198 research outputs found

    Roadmap of optical communications

    Get PDF
    © 2016 IOP Publishing Ltd. Lightwave communications is a necessity for the information age. Optical links provide enormous bandwidth, and the optical fiber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global high-capacity networks, which constitute the backbone of the internet, to the massively parallel interconnects that provide data connectivity inside datacenters and supercomputers. Optical communications is a diverse and rapidly changing field, where experts in photonics, communications, electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novel services and technologies. Due to the interdisciplinary nature of this rich research field, Journal of Optics has invited 16 researchers, each a world-leading expert in their respective subfields, to contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications

    Design tradeoffs and challenges in practical coherent optical transceiver implementations

    Get PDF
    This tutorial discusses the design and ASIC implementation of coherent optical transceivers. Algorithmic and architectural options and tradeoffs between performance and complexity/power dissipation are presented. Particular emphasis is placed on flexible (or reconfigurable) transceivers because of their importance as building blocks of software-defined optical networks. The paper elaborates on some advanced digital signal processing (DSP) techniques such as iterative decoding, which are likely to be applied in future coherent transceivers based on higher order modulations. Complexity and performance of critical DSP blocks such as the forward error correction decoder and the frequency-domain bulk chromatic dispersion equalizer are analyzed in detail. Other important ASIC implementation aspects including physical design, signal and power integrity, and design for testability, are also discussed.Fil: Morero, Damián Alfonso. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. ClariPhy Argentina S.A.; ArgentinaFil: Castrillon, Alejandro. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Aguirre, Alejandro. ClariPhy Argentina S.A.; ArgentinaFil: Hueda, Mario Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaFil: Agazzi, Oscar Ernesto. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. ClariPhy Argentina S.A.; Argentin

    Future benefits and applications of intelligent on-board processing to VSAT services

    Get PDF
    The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified

    Applications of satellite technology to broadband ISDN networks

    Get PDF
    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about 190Mwhereasthesecondarchitecturewouldbeabout190M whereas the second architecture would be about 250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization

    Advanced Digital Signal Processing Techniques for High-Speed Optical Links

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Tecnologias coerentes para redes ópticas flexíveis

    Get PDF
    Next-generation networks enable a broad range of innovative services with the best delivery by utilizing very dense wired/wireless networks. However, the development of future networks will require several breakthroughs in optical networks such as high-performance optical transceivers to support a very-high capacity optical network as well as optimization of the network concept, ensuring a dramatic reduction of the cost per bit. At the same time, all of the optical network segments (metro, access, long-haul) need new technology options to support high capacity, spectral efficiency and data-rate flexibility. Coherent detection offers an opportunity by providing very high sensitivity and supporting high spectral efficiency. Coherent technology can still be combined with polarization multiplexing. Despite the increased cost and complexity, the migration to dual-polarization coherent transceivers must be considered, as it enables to double the spectral efficiency. These dual-polarization systems require an additional digital signal processing (DSP) subsystem for polarization demultiplexing. This work seeks to provide and characterize cost-effective novel coherent transceivers for the development of new generation practical, flexible and high capacity transceivers for optical metro-access and data center interconnects. In this regard, different polarization demultiplexing (PolDemux) algorithms, as well as adaptive Stokes will be considered. Furthermore, low complexity and modulation format-agnostic DSP techniques based on adaptive Stokes PolDemux for flexible and customizable optical coherent systems will be proposed. On this subject, the performance of the adaptive Stokes algorithm in an ultra-dense wavelength division multiplexing (U-DWDM) system will be experimentally evaluated, in offline and real-time operations over a hybrid optical-wireless link. In addition, the efficiency of this PolDemux algorithm in a flexible optical metro link based on Nyquist pulse shaping U-DWDM system and hybrid optical signals will be assessed. Moreover, it is of great importance to find a transmission technology that enables to apply the Stokes PolDemux for long-haul transmission systems and data center interconnects. In this work, it is also proposed a solution based on the use of digital multi-subcarrier multiplexing, which improve the performance of long-haul optical systems, without increasing substantially, their complexity and cost.As redes de telecomunicações futuras permitirão uma ampla gama de serviços inovadores e com melhor desempenho. No entanto, o desenvolvimento das futuras redes implicará vários avanços nas redes de fibra ótica, como transcetores óticos de alto desempenho capazes de suportar ligações de muito elevada capacidade, e a otimização da estrutura da rede, permitindo uma redução drástica do custo por bit transportado. Simultaneamente, todos os segmentos de rede ótica (metropolitanas, acesso e longo alcance) necessitam de novas opções tecnológicas para suportar uma maior capacidade, maior eficiência espetral e flexibilidade. Neste contexto, a deteção coerente surge como uma oportunidade, fornecendo alta sensibilidade e elevada eficiência espetral. A tecnologia de deteção coerente pode ainda ser associada à multiplexação na polarização. Apesar de um potencial aumento ao nível do custo e da complexidade, a migração para transcetores coerentes de dupla polarização deve ser ponderada, pois permite duplicar a eficiência espetral. Esses sistemas de dupla polarização requerem um subsistema de processamento digital de sinal (DSP) adicional para desmultiplexagem da polarização. Este trabalho procura fornecer e caracterizar novos transcetores coerentes de baixo custo para o desenvolvimento de uma nova geração de transcetores mais práticos, flexíveis e de elevada capacidade, para interconexões óticas ao nível das futuras redes de acesso e metro. Assim, serão analisados diferentes algoritmos para a desmultiplexagem da polarização, incluindo uma abordagem adaptativa baseada no espaço de Stokes. Além disso, são propostas técnicas de DSP independentes do formato de modulação e de baixa complexidade baseadas na desmultiplexagem de Stokes adaptativa para sistemas óticos coerentes flexíveis. Neste contexto, o desempenho do algoritmo adaptativo de desmultiplexagem na polarização baseado no espaço de Stokes é avaliado experimentalmente num sistema U-DWDM, tanto em análises off-line como em tempo real, considerando um percurso ótico hibrido que combina um sistema de transmissão suportado por fibra e outro em espaço livre. Foi ainda analisada a eficiência do algoritmo de desmultiplexagem na polarização numa rede ótica de acesso flexível U-DWDM com formatação de pulso do tipo Nyquist. Neste trabalho foi ainda analisada a aplicação da técnica de desmultiplexagem na polarização baseada no espaço de Stokes para sistemas de longo alcance. Assim, foi proposta uma solução de aplicação baseada no uso da multiplexagem digital de múltiplas sub-portadoras, tendo-se demonstrado uma melhoria na eficiência do desempenho dos sistemas óticos de longo alcance, sem aumentar significativamente a respetiva complexidade e custo.Programa Doutoral em Engenharia Eletrotécnic

    High Spectral Efficiency Fiber-Optic Transmission Systems Using Pilot Tones

    Get PDF
    Modern fiber-optic communication systems combine state-of-the-art components with powerful digital signal processing (DSP) to maximize the system spectral efficiency (SE). Systems rely on wavelength-division multiplexing, including superchannel transmission, to enable transmission over the available bandwidth which reaches about 10 THz when accounting for the so-called C and L bands. A superchannel is a set of densely packed wavelength channels viewed as a single unit. By treating the channels together, they can be packed more closely than what is normally feasible and sharing of resources among the channels within the superchannel can be considered. In this thesis we focus on the special case of superchannels formed using coherent optical frequency combs. A frequency comb is a multi-wavelength light source and comb-based superchannels consists of channels which are modulated on lines originating from a common comb. Frequency combs have phase-locked carriers, meaning that in contrast to the standard case of independent lasers, the channels within a comb-based superchannel are locked on a frequency grid. Moreover, it implies that the carrier offsets originating from a non-ideal laser source are shared among all comb lines.Shared carrier offsets can be exploited to reduce the complexity of the DSP used to effectively recover the data. A frequency comb is fully characterized by knowing the state of two of its lines, meaning that if this information is transferred to the receiver, one could compensate carrier offsets for all wavelength channels within the superchannel. By transmission of optical pilot tones, self-homodyne detection of a 50x20Gbaud PM-64QAM superchannel is demonstrated with 4% spectral overhead. While two tones are required to fully phase-lock two combs, a single tone is enough to enable significant relaxation of the DSP-requirements while at the same time requiring minimal additional complexity compared to standard intradyne systems. Superchannel transmission using a single shared pilot tone is demonstrated by transmission of a 51x24Gbaud PM-128QAM superchannel with a resulting SE of 10.3bits/s/Hz. The single pilot scheme is also evaluated for distances up to 1000km showing high robustness to both noise and fiber nonlinearities. Finally, the high gain low overhead combination of the single pilot-tone scheme was used in a record demonstration reaching a SE of 11.5bits/s/Hz for fully loaded C-band transmission

    High spectral efficiency transmission using optical frequency combs

    Get PDF
    Modern long-haul optical communication systems transmit data on all available single-mode fiber dimensions, time, polarization, wavelength, phase and amplitude. Powerful digital signal processing and forward error correction has pushed the per-channel throughput towards its theoretical limits and the bandwidth is limited by the erbium-doped fiber amplifiers. Maximizing the spectral efficiency (SE), i.e. the throughput normalized to bandwidth, is therefore of indisputable importance. Even more so in optical networks as large routing guard-bands drastically reduce the SE of traditional WDM systems. Flex-grid networks with optical superchannels can overcome this limitation. Superchannels consist of multiple tightly packed WDM channels routed as a unit. A comb-based superchannel is formed by encoding independent information onto lines from an optical frequency comb, a multi-wavelength light source fully determined by its center frequency and line spacing. This thesis studies the generation, transmission and detection of comb-based superchannels. Focus is on profiting from unique frequency comb properties to realize systems with capabilities beyond that of conventional systems using arrays of independent lasers. Digital, analog and optical processing schemes are proposed, and combined, to increase the system SE. Superchannel modulation is investigated and a scheme capable of encoding independent information onto the lines from a frequency comb in a single waveguide structure is demonstrated. By combining overhead-optimized pilot-based DSP with a 22GHz-spaced soliton microcomb, superchannel transmission with record SE for distances up to 3000km is realized, closing the performance gap between chip-scale and bulk-optic combs in optical communications. The use of two optical pilot tones (PTs) to phase-lock a transmitter and receiver comb pair is studied, realizing self-homodyne detection of a 50x20Gbaud PM-64QAM superchannel with 4% pilot overhead. The PT gains are furthermore analyzed and a complexity-performance trade-off using a single PT and low complexity DSP is proposed. The scheme is used to demonstrate 12bits/s/Hz SE over the full C-band using 3x50xGBaud PM-256QAM superchannels and DSP-complexity reduction at distances exceeding 1000km is shown. Finally, a comb-enabled multi-channel joint equalization scheme capable of mitigating inter-channel crosstalk and thereby minimizing the SE loss from spectral guard bands is demonstrated
    corecore