143 research outputs found

    Interactive toon shading using mesh smoothing

    Get PDF
    Toon shading mimics the style of few colour bands and hence offers an effective way to convey the cartoon-style rendering. Despite an increasing amount of research on toon shading, little research has been reported on generation of toon shading style with more simplicity. In this paper, we present a method to create a simplified form of toon shading using mesh smoothing from 3D objects. The proposed method exploits the Laplacian smoothing to emphasise the simplicity of 3D objects. Motivated by simplified form of Phong lighting model, we create non-photorealistic style capable of enhancing the cartoonish appearance. An enhanced toon shading algorithm is applied on the simple 3D objects in order to convey more simple visual cues of tone. The experimental result reveals the ability of proposed method to produce more cartoonish simplistic effects

    Geometry-based shading for shape depiction Enhancement,

    Get PDF
    Recent works on Non-Photorealistic Rendering (NPR) show that object shape enhancement requires sophisticated effects such as: surface details detection and stylized shading. To date, some rendering techniques have been proposed to overcome this issue, but most of which are limited to correlate shape enhancement functionalities to surface feature variations. Therefore, this problem still persists especially in NPR. This paper is an attempt to address this problem by presenting a new approach for enhancing shape depiction of 3D objects in NPR. We first introduce a tweakable shape descriptor that offers versatile func- tionalities for describing the salient features of 3D objects. Then to enhance the classical shading models, we propose a new technique called Geometry-based Shading. This tech- nique controls reflected lighting intensities based on local geometry. Our approach works without any constraint on the choice of material or illumination. We demonstrate results obtained with Blinn-Phong shading, Gooch shading, and cartoon shading. These results prove that our approach produces more satisfying results compared with the results of pre- vious shape depiction techniques. Finally, our approach runs on modern graphics hardware in real time, which works efficiently with interactive 3D visualization

    Hybridization of silhouette rendering and pen-and-ink illustration of non-photorealistic rendering technique for 3D object

    Get PDF
    This study proposes a hybrid of Non-photorealistic Rendering techniques. Nonphotorealistic Rendering (NPR) covers one part in computer graphics that caters towards generating many kinds of 2D digital art style from 3D data, for instance output that looks like painting and drawing. NPR includes the painterly, interpretative, expressive and artistic styles, among others. NPR research deal with different issues such as the stylization that are driven by human perception, the science and art that were brought together and being harmonized with techniques used. Some of approaches used in NPR were discussed such as cartoon rendering, watercolour painting, silhouette rendering, penand- ink illustration and so on. A plan for hybridization of NPR techniques is proposed between silhouette rendering techniques and pen-and-ink illustration for this study. The integration process of these rendering techniques takes on the lighting mapping and also the construction of colour region of the model in order to ensure the pen-and-ink illustration texture can be implemented into the object. The evaluation process is based on the visualization of the image from the hybridization process. Based on findings, the hybridization of NPR technique was able to create interesting results and considered as an alternative in producing new variety of visualization image in NPR

    Improving Shape Depiction under Arbitrary Rendering

    Get PDF
    International audienceBased on the observation that shading conveys shape information through intensity gradients, we present a new technique called Radiance Scaling that modifies the classical shading equations to offer versatile shape depiction functionalities. It works by scaling reflected light intensities depending on both surface curvature and material characteristics. As a result, diffuse shading or highlight variations become correlated to surface feature variations, enhancing concavities and convexities. The first advantage of such an approach is that it produces satisfying results with any kind of material for direct and global illumination: we demonstrate results obtained with Phong and Ashikmin-Shirley BRDFs, Cartoon shading, sub-Lambertian materials, perfectly reflective or refractive objects. Another advantage is that there is no restriction to the choice of lighting environment: it works with a single light, area lights, and inter-reflections. Third, it may be adapted to enhance surface shape through the use of precomputed radiance data such as Ambient Occlusion, Prefiltered Environment Maps or Lit Spheres. Finally, our approach works in real-time on modern graphics hardware making it suitable for any interactive 3D visualization

    Virtual tour

    Get PDF
    Interactive 3D Visualization of Architectural models might be the best way to get some idea about an Architecture Plan. Photo-realistic visualization often attracts the investors and customers for whom the architectural blueprints are obscure. Architectural Visualization is considered to have a bright future ahead of it as more and more architects and real estate developers are using this technology. Virtual Walk-through can give not only ideas about your building but its interiors and design too. The Architectural Virtual Environment also most widely used in Gaming and Entertainment Industry in creating a complex movie scenes or a game environment

    Dynamic Stylized Shading Primitives

    Get PDF
    Honorable Mention in RenderingInternational audienceShading appearance in illustrations, comics and graphic novels is designed to convey illumination, material and surface shape characteristics at once. Moreover, shading may vary depending on different configurations of surface distance, lighting, character expressions, timing of the action, to articulate storytelling or draw attention to a part of an object. In this paper, we present a method that imitates such expressive stylized shading techniques in dynamic 3D scenes, and which offers a simple and flexible means for artists to design and tweak the shading appearance and its dynamic behavior. The key contribution of our approach is to seamlessly vary appearance by using a combination of shading primitives that take into account lighting direction, material characteristics and surface features. We demonstrate their flexibility in a number of scenarios: minimal shading, comics or cartoon rendering, glossy and anisotropic material effects; including a variety of dynamic variations based on orientation, timing or depth. Our prototype implementation combines shading primitives with a layered approach and runs in real-time on the GPU

    Bidirectional Appearance Distribution Function for Stylized Shading

    Get PDF
    We define a new shading tool called a Bidirectional Appearance Distribution Function (BADF) tailored to the direct control of stylized appearance. A BADF can be thought of as defining the appearance of a sphere from all possible illumination directions. Our BADF formulation generalizes and improves upon previous stylized shading techniques by enabling the direct control of shading profiles in screen space, exaggerating surface features in a flexible manner, and letting users control stylized appearance from multiple lighting or viewing directions. This allows users to start from a simple shading behavior, and refine from there towards greater stylization. Our GPU implementation works in real-time, which benefits both editing, and rendering in interactive systems. These features make BADFs an efficient tool for many applications in artistic and scientific illustration domains
    corecore