76 research outputs found

    Stroke Lesion Segmentation and Deep Learning: A Comprehensive Review

    Get PDF
    Stroke is a medical condition that affects around 15 million people annually. Patients and their families can face severe financial and emotional challenges as it can cause motor, speech, cognitive, and emotional impairments. Stroke lesion segmentation identifies the stroke lesion visually while providing useful anatomical information. Though different computer-aided software areavailable for manual segmentation, state-of-the-art deep learning makes the job much easier. This review paper explores the different deep-learning-based lesion segmentation models and the impact of different pre-processing techniques on their performance. It aims to provide a comprehensive overview of the state-of-the-art models and aims to guide future research and contribute to thedevelopment of more robust and effective stroke lesion segmentation models

    Illumination coding meets uncertainty learning: toward reliable AI-augmented phase imaging

    Full text link
    We propose a physics-assisted deep learning (DL) framework for large space-bandwidth product (SBP) phase imaging. We design an asymmetric coded illumination scheme to encode high-resolution phase information across a wide field-of-view. We then develop a matching DL algorithm to provide large-SBP phase estimation. We show that this illumination coding scheme is highly scalable in achieving flexible resolution, and robust to experimental variations. We demonstrate this technique on both static and dynamic biological samples, and show that it can reliably achieve 5X resolution enhancement across 4X FOVs using only five multiplexed measurements -- more than 10X data reduction over the state-of-the-art. Typical DL algorithms tend to provide over-confident predictions, whose errors are only discovered in hindsight. We develop an uncertainty learning framework to overcome this limitation and provide predictive assessment to the reliability of the DL prediction. We show that the predicted uncertainty maps can be used as a surrogate to the true error. We validate the robustness of our technique by analyzing the model uncertainty. We quantify the effect of noise, model errors, incomplete training data, and "out-of-distribution" testing data by assessing the data uncertainty. We further demonstrate that the predicted credibility maps allow identifying spatially and temporally rare biological events. Our technique enables scalable AI-augmented large-SBP phase imaging with dependable predictions.Published versio

    Bioinformatics and Medicine in the Era of Deep Learning

    Full text link
    Many of the current scientific advances in the life sciences have their origin in the intensive use of data for knowledge discovery. In no area this is so clear as in bioinformatics, led by technological breakthroughs in data acquisition technologies. It has been argued that bioinformatics could quickly become the field of research generating the largest data repositories, beating other data-intensive areas such as high-energy physics or astroinformatics. Over the last decade, deep learning has become a disruptive advance in machine learning, giving new live to the long-standing connectionist paradigm in artificial intelligence. Deep learning methods are ideally suited to large-scale data and, therefore, they should be ideally suited to knowledge discovery in bioinformatics and biomedicine at large. In this brief paper, we review key aspects of the application of deep learning in bioinformatics and medicine, drawing from the themes covered by the contributions to an ESANN 2018 special session devoted to this topic

    Bioinformatics and Medicine in the Era of Deep Learning

    Get PDF
    Many of the current scientific advances in the life sciences have their origin in the intensive use of data for knowledge discovery. In no area this is so clear as in bioinformatics, led by technological breakthroughs in data acquisition technologies. It has been argued that bioinformatics could quickly become the field of research generating the largest data repositories, beating other data-intensive areas such as high-energy physics or astroinformatics. Over the last decade, deep learning has become a disruptive advance in machine learning, giving new live to the long-standing connectionist paradigm in artificial intelligence. Deep learning methods are ideally suited to large-scale data and, therefore, they should be ideally suited to knowledge discovery in bioinformatics and biomedicine at large. In this brief paper, we review key aspects of the application of deep learning in bioinformatics and medicine, drawing from the themes covered by the contributions to an ESANN 2018 special session devoted to this topic

    Deep Learning based Novel Anomaly Detection Methods for Diabetic Retinopathy Screening

    Get PDF
    Programa Oficial de Doutoramento en Computación. 5009V01[Abstract] Computer-Aided Screening (CAS) systems are getting popularity in disease diagnosis. Modern CAS systems exploit data driven machine learning algorithms including supervised and unsupervised methods. In medical imaging, annotating pathological samples are much harder and time consuming work than healthy samples. Therefore, there is always an abundance of healthy samples and scarcity of annotated and labelled pathological samples. Unsupervised anomaly detection algorithms can be implemented for the development of CAS system using the largely available healthy samples, especially when disease/nodisease decision is important for screening. This thesis proposes unsupervised machine learning methodologies for anomaly detection in retinal fundus images. A novel patchbased image reconstructor architecture for DR detection is presented, that addresses the shortcomings of standard autoencoders-based reconstructors. Furthermore, a full-size image based anomaly map generation methodology is presented, where the potential DR lesions can be visualized at the pixel-level. Afterwards, a novel methodology is proposed to extend the patch-based architecture to a fully-convolutional architecture for one-shot full-size image reconstruction. Finally, a novel methodology for supervised DR classification is proposed that utilizes the anomaly maps

    Generalizable deep learning based medical image segmentation

    Get PDF
    Deep learning is revolutionizing medical image analysis and interpretation. However, its real-world deployment is often hindered by the poor generalization to unseen domains (new imaging modalities and protocols). This lack of generalization ability is further exacerbated by the scarcity of labeled datasets for training: Data collection and annotation can be prohibitively expensive in terms of labor and costs because label quality heavily dependents on the expertise of radiologists. Additionally, unreliable predictions caused by poor model generalization pose safety risks to clinical downstream applications. To mitigate labeling requirements, we investigate and develop a series of techniques to strengthen the generalization ability and the data efficiency of deep medical image computing models. We further improve model accountability and identify unreliable predictions made on out-of-domain data, by designing probability calibration techniques. In the first and the second part of thesis, we discuss two types of problems for handling unexpected domains: unsupervised domain adaptation and single-source domain generalization. For domain adaptation we present a data-efficient technique that adapts a segmentation model trained on a labeled source domain (e.g., MRI) to an unlabeled target domain (e.g., CT), using a small number of unlabeled training images from the target domain. For domain generalization, we focus on both image reconstruction and segmentation. For image reconstruction, we design a simple and effective domain generalization technique for cross-domain MRI reconstruction, by reusing image representations learned from natural image datasets. For image segmentation, we perform causal analysis of the challenging cross-domain image segmentation problem. Guided by this causal analysis we propose an effective data-augmentation-based generalization technique for single-source domains. The proposed method outperforms existing approaches on a large variety of cross-domain image segmentation scenarios. In the third part of the thesis, we present a novel self-supervised method for learning generic image representations that can be used to analyze unexpected objects of interest. The proposed method is designed together with a novel few-shot image segmentation framework that can segment unseen objects of interest by taking only a few labeled examples as references. Superior flexibility over conventional fully-supervised models is demonstrated by our few-shot framework: it does not require any fine-tuning on novel objects of interest. We further build a publicly available comprehensive evaluation environment for few-shot medical image segmentation. In the fourth part of the thesis, we present a novel probability calibration model. To ensure safety in clinical settings, a deep model is expected to be able to alert human radiologists if it has low confidence, especially when confronted with out-of-domain data. To this end we present a plug-and-play model to calibrate prediction probabilities on out-of-domain data. It aligns the prediction probability in line with the actual accuracy on the test data. We evaluate our method on both artifact-corrupted images and images from an unforeseen MRI scanning protocol. Our method demonstrates improved calibration accuracy compared with the state-of-the-art method. Finally, we summarize the major contributions and limitations of our works. We also suggest future research directions that will benefit from the works in this thesis.Open Acces

    Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, meta-analysis and future research directions

    Get PDF
    Removing the bias and variance of multicentre data has always been a challenge in large scale digital healthcare studies, which requires the ability to integrate clinical features extracted from data acquired by different scanners and protocols to improve stability and robustness. Previous studies have described various computational approaches to fuse single modality multicentre datasets. However, these surveys rarely focused on evaluation metrics and lacked a checklist for computational data harmonisation studies. In this systematic review, we summarise the computational data harmonisation approaches for multi-modality data in the digital healthcare field, including harmonisation strategies and evaluation metrics based on different theories. In addition, a comprehensive checklist that summarises common practices for data harmonisation studies is proposed to guide researchers to report their research findings more effectively. Last but not least, flowcharts presenting possible ways for methodology and metric selection are proposed and the limitations of different methods have been surveyed for future research
    • …
    corecore