14 research outputs found

    A CASE-BASED REASONING SYSTEM FOR THE DIAGNOSIS OF INDIVIDUAL SENSITIVITY TO STRESS IN PSYCHOPHYSIOLOGY

    Get PDF
    Abstract Stress is an increasing problem in our present world. Especially negative stress could cause serious health problems if it remains undiagnosed/misdiagnosed and untreated. In stress medicine, clinicians' measure blood pressure, ECG, finger temperature and breathing rate during a number of exercises to diagnose stressrelated disorders. One of the physiological parameters for quantifying stress levels is the finger temperature measurement which helps the clinicians in diagnosis and treatment of stress. However, in practice, it is difficult and tedious for a clinician to understand, interpret and analyze complex, lengthy sequential sensor signals. There are only few experts who are able to diagnose and predict stress-related problems. A system that can help the clinician in diagnosing stress is important, but the large individual variations make it difficult to build such a system. This research work has investigated several artificial Intelligence techniques for the purpose of developing an intelligent, integrated sensor system for establishing diagnosis and treatment plan in the psychophysiological domain. To diagnose individual sensitivity to stress, case-based reasoning is applied as a core technique to facilitate experience reuse by retrieving previous similar cases. Furthermore, fuzzy techniques are also employed and incorporated into the case-based reasoning system to handle vagueness, uncertainty inherently existing in clinicians reasoning process. The validation of the approach is based on close collaboration with experts and measurements from twenty four persons used as reference. 39 time series from these 24 persons have been used to evaluate the approach (in terms of the matching algorithms) and an expert has ranked and estimated the similarity. The result shows that the system reaches a level of performance close to an expert. The proposed system could be used as an expert for a less experienced clinician or as a second option for an experienced clinician to their decision making process in stress diagnosis. Sammanfattning Den ökande stressnivÄn i vÄrt samhÀlle med allt högre krav och högt tempo har ett högt pris. Stressrelaterade problem och sjukdom Àr en stor samhÀllskostnad och speciellt om negativ stress förblir oupptÀckt, eller ej korrekt identifierad/diagnostiserad och obehandlad under en lÀngre tid kan den fÄ alvarliga hÀlsoeffekter för individen vilket kan leda till lÄngvarig sjukskrivning. Inom stressmedicinen mÀter kliniker blodtryck, EKG, fingertemperatur och andning under olika situationer för att diagnostisera stress. Stressdiagnos baserat fingertemperaturen (FT) Àr nÄgot som en skicklig klinker kan utföra vilket stÀmmer med forskningen inom klinisk psykofysiologi. Emellertid i praktiken Àr det mycket svÄrt, och mödosamt för att en kliniker att i detalj följa och analysera lÄnga serier av mÀtvÀrden och det finns endast mycket fÄ experter som Àr kompetent att diagnostisera och/eller förutsÀga stressproblem. DÀrför Àr ett system, som kan hjÀlpa kliniker i diagnostisering av stress, viktig. Men de stora individvariationerna och bristen av precisa diagnosregler gör det svÄrt att anvÀnda ett datorbaserat system. Detta forskningsarbete har tittat pÄ flera tekniker och metoder inom artificiell intelligens för att hitta en vÀg fram till ett intelligent sensorbaserat system för diagnos och utformning av behandlingsplaner inom stressomrÄdet. För att diagnostisera individuell stress har fallbaserat resonerande visat sig framgÄngsrikt, en teknik som gör det möjligt att ÄteranvÀnda erfarenhet, förklara beslut, genom att hÀmta tidigare liknande fingertemperaturprofilerar. Vidare anvÀnds "fuzzy logic", luddig logik sÄ att systemet kan hantera de inneboende vagheter i domÀnen. Metoder och algoritmer har utvecklats för detta. Valideringen av ansatsen baseras pÄ nÀra samarbete med experter och mÀtningar frÄn tjugofyra anvÀndare. Trettionio tidserier frÄn dessa 24 personer har varit basen för utvÀrderingen av ansatsen, och en erfaren kliniker har klassificerat alla fall och systemet har visat sig producera resultat nÀra en expert. Det föreslagna systemet kan anvÀndas som ett referens för en mindre erfaren kliniker eller som ett "second opinion" för en erfaren kliniker i deras beslutsprocess. Dessutom har finger temperatur visat sig passa bra för anvÀndning i hemmet vid trÀning eller kontroll vilket blir möjligt med ett datorbaserat stressklassificeringssystem pÄ exempelvis en PC med en USB fingertemperaturmÀtare. vii Acknowledgemen

    Preference rules for label ranking: Mining patterns in multi-target relations

    Get PDF
    In this paper, we investigate two variants of association rules for preference data, Label Ranking Association Rules and Pairwise Association Rules. Label Ranking Association Rules (LRAR) are the equivalent of Class Association Rules (CAR) for the Label Ranking task. In CAR, the consequent is a single class, to which the example is expected to belong to. In LRAR, the consequent is a ranking of the labels. The generation of LRAR requires special support and confidence measures to assess the similarity of rankings. In this work, we carry out a sensitivity analysis of these similarity-based measures. We want to understand which datasets benefit more from such measures and which parameters have more influence in the accuracy of the model. Furthermore, we propose an alternative type of rules, the Pairwise Association Rules (PAR), which are defined as association rules with a set of pairwise preferences in the consequent. While PAR can be used both as descriptive and predictive models, they are essentially descriptive models. Experimental results show the potential of both approaches.This research has received funding from the ECSEL Joint Undertaking, the framework programme for research and innovation horizon 2020 (2014-2020) under grant agreement number 662189-MANTIS-2014-1, and by National Funds through the FCT — Fundação para a CiĂȘncia e a Tecnologia (Portuguese Foundation for Science and Technology) as part of project UID/EEA/50014/2013

    Discovering a taste for the unusual: exceptional models for preference mining

    Get PDF
    Exceptional preferences mining (EPM) is a crossover between two subfields of data mining: local pattern mining and preference learning. EPM can be seen as a local pattern mining task that finds subsets of observations where some preference relations between labels significantly deviate from the norm. It is a variant of subgroup discovery, with rankings of labels as the target concept. We employ several quality measures that highlight subgroups featuring exceptional preferences, where the focus of what constitutes exceptional' varies with the quality measure: two measures look for exceptional overall ranking behavior, one measure indicates whether a particular label stands out from the rest, and a fourth measure highlights subgroups with unusual pairwise label ranking behavior. We explore a few datasets and compare with existing techniques. The results confirm that the new task EPM can deliver interesting knowledge.This research has received funding from the ECSEL Joint Undertaking, the framework programme for research and innovation Horizon 2020 (2014-2020) under Grant Agreement Number 662189-MANTIS-2014-1

    Linking Research and Policy: Assessing a Framework for Organic Agricultural Support in Ireland

    Get PDF
    This paper links social science research and agricultural policy through an analysis of support for organic agriculture and food. Globally, sales of organic food have experienced 20% annual increases for the past two decades, and represent the fastest growing segment of the grocery market. Although consumer interest has increased, farmers are not keeping up with demand. This is partly due to a lack of political support provided to farmers in their transition from conventional to organic production. Support policies vary by country and in some nations, such as the US, vary by state/province. There have been few attempts to document the types of support currently in place. This research draws on an existing Framework tool to investigate regionally specific and relevant policy support available to organic farmers in Ireland. This exploratory study develops a case study of Ireland within the framework of ten key categories of organic agricultural support: leadership, policy, research, technical support, financial support, marketing and promotion, education and information, consumer issues, inter-agency activities, and future developments. Data from the Irish Department of Agriculture, Fisheries and Food, the Irish Agriculture and Food Development Authority (Teagasc), and other governmental and semi-governmental agencies provide the basis for an assessment of support in each category. Assessments are based on the number of activities, availability of information to farmers, and attention from governmental personnel for each of the ten categories. This policy framework is a valuable tool for farmers, researchers, state agencies, and citizen groups seeking to document existing types of organic agricultural support and discover policy areas which deserve more attention

    A case-based system for lesson plan construction

    Get PDF
    Planning for teaching imposes a significant burden on teachers, as teachers need to prepare different lesson plans for different classes according to various constraints. Statistical evidence shows that lesson planning in the Malaysian context is done in isolation and lesson plan sharing is limited. The purpose of this thesis is to investigate whether a case-based system can reduce the time teachers spend on constructing lesson plans. A case-based system was designed SmartLP. In this system, a case consists of a problem description and solution pair and an attributevalue representation for the case is used. SmartLP is a synthesis type of CBR system which attempts to create a new solution by combining parts of previous solutions in the adaptation. Five activities in the CBR cycle retrieve, reuse, revise, review and retain are created via three types of design: application, architectural and user interface. The inputs are the requirements and constraints of the curriculum and the student facilities available, and the output is the solution, i.e. appropriate elements of a lesson plan. The retrieval module consists of five types of search advanced search, hierarchical, Boolean, basic and browsing. Solving a problem in this system involves obtaining a problem description, measuring the similarity of the current problem to previous problems stored in a database, retrieving one or more similar cases and attempting to reuse the solution of the retrieved cases, possibly after adaptation. Case adaptation for multiple lesson plans helps teachers to customise the retrieved plan to suit their constraints. This is followed by case revision, which allows users to access and revise their constructed lesson plans in the system. Validation mechanisms, through case verification, ensure that the retained cases are of quality. A formative study was conducted to investigate the effects of SmartLP on performance. The study revealed that all the lesson plans constructed with SmartLP assistance took significantly less time than the control lesson plans constructed without SmartLP assistance, although they might have access to computers and other tools. No significant difference in writing quality, measured by a scoring system, was noticed for the control group, who constructed lesson plans on the same tasks without receiving any assistance. The limitations of SmartLP are indicated and the focus of further research is proposed. Keywords: Case-based system, CBR approach, knowledge acquisition, knowledge representation, case representation, evaluation, lesson planning

    Proceedings of the 18th Irish Conference on Artificial Intelligence and Cognitive Science

    Get PDF
    These proceedings contain the papers that were accepted for publication at AICS-2007, the 18th Annual Conference on Artificial Intelligence and Cognitive Science, which was held in the Technological University Dublin; Dublin, Ireland; on the 29th to the 31st August 2007. AICS is the annual conference of the Artificial Intelligence Association of Ireland (AIAI)

    Building bridges for better machines : from machine ethics to machine explainability and back

    Get PDF
    Be it nursing robots in Japan, self-driving buses in Germany or automated hiring systems in the USA, complex artificial computing systems have become an indispensable part of our everyday lives. Two major challenges arise from this development: machine ethics and machine explainability. Machine ethics deals with behavioral constraints on systems to ensure restricted, morally acceptable behavior; machine explainability affords the means to satisfactorily explain the actions and decisions of systems so that human users can understand these systems and, thus, be assured of their socially beneficial effects. Machine ethics and explainability prove to be particularly efficient only in symbiosis. In this context, this thesis will demonstrate how machine ethics requires machine explainability and how machine explainability includes machine ethics. We develop these two facets using examples from the scenarios above. Based on these examples, we argue for a specific view of machine ethics and suggest how it can be formalized in a theoretical framework. In terms of machine explainability, we will outline how our proposed framework, by using an argumentation-based approach for decision making, can provide a foundation for machine explanations. Beyond the framework, we will also clarify the notion of machine explainability as a research area, charting its diverse and often confusing literature. To this end, we will outline what, exactly, machine explainability research aims to accomplish. Finally, we will use all these considerations as a starting point for developing evaluation criteria for good explanations, such as comprehensibility, assessability, and fidelity. Evaluating our framework using these criteria shows that it is a promising approach and augurs to outperform many other explainability approaches that have been developed so far.DFG: CRC 248: Center for Perspicuous Computing; VolkswagenStiftung: Explainable Intelligent System
    corecore