple pixels that are spectrally distinct from the background classes.  Sampling young 

longleaf pines from herbaceous was not possible due to image resolution.  

 

Tree Finding Model 

Results from this research suggested the methodology used by McCombs et al 

2003 was successful in classifying canopy trees and identifying canopy trees using 

LiDAR.  The comparison of canopy plot trees to LiDAR-identified trees revealed some 

inconsistencies in the tree identification model’s ability to detect all trees.  One problem 

was in collecting field data measurements a year after the imagery was acquired allowing 

ample time to pass for vegetation change in the landscape.  Another issue was acquiring 

matches on all canopy trees due to some positional accuracy imprecision in both the 

ground-based tree locations and the LiDAR data.  This was largely attributed to assumed 

errors in GPS fixes on plot locations and measurement errors in tree location 

establishment relative to these GPS positions.  Comparison of the LiDAR-derived canopy 

surface, the corresponding multi-spectral imagery, and output from the tree-finding 



 

 52

algorithm visually illustrated the general successful performance of the models (Figure 

3.9.  

Overall omission/commission errors for the longleaf and loblolly pine classes 

showed longleaf had the least amount of omission/commission errors than loblolly (Table 

3.5). The longleaf class having fewer errors compared to loblolly may have been partly 

due to location and density of the trees. Most of the areas were longleaf pines were 

measured were in areas of lower density and more open stands. Many of the loblolly 

pines measured were in areas of higher crown densities with less spacing between trees.  

Assessment of omission/commission errors per tract for longleaf and loblolly, indicated 

that Blue Farm had the fewest errors, McCain was intermediate and Fort Bragg had the 

largest errors. Blue Farm and McCain having fewer errors for the pine classes may have 

been due to a more intensive timber management practices on both tracts with Blue Farm 

having a more intensive management for timber and parts of McCain managing for pine 

straw and less for timber. The Fort Bragg Tract instead used prescribed burning without 

any timber management (Tables 3.6-3.8). The tree finding model worked better at finding 

trees that were in lower densities in more open stands found in the Blue Farm Tract 

versus more natural stands with higher density found on McCain and Fort Bragg Tracts. 

For the upper 25% (tallest trees), the tree finding model worked better having lower 

omission/commission errors (as expected) since these trees tended to stand out from the 

lower canopy trees (Tables 3.9-3.12). 
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Pine Size Class Determination 

As of 2000, the McCain Tract was a state-owned conservation area that managed 

for RCWs with five active clusters (USFWS 2003).  Activities primarily engaged in 

include prescribed burning, hunting/camping, and pine straw research.  Given these land 

uses, it was not surprising that a large proportion of pine trees would be older and have 

larger diameters whereby many of the pine stems fell in the large DBH class (Table 3.13) 

since timber harvesting was not part of the main management practices.  The older trees 

that became flat topped due to damages over time would have probably been removed 

had McCain had a more active management for timber as compared to the other two 

tracts. Flat-topped trees reduce the tree finding model accuracy because they lack a 

distinctive apex.  These trees tend to have large diameters with a disproportionately 

shorter height than similar diameter pine trees exhibiting a normal apex shoot.  Thus, 

predicting a relationship between diameter and height class was difficult for those trees.  

A possible way of compensating for this in the future may be to simply separate those 

trees from the rest of the sample and run separate analyses along with a combined 

analysis to compare the influence these flat-topped trees have on the relationships 

between the measured variables (height, DBH, BA, stem density). Additionally, there 

may still be challenges particularly in finding methods of excluding flat-topped trees 

from the remotely sensed data even though these trees can be separated from the rest of 

the field data relatively easy.  The Fort Bragg summaries (Table 3.13) showed many of 

the pine stems falling in the smaller DBH class.  This part of Fort Bragg is practicing 

intense management for RCWs, using prescribed burning as a way of opening up stands 

and retarding hardwood growth while favoring pine trees.  As of 2000, there were 
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roughly 350 active clusters on the entire installation (USFWS 2003).  The Blue Farm 

summaries (Table 3.13) depicted most of the pine samples falling in the 24.5 – 35 cm 

diameter size class.  This was consistent with Blue Farm management practices both for 

timber and pine straw production and RCW management.  There were not many RCW 

clusters on Blue Farm because most of the land was on various timber harvest rotations.  

 

Average Height, DBH, Basal Area and Stems per Plot 

Mean tree height, DBH, BA, and stem density per plot were calculated for both 

the field and LiDAR values for matched, unmatched, and combined matched and 

unmatched trees.  The matched height values resulted in LiDAR underestimating the 

number of smaller trees and overestimating the larger trees when compared to the field 

data. In this case, the elevation or ground surface model may have been slightly 

underestimated which would have resulted in overestimated values in the LiDAR (Lefsky 

et al. 2002).  In previous studies LiDAR has commonly been shown to underestimate 

mean tree height (Hyyppa and Inkinen 1999; Naesset 1997; Naesset and Bjerknes 2000; 

McCombs et al. 2003; Roberts et al. 2005; Young 2000).  

The field-derived relationship used to apply DBH estimates to the LiDAR tended 

to underestimate DBH and BA when compared to the field data whereas, stem density 

was overestimated compared to the average field data values.  The underestimation of 

DBH and BA values may have been due to many of the pine trees having missing or 

broken tops.  Since many of the pine trees had broken tops resulting in unnaturally 

shorter heights compared to their DBH size the regression equation was not able to 

predict DBH values for those trees. Trees with spreading crowns, particularly in areas of 



 

 55

high crown closure tend to result in more false stem locations from LiDAR and thus 

inflate the stem density estimates.   

Regression analysis performed between field and LiDAR showed there were 

significant differences found between the omission/commission errors for canopy height, 

DBH, and BA. Stem density overall and on Blue Farm tract showed no significant 

difference because on that tract the model was able to better identify those trees most 

likely due to increased spacing between trees (Tables 3.14-3.17). Additionally R² and 

RMSE were recorded for the trees per tract for canopy height, DBH, BA, and stem 

density values (Tables 3.18-3.21).  Overall the R² suggested the model predicted height 

for matched trees well along with fairly good accuracy. DBH and BA for matched trees 

were not predicted as well by the model and were found with less accuracy. The model 

however did predict stem density with moderate accuracy. Blue Farm and McCain tracts 

had very similar results most likely due to similar management for the pines. Both had 

fairly good accuracy and good prediction of height values. DBH and BA values had 

lower prediction values with less accuracy. Stem density for both tracts had fair accuracy 

and prediction values. Height, DBH, and BA had less accurate values with not so good 

predictions. There was most likely a higher occurrence of flat-topped trees on this tract 

from a lack of timber management to periodically thin out older trees. Stem density was 

found to have both fair accuracy and prediction by the model because individual trees 

were able to be identified well from the tree finding model. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

Multi-spectral imagery was acquired in the summer of 2005 from the coastal plain 

within the sandhill region in Hoke County, North Carolina.  An object-based 

classification was performed to identify canopy trees then validated using field data 

samples collected from the sandhill region in Hoke County, North Carolina.  The 

classification was found to be satisfactory in providing identification of tree species 

important in evaluating RCW habitat for this region. A tree finding model developed by 

McCombs et al. 2003 was modified and used to locate canopy trees from LiDAR data. 

Tree type was labeled with the multi-spectral imagery then validated by assessing 

omission and commission errors. Since longleaf and loblolly pines had moderately good 

separation and pine-hardwoods had high accuracy, the cover type classification indicated 

effectiveness in identifying one of the important factors in successfully evaluating RCW 

habitat.  The confusion between cover types was probably due to spectral similarities of 

some of the species at the time of year in which the imagery was taken. Confusion 

between the two pine classes was somewhat expected due to morphological similarities 

influencing their spectral response patterns. A regression equation was developed from 

the field data to use in predicting diameters for the LiDAR identified trees.  From the 

matched LiDAR trees with field trees, diameter size classes for pine were separated out 
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into appropriate diameter classes based on the USFWS RCW Recovery Guidelines. The 

majority of the matched trees were found in the 24.5-35 cm diameter size class 

suggesting most of the trees from all tracts combined fell into the medium size class. 

Since Blue Farm and McCain tracts used timber management practices most of the trees 

were expected to fall within the medium and large diameter classes with the rest of the 

trees falling into the smaller diameter classes.  

Average stem density/ha and average BA m²/ha were predicted per diameter size 

class.  The matched LiDAR data to field data were then tested for significant differences 

using regression analysis to get a more complete landscape description.  Results showed 

no significant differences occurred between the matched field to LiDAR samples for 

height, diameter, and BA even though the R² values for diameter and BA were below 0.5.  

Using LiDAR and multi-spectral imagery to evaluate species type, height, and BA of 

pines was found to have potential usefulness for assessing a portion of the minimum 

requirements provided by USFWS for assessing good quality habitat for RCWs. 

Evaluating the species type from the classification was able to give information on how 

much of the area was covered by hardwoods, loblolly, and longleaf pine. Applying 

height, DBH, BA, and stem density values from the LiDAR to the classification gave an 

even better output for determining not only what type of trees but how large and how 

many trees were covering the project area. This information on tree species along with 

attributes of size and quantity should prove useful in providing managers and biologists  

with information that help in developing and maintaining management plans for RCW 

habitat. 
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CHAPTER VI 
 

RECOMMENDATIONS 

 

Future Research 

Recommendations to better facilitate the study objectives included, but were not 

limited to, collecting imagery which has been orthorectified to the LiDAR data, 

increasing the number of field data samples, and collecting all data at the same time.  

Field data needed to be collected at the same time of year as the flight data associated 

with LiDAR and multi-spectral imagery.  This was important when classifying cover 

classes such as non-vegetation or herbaceous vegetation which are dynamic and may 

change reflectance values if enough time has lapsed between collecting field data and 

flying imagery, and LiDAR data pre-processed by the provider to project specifications 

such as overlap between flight lines, footprint size, and the project area being covered by 

the LiDAR.  Increased LIDAR return densities from overlap in the LiDAR data between 

flight lines should be more thoroughly investigated for bias influence on results regarding 

the number of LiDAR trees found from the tree finding model. 

 

Multi-spectral Imagery 

Multi-spectral imagery, which had been orthorectified to the LiDAR canopy 

layer, would have potentially aided in a better classification (McCombs et al. 2003; 
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Popescu et al. 2003; and Hudak et al. 2002).  Some spectral confusion occurred in classes 

where there was a distinct height difference.  For example, some of the open grassy areas 

were being confused with the pine classes.  Had the imagery and LiDAR data been 

orthorectified to each other, LiDAR canopy layers could have been fused with the 

classification to label the canopy trees by species type from the found LiDAR trees.  

Likewise, if the imagery had been orthorectified to the LiDAR, the determination of 

crown radii for each tree could have been investigated using objected oriented 

classification instead of being modeled with the tree finding model as in this study. 

In addition to increased number of plots, gathering information such as individual 

tree age would better supplement the data collected to compare with RCW Recovery 

Guidelines.  Collecting age data, determining better accuracy with the pine basal size 

estimates, and taking samples in RCW clusters would yield a more robust habitat 

evaluation of the areas of interest. 

 

LiDAR

Identification of locations of hardwood trees may have been improved had the 

tree finding model been able to have tree parameters tailored to typical hardwood tree 

morphology such as crown and multiple stems unlike pines with a relatively cone shaped 

crown and typically one central stem.  In future research, a separate tree finding model 

could be investigated specific only to hardwood trees.  

When developing the equation for predicting diameter values from tree heights, 

only pine tree values were used.  A separate equation for hardwoods needed to be 

developed to increase accuracy in hardwood height, diameter, and BA values.  
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Concerning the tree finding model some factors should be taken into consideration and 

possibly avoided if this methodology is repeated.  For example, field data need to be 

collected at the same relative time as the imagery is acquired.  This would likely improve 

the classification of the multi-spectral imagery.  Analyzing an area with relatively few 

flat-topped trees, or analyzing those trees separately from the rest of the data, again may 

provide better results in regard to omission and commission errors while showing how 

much bias associated with total height and diameter was attributed to the flat-topped 

trees. Evaluating hardwood species similarly to the pines is important in RCW habitat 

because USFWS Recovery Guidelines indicate having sparse to no hardwoods in the 

mid-story.  
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