1,784 research outputs found

    RDF Querying

    Get PDF
    Reactive Web systems, Web services, and Web-based publish/ subscribe systems communicate events as XML messages, and in many cases require composite event detection: it is not sufficient to react to single event messages, but events have to be considered in relation to other events that are received over time. Emphasizing language design and formal semantics, we describe the rule-based query language XChangeEQ for detecting composite events. XChangeEQ is designed to completely cover and integrate the four complementary querying dimensions: event data, event composition, temporal relationships, and event accumulation. Semantics are provided as model and fixpoint theories; while this is an established approach for rule languages, it has not been applied for event queries before

    DRIVER Technology Watch Report

    Get PDF
    This report is part of the Discovery Workpackage (WP4) and is the third report out of four deliverables. The objective of this report is to give an overview of the latest technical developments in the world of digital repositories, digital libraries and beyond, in order to serve as theoretical and practical input for the technical DRIVER developments, especially those focused on enhanced publications. This report consists of two main parts, one part focuses on interoperability standards for enhanced publications, the other part consists of three subchapters, which give a landscape picture of current and surfacing technologies and communities crucial to DRIVER. These three subchapters contain the GRID, CRIS and LTP communities and technologies. Every chapter contains a theoretical explanation, followed by case studies and the outcomes and opportunities for DRIVER in this field

    Semantic technologies: from niche to the mainstream of Web 3? A comprehensive framework for web Information modelling and semantic annotation

    Get PDF
    Context: Web information technologies developed and applied in the last decade have considerably changed the way web applications operate and have revolutionised information management and knowledge discovery. Social technologies, user-generated classification schemes and formal semantics have a far-reaching sphere of influence. They promote collective intelligence, support interoperability, enhance sustainability and instigate innovation. Contribution: The research carried out and consequent publications follow the various paradigms of semantic technologies, assess each approach, evaluate its efficiency, identify the challenges involved and propose a comprehensive framework for web information modelling and semantic annotation, which is the thesisā€™ original contribution to knowledge. The proposed framework assists web information modelling, facilitates semantic annotation and information retrieval, enables system interoperability and enhances information quality. Implications: Semantic technologies coupled with social media and end-user involvement can instigate innovative influence with wide organisational implications that can benefit a considerable range of industries. The scalable and sustainable business models of social computing and the collective intelligence of organisational social media can be resourcefully paired with internal research and knowledge from interoperable information repositories, back-end databases and legacy systems. Semantified information assets can free human resources so that they can be used to better serve business development, support innovation and increase productivity

    ASSEMBLY DIFFERENTIATION IN CAD SYSTEMS

    Get PDF
    This work presents a data model for differentiating and sharing assembly design (AsD) information during collaborative design. Joints between parts are an important aspect of assembly models that are often ambiguous when sharing of models takes place. Although various joints may have similar geometries and topologies, their joining methods and process parameters may vary significantly. It is possible to attach notes and annotations to geometric entities within CAD environments in order to distinguish joints; however, such textual information does not readily prepare models for sharing among collaborators or downstream processes such as simulation and analysis. At present, textual information must be examined and interpreted by the human designer and cannot be interpreted or utilized by the computer; thus, making the querying of information potentially cumbersome and time consuming.This work presents an AsD ontology that explicitly represents assembly constraints, including joining constraints, and infers any remaining implicit ones. By relating concepts through ontology technology rather than just defining an arbitrary data structure, assembly and joining concepts can be captured in their entirety or extended as necessary. By using the knowledge captured by the ontology, similar-looking joints can be differentiated and the collaboration and downstream product development processes further automated, as the semantics attached to the assembly model prepares it for use within the Semantic Web

    Knowledge formalization in experience feedback processes : an ontology-based approach

    Get PDF
    Because of the current trend of integration and interoperability of industrial systems, their size and complexity continue to grow making it more difficult to analyze, to understand and to solve the problems that happen in their organizations. Continuous improvement methodologies are powerful tools in order to understand and to solve problems, to control the effects of changes and finally to capitalize knowledge about changes and improvements. These tools involve suitably represent knowledge relating to the concerned system. Consequently, knowledge management (KM) is an increasingly important source of competitive advantage for organizations. Particularly, the capitalization and sharing of knowledge resulting from experience feedback are elements which play an essential role in the continuous improvement of industrial activities. In this paper, the contribution deals with semantic interoperability and relates to the structuring and the formalization of an experience feedback (EF) process aiming at transforming information or understanding gained by experience into explicit knowledge. The reuse of such knowledge has proved to have significant impact on achieving themissions of companies. However, the means of describing the knowledge objects of an experience generally remain informal. Based on an experience feedback process model and conceptual graphs, this paper takes domain ontology as a framework for the clarification of explicit knowledge and know-how, the aim of which is to get lessons learned descriptions that are significant, correct and applicable

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion

    Provenance-aware knowledge representation: A survey of data models and contextualized knowledge graphs

    Get PDF
    Expressing machine-interpretable statements in the form of subject-predicate-object triples is a well-established practice for capturing semantics of structured data. However, the standard used for representing these triples, RDF, inherently lacks the mechanism to attach provenance data, which would be crucial to make automatically generated and/or processed data authoritative. This paper is a critical review of data models, annotation frameworks, knowledge organization systems, serialization syntaxes, and algebras that enable provenance-aware RDF statements. The various approaches are assessed in terms of standard compliance, formal semantics, tuple type, vocabulary term usage, blank nodes, provenance granularity, and scalability. This can be used to advance existing solutions and help implementers to select the most suitable approach (or a combination of approaches) for their applications. Moreover, the analysis of the mechanisms and their limitations highlighted in this paper can serve as the basis for novel approaches in RDF-powered applications with increasing provenance needs
    • ā€¦
    corecore