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Abstract—Decoding of FEC (forward error correction) for 
optical communication beyond 1 Tb/s is investigated. A 
configurable single FPGA solution is presented having 
configurations supporting bit-rates in the range from 40 Gb/s to 
1.6 Tb/s. The design allows for trade-offs of bit-rate, footprint, 
and latency within the resources of the FPGA. A proof-of-concept 
lab experiment at 40 Gb/s was conducted and pre-FEC – post-
FEC performance validated with simulated results.  

Keywords—HD-FEC; beyond 1 Tb/s; product codes; optical 
communication 

I. INTRODUCTION

Forward error correction (FEC) plays an important role in 
today’s high speed optical communication systems. The 
purpose of this paper is to design a FEC unit capable of 
operating up to 1.6 Tb/s (gross) data rate in a single FPGA. The 
aim is to use the unit for experimental research into high speed 
optical communication. The design may of course also be used 
for future standards of l x 100 Gb/s data rates, but additional 
functions are needed to fit into a specific transmission format.  

Many results for optical fiber transmission links at 400 
Gb/s have been reported, see e.g. in [1], and application of FEC 
to such high speed links are also reported, [1], [2]. It must be 
foreseen that several parallel lanes with a lower bit rate could 
be used, but combined in a single FEC solution. The IEEE 
802.3 400G study group published initial thoughts on a single 
FEC solution [3]. Though the study is for 400G Ethernet, it 
shows a trend for future high speed links. In this paper we 
consider a reconfigurable FPGA solution capable of operating 
as a single FEC structure initially up to 400 Gb/s net data rate 
in ordinary FPGAs. The interfaces to the FPGAs are assumed 
to be aggregates of many lanes since modern FPGAs allow no 
more than on the order of 25 Gb/s interfaces. For higher data 
rates, the codes may be interleaved and our goal is to have 
space for the decoders up to 1600 Gb/s in a single FPGA. In 
addition to the higher speed, the reference bit error rate (BER) 
for future systems will be stricter. Today the value is 10−15, and 
a value of 10−17 is one of the proposals for 400G Ethernet [4]. It 
is characteristic for all iterative decoding algorithms that the 
performance improves sharply around a certain pre-FEC BER, 
but the performance is then limited by an error floor for lower 
pre-FEC error rates. The error floor must then of course also be 

below 10−17-10−15. Here we shall evaluate the Net Coding Gain 
(NCG) at 10−15, but aim for an error-floor below 10−17.  

Improvements in system performance may also be achieved 
by applying a FEC frame over two [5] or more wavelengths 
with different error levels or variations over time, e.g. if the 
FEC threshold can be calculated as an average over the 
wavelengths, called gain-sharing, rather than applying a worst-
case design. For a fixed size FEC frame the absolute latency 
due to FEC coding may also be reduced by increasing FEC 
data rate by coding over a super-channel rather than coding 
each channel independently.  

Overviews of FEC for optical communication can be found 
in [6] and [7]. Most of the recent research work considers soft-
decision FEC especially with use of LDPC codes, [2], [6], [7], 
[8]. In this paper, we focus on hard decision decoding for two 
reasons: First, soft decisions require a broader interface to the 
FPGA and this will limit the data rate due to the limited 
number of transceivers in the FPGA. Second, soft decision 
algorithms are more complex and it is difficult to reach the goal 
of beyond 1 Tb/s for a single FPGA FEC decoder unit. Soft 
decisions would improve performance since there is 1.1-1.3 dB 
difference in capacity for a binary channel. For modulation 
systems of higher order than QPSK, soft decisions may be used 
to reflect the different reliabilities of the received bits. Soft 
decisions may be a feasible solution in integrated ASIC design, 
[9]. Several hard-decision FEC codecs have been proposed for 
100 Gb/s, all having a NCG around 9 dB with an overhead 
slightly less than 7%, e.g. [10], [11], and [12]. The latter 
presents a product code with a more advanced interleaving 
scheme reducing the number of bits to take into account at the 
decoding. Staircase codes [13] may also be seen as product 
codes with an advanced interleaving scheme and with similar 
performance. Operating with a larger overhead, hard decision 
schemes that deliver more than 10 dB NCGs are also product 
code solutions, see e.g. [1]. The performance of product codes 
will be discussed in the next section.  

In Sec. II, the chosen product code and basic principle of 
decoding and performance analysis is presented. Sec. III 
presents a scalable decoder design and overview of VHDL 
implementation. Synthesis results from 40 Gb/s to 1.6 Tb/s are 
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Fig. 1 Frame with product code structure. 

 

presented in Sec. IV and a proof-of-concept lab-experiment at 
40 Gb/s is presented in Sec. V. 

II. THE PRODUCT CODE AND ITS DECODING 
The component code for the product code used in the 

present FEC unit is an expurgated BCH-code capable of 
correcting 3 errors and detecting 4 errors as in [12]. The length 
of the code, n, is maximum 1023, but in this application, the 
code is shortened a little depending on the bit rate due to 
interfacing requirements for the FPGA. The actual code 
parameters are (n, k) = (1008, 976) to (960, 928), where k is the 
number of information bits. The number of redundancy bits is 
always n−k = 32 and the minimum distance is 8. The code 
generator polynomial is 
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where the first 3 factors give a primitive BCH code capable of 
correcting 3 errors and the last factor expurgates this code to 
obtain the minimum distance of 8. The decoding operates on 
syndromes, si, calculated in the finite field GF(1024) with 
primitive element α from the received polynomial r(z): 

  , 1,3,5i
is r i    (2) 

The BCH code is applied to both rows and columns in a 
quadratic product code structure, which is named a frame as 
illustrated in Fig. 1. Thus the overhead ranges from 6.7% to 
7.0%. The BCH decoder implementation follows a suggestion 
by S. Gravano, [14], who reinvented the decoder structures 
given by Okano and Imai, [15]. The BCH-code is decoded 
without the expurgation (i.e. the first three factors in g(z))  by 
first computing syndromes, which are used to directly set up 
the coefficients of the error locator polynomial.  
 

The error positions are found from a modified error locator 

polynomial through look-up tables avoiding the search for 
roots in the polynomial. The decoded result is then qualified by 
the two parity check bits (one for even positions and one for 
odd positions) defined by the last factor of g(z). 

Decoding of a frame is performed with hard decisions, first 
rows, then columns and then rows again and so on. An 
iteration is defined as decoding the rows followed by decoding 
the columns. A theory for the performance of such quadratic 
product codes is found in [16] and [17]. Since the BCH 
component codes are capable of correcting 3 errors, the theory 
states that with a high probability, an ideal decoder is 
successful after many iterations if the average number of pre-
FEC bit errors is below 5.14 errors per row or column, i.e. a 
pre-FEC BER around 5∙10−3. This threshold corresponds to an 
NCG of 9.5 dB, only 0.3 dB less than what is achievable for 
hard decisions (binary symmetric channel). The actual 
performance is impeded by a limited number of iterations and 
the possibility of wrong decoding. If there are more than 3 
errors, the BCH decoder may decode to an error pattern 
corresponding to a codeword with weight 7 or 8. The last 
factor of the generator polynomial (1) reduces the probability 
of accepting a wrongly decoded error pattern by 1/4. In [18] 
the probability for wrong decoding of Reed-Solomon codes is 
treated and the results also hold for BCH codes. If more than 3 
errors occur, the probability of wrong decoding is around 1/3!, 
and in connection with the two parity checks, the overall 
probability of  wrong decoding is around 1/24 given that more 
than 3 errors occur. In addition to the threshold where 
decoding is expected to be successful, an error floor also 
exists. The error floor could be illustrated by 4×4 errors in a 
square (also known as a core) which is clearly impossible to 
decode. These rows and columns of the core do not need to be 
adjacent, and the error positions could be the intersection of 
any combination of 4 rows and 4 columns. Thus the 
probability of frame loss (PFL) due to this type of error 
constellations at pre-FEC BER p may be estimated by 
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This may be used as an estimate of the error floor for 
frame loss at pre-FEC BER p and multiplying by the 16 bit 
errors gives an estimate the post-FEC error floor BER: 
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Errors of a given decoding scheme may also contribute to 
the error floor. An error floor taking decoding errors into 
account is given in the Appendix.  

III. VHDL IMPLEMENTATION 
We have made a VHDL implementation of a decoder for 

the product code suitable for an FPGA. The implementation is 
intended not to be vendor or FPGA specific. Only the 
transceivers and the synchronization part use specific 
components from the Altera Stratix V FPGA present on our 
development board. The design is scalable, e.g. both the width 
of the  input and the number of internal BCH decoders working 



in parallel can be configured within a number of possible 
values.  

A. Main Decoder Design 
First step in decoding of the BCH codes is calculating 

syndromes (2). Based on the syndromes, the error positions 
are found by a number of table-look-ups for finding roots in 
2nd and 3rd degree polynomials. The approach is described in 
detail in [13]. The calculations are performed in the finite field 
GF(1024) based on logarithm and exponential tables. We shall 
refer to this part of the decoding as a Gravano decoder. Such a 
decoder works on a set of syndromes and the two parity 
checks described above, and the output is a number (0 to 3) of 
error positions to be corrected. Corrections are only performed 
if a valid codeword is found, including the parity checks, and 
none of the errors are in the part of the codeword that is 
removed due to shortening the code. The full product code is 
decoded by iterative decoding, first rows, then columns, and 
so on. This iterative process goes on as long as the timing 
restrictions permit.  

 
Although the syndrome calculation is relatively simple it is 

an advantage only to calculate the syndromes once and then 
update the syndrome when an error is corrected. For the 
specific BCH word being corrected, the syndromes are just set 
to 0, while the syndromes for the codewords in the other 
dimension have to be read and adjusted according to the error 
position corrected. Along with the syndromes the actual data 
frame also has to be corrected. The specific error position has 
to be read, inverted and written back. 

 
Our decoder design uses a number of Gravano decoders 

working in parallel. Each decoder receives a stream of 
syndromes and delivers a stream of corrections. The 
corrections are placed in a FIFO (first in first out). When there 
are corrections in the FIFO, these are read and the stored data 
and syndromes are updated accordingly. The time used to 
actually correct the errors depends on the number of 
corrections, but since several row decoders may have 
corrections to the same column they may also have to wait for 
each other. It is important that all the corrections from the row 
decoders are performed before the column decoders are started 
and vice versa. 

B. Latency 
The decoder is designed to have a latency of two full 

frames. The decoder works in frame-slots corresponding to the 
transmission time for a frame. When the frame is received and 
stored in RAM, the syndromes for both rows and columns are 
calculated. In the same frame-slot, the Gravano decoders work 
on the syndromes for the previous frame making as many 
corrections as possible in the clock cycles of the frame-slot. 
Finally, corrected data and parity are read out in a frame-slot. 
The latency is close to the minimum for the quadratic 
interleaving used. 

C. Scalable Design 
High data rates are achieved by receiving a (large) number 

of input bits in parallel. The decoder is designed such that it 

can be configured to an input width which is a power of 2. We 
have used data widths of 128, 256, 512, 1024 and 2048. The 
output width is identical to the input width. In our design, the 
input width must divide the full frame size. This is 
accomplished by shortening the BCH codes slightly. For the 
above mentioned input widths, the frame sizes are 10082, 
10082, 9922, 9922 and 9602. 

 
The number of iterations for the decoding process depends 

on the number of clock cycles available and the number of 
parallel Gravano decoders. With 128-wide input we have 
10082/128 = 7938 clock cycles per frame-slot. For 2048 we 
have 450 clock cycles. The decrease in the numbers of clock 
cycles for higher data rates can to some extent be compensated 
by increasing the number of Gravano decoders, which is a 
parameter in the decoder design. For very high data rates the 
number of clock cycles may limit the number of iterations to 
an unacceptable level. As the simulation results show (Fig. 3) 
at least 3 iterations are required for acceptable performance.  

 
If the required number of iterations cannot be achieved 

with the present decoder design there are two options.  The 
decoder can be redesigned for a higher latency, i.e. using two 
frame-slots for the decoding. Alternatively a number of frame 
decoders with the existing design can be used in parallel. This 
also gives an increased latency since several encoded frames 
have to be interleaved before transmission. We aim at the 
relatively high clock frequency of 312.5 MHz, meaning that 
32 bit wide input corresponds to a gross data rate of 10 Gb/s, 
etc.  If this clock frequency is not fully achieved, the decoder 
will still work, although at a lower data rate. 

D. RAM configuration 
The main challenge of the implementation is the RAM 

configuration. The data frame of approximately 1 Mbit must 
be stored in RAM, but since the bits should be accessed both 
row-wise and column-wise there is no obvious way to 
configure the RAM. An obvious solution would be to store 
one bit at each address, but the full input block has to be 
stored in one clock cycle. 

Our solution is to see the parallel input as a rectangular 
block within the full two-dimensional codeword. We call such 
a rectangle a tile. For 128 bit input the tile is 8×16, i.e. the first 
tile is the first 8 bits in the first 16 rows. For larger input data 
widths the tile sizes are 16×16, 16×32, 32×32 and 32×64. 
Furthermore, the RAM and part of the control system is 
divided into slices each covering a part of the frame and 
working in parallel. The number of slices corresponds to the 
number of columns in a tile. The slices include their share of 
both the syndrome formers and the syndrome storage. The 
syndrome formers take a number of bits every clock cycle 
corresponding to the dimension of the tile. Although the slices 
provide a simple way of parallelizing the process it still leaves 
some issues, since no matter how the frame is sliced the 
corrections will be exchanged between the slices. The 
bottleneck of this decoder design is thus the distribution of 
corrections between the RAM slices.  



E. Gravano decoder 
A fully pipelined Gravano decoder with 18 stages is 

implemented, i.e. it is capable of receiving a set of syndromes 
every clock cycle.  

F. Synchronization of lanes and frames 
To achieve synchronization of both lanes and frames, we 

include a number of synchronization words. Splitting the 
connection into a number of lanes really means to have a 
number of sub-frames transmitted in parallel. Each sub-frame 
needs frame synchronization which may be achieved by a 
synchronization word at the top of the sub-frame. 
Furthermore, since it may not be known which lane is 
connected to which transceiver the synchronization word is 
succeeded by a small pointer giving the number of the lane. 

 
When frame synchronization is established for all lanes, 

the lanes have to be synchronized. This is accomplished by 
denoting one lane as master and giving this a fixed delay, M. 
The slave lanes are delayed by FIFOs where the delay can be 
varied between 0 and 2M. The delays of these FIFOs are 
controlled by small state-machines based on the frame start 
signals from the actual lane and the master lane. 

 
In our lab experiment, we have used 4 lanes with 32 bit 

synchronization words and 2 bit pointers which adds up to a 
total of 136 bits. If the number of lanes is increased this can 
however be a significant number. An obvious solution is only 
to have synchronization words in some of the frames, although 
this will increase the initial synchronization time.  

IV. IMPLEMENTATION RESULTS 
We have made the synthesis, place and route etc. from the 

VHDL code for two Altera FPGAs. The design software used 
is Quartus Prime Standard Edition software versions 15.1 and 
16.0. 

In the tables we show the input parameters: the input data 
width and the number of Gravano decoders. As a result of the 
synthesis we get the maximum clock frequency, fmax, and the 
percentage of ALMs (Adaptive Logic Module) and memory 
blocks used. Based on fmax we obtain the actual maximum 
gross data rate (including the overhead for parity bits etc.) as 
the product of fmax and data width. We have also included a 
suggestion for use of transceivers. The number of iterations 
depends on the number of clock cycles available, i.e. the data 
width and the number of Gravano decoders present. The 
number of iterations is indicated in the last column. 

 
Table I presents selected synthesis results for the Altera 

Stratix V FPGA present on our development board and used in 
the lab experiment. The results are for a single frame decoder, 
but with a varying number of Gravano BCH decoders and 
without transceivers and synchronization (except for data 
width 128 which does include synchronization).   

 
Table II presents selected synthesis results for a larger 

FPGA, this time chosen from Alteras Arria 10 family. These 

implementations use multiple frame decoders of the type 
considered in Table I. The maximum clock frequency is not 
really higher with this FPGA but there is space for several 
frame decoders working in parallel. 

 
As seen from Table II, we achieve a gross data rate of 1.6 

Tb/s with a latency of 10 frames by using 5 parallel frame 
decoders each having 8 Gravano decoders. For a single frame 
decoder and 32 Gravano decoders 455 Gb/s is achieved. With 
the suggested synchronization this becomes 1502 Gb/s and 423 
Gb/s, respectively, for the net data rate. 

For a single frame decoder as in Table I, the latency is 2 
frames, i.e. approx. 2 Mbit. Above 400 Gb/s this is less than 5 
µs. At 40 Gb/s, the latency will be 50 µs. Having d frame 
decoders the latency becomes 2d frames, i.e. 2d Mbit, but this 
will be used at higher bit-rates. So for the configurations in 
Table II, the latency increases slightly from less than 5 µs to 
approx. 6 µs at 1600 Gb/s. For reference, a latency of 5 µs 
would be equivalent to the propagation delay introduced by 
1 km of standard single-mode fiber. The impact of such a delay 
would therefore be negligible even for short links. 

V. EXPERIMENT WITH 40 G 
An experimental set-up for testing the FEC decoder in 

optical communication using the Transceiver Signal Integrity 
Development Kit, Stratix V GX edition board with the 128 bit 
input and 2 Gravano decoders configuration from Table I was 
established in the laboratory as depicted in Fig. 2. 

TABLE I.  SYNTHESIS RESULTS FOR ALTERA STRATIX V 
(5SGXEA7N2F40C2 - CURRENT BOARD) 

TABLE II.  SYNTHESIS RESULTS FOR ALTERA  ARRIA 10 
(10AX115U1F45I1SG) 

 

Data 
width  

Gravano  
decoders 

Trans- 
ceivers 
(in bits) 

fmax 
 

MHz 

Max  
Gross 
rate 

ALM/mem 
(%) 

No  
It. 

128 2 4*32 bit 339.79  43 G 5/10 7 
128 8 4*32 bit 339.21  43 G 8/14 ~25 
512 8 16*32 bit 322.48  164 G 14/16 6½ 

1024  8 32*32 bit 323.21  330 G 24/17 3 
1024  16 32*32 bit 280.27  286 G 40/23 5½ 
2048  32 64*32 bit 221.78  452 G 72/34 3 

Data 
width  

Gravano  
decoders 

Trans- 
ceivers 

(in 
bits) 

fmax 
 

(MHz) 

Max  
Gross 
rate 

ALM/mem 
(%) 

No  
It. 

2048 32 64*32 222.27  455 G 39/32 3 
2x2048 
(d = 2) 

32 64*40  
+ 

32*48  

195.47  800 G 79/64 3 

3x1024 
(d=3) 

8 64*48  338.87  1041 G 40/49 3 
 

4x1024 
(d=4)  

8 64*40  
+ 

32*48  

328.19  1344 G 53/65 3 

5x1024 
(d=5)  

8 64*56  
+ 

32*48  

313.58  1605 G 
 

69/81 3 



 
Fig. 2. Experimental Setup for 40 Gb/s. 

 
Fig. 3 Simulation results for 2, 3, 7, and 25 iterations and experimental 
results from 40G experiment. 
 

 

A continuous wave (CW) external cavity laser (ECL) was 
modulated at 40 Gb/s in the on-off keying (OOK) modulation 
format using a Mach-Zehnder modulator (MZM) driven by 
non-return to zero electrical signals generated by a pulse 
pattern generator (PPG). The test-frame of 1008x1008 bits 
was loaded into the PPG as user-defined pattern. The 
modulated signal was then directly injected into a standard 
pre-amplified receiver for directed detection and BER 
measurement. At the receiver input, a noise loading stage 
based on a variable optical attenuator (VOA) in front of an 
erbium doped fiber amplifier (EDFA) was used to degrade the 
optical signal-to-noise ratio (OSNR) of the signal. A 2-nm 
wide optical bandpass filter (OBPF) was then used to suppress 
out-of-band amplified spontaneous emission (ASE) noise from 
the EDFA and a 45-GHz photodiode (PD) provided the 
optical-to-electrical conversion. The received 40-Gb/s 
electrical signal was demultiplexed into 4x10-Gb/s 
subcarriers, each of them input to the FPGA board for 
decoding and BER measurements. 

  
The received power at the input of the receiver was tuned 

by varying the attenuation added by the VOA. Thus the signal 
OSNR was varied, leading to different pre-FEC BER 
performance. This, in turn, enabled to measure the post-FEC 
versus pre-FEC BER curve of Fig. 3. 

 
Some of the experimental results showed no frames with 

errors among the 40000 frames transmitted, and these results 
are shown as an upper bound on the BER calculated from an 
upper bound on the PFL with confidence level 95% from Eq. 
(9-11) in [19]: 

            5400001 1 0.95 7.5 10PFL                              (5) 

                   8
2

305 2.25 10
1008

PFLBER 
                               (6) 

 
where the factor 305 is the average number of bit errors per 
frame measured for pre-FEC BER values, where not all 
frames are in error. This is most likely a conservative, i.e. 
high, estimate as the average number of bit errors per frame in 
error tends to decrease as pre-FEC and post-FEC error rates 
decrease. The results for no errors within the 40000 frames are 
depicted in Fig. 3, as upper bounds given by (5-6).  

 
 Besides the lab experiment results, Fig. 3 depicts the post-
FEC vs. pre-FEC performance for the simulations using 2, 3, 7, 
and 25 iterations in decoding the product code. The 
performance for the configurable code is only determined by 

the number of iterations for a given value of pre-FEC errors 
(assuming independent errors). The 2-Gravano decoder 
configuration from the lab experiment can make about 7 
iterations. Comparing the lab results with the simulated curve 
at 7 iterations shows a good match. Looking closer, it is seen 
that many of the experimental points are very close to the curve 
for 7 iterations, but there are also a fair number of outlier 
points. These outlier points in Fig. 3 are due to time 
instabilities in the optical setup resulting in slow drifts of the 
optimum sampling point within the window of 40000 frames. 
Nevertheless, tuning the sampling time in the de-mux allowed 
bringing the performance back on top of the simulated curve. 

 Based on the simulated curve the NCG was estimated to 
range from 9.0 dB for 3 iterations to 9.4 dB for 25 iterations at 
the 10-15 BER level, with most of the high gain already 
achieved with 7 iterations. The estimation of the error-floor 
(10) depicted is presented in the Appendix. It is seen to be 
better than 1710 in the range of interest, i.e. for the 
configurations with 3 – 25 iterations (Fig. 3). Thus 
performance at 25 iterations is very close to the limit of 9.5 dB 
for the product code used, [16], [17].  

VI. CONCLUSION 
A configurable HD-FEC design was presented 

demonstrating that constellations from 40Gb/s to 1600Gb/s are 
feasible on a single FPGA. NCGs from 9.0 - 9.4 dB were 
estimated based on simulations. The decoder delay may for 
high data rates be kept in the range of 5-6 µs. The post-FEC vs. 
pre-FEC BER was experimentally verified in a simple 40-Gb/s 
back-to-back optical transmission system and good agreement 
was found with the expected performance. 

APPENDIX 
For very small pre-FEC BER p, the error floor is dominated 

by the probability of a 4×4-core in the received frame and (3-4) 
gives the probability. Such a core is very unlikely to disappear 
through the iterative decoding. For larger p, there is a risk that 
decoding errors may create cores in the iterative process, and in 
this Appendix, we shall present a more precise description 
given the described decoding algorithm and a more moderate p. 

We assume a quadratic product code with primitive BCH 
component codes of length n with odd minimum distance, 
2T+1, capable of correcting T errors. The component code may 



introduce decoding errors when more than T errors occur in a 
row/column. It is difficult to specify all error patterns resulting 
in a core created in the iterative decoding process due to 
decoding errors, but we conjecture that the most probable are 
introduced in the first iteration of the row decoding. The code 
we are using (1) is a primitive BCH code expurgated with a 
double parity check, allowing only half of the BCH codewords 
with even weights to be a result of decoding and none of the 
codewords with odd weights. Thus T+2 errors in a row may 
decode to a codeword of weight 2T+2, introducing T new 
errors. Therefore we shall find out how many codewords with 
weight 2T+2 exist in the BCH code and how many of them 
have ones in the core. Error patterns resulting in codewords 
with higher even weights are assumed to be so rare that they 
may be neglected. For the code used here with T = 3, the 
weight distribution is known, and for higher T we may use an 
approximate distribution for the number of codewords with 
weight w, [20]: 
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where n is the length of the primitive BCH code and n−k´ the 
number of parity check symbols. (Notice that this number is 2 
less than the number for the expurgated code, in our case for T 
= 3, n−k´ = 30). Since the code is cyclic, the number of 
codewords with weight w = 2T+2 to have ones at T+1 
positions (i.e. in the core) is estimated using the number of 
codewords with weight 2T+2, A2T+2, as 
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The code used in the experiments has a double parity check 
reducing N2T+2 to N2T+2/2. We may then estimate the probability 
of frame loss giving the error floor at a pre-FEC BER p as 
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                                                                                            (9) 

where the subtraction of T+1 accounts for error patterns 
already accounted for in the pT+1 term. For small values of p, 
this converges towards the PFL from (3). The post-FEC BER 
of the error floor may be estimated using (9) 

                    
21_ TError floor p PFL

n
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              (10)    

An error floor analysis is also found in [17], but with 
assumption of an ideal bounded distance decoder for the BCH 
code. The code used in the experiment is shortened a little to n 
= 1008, but it is believed that the above expressions are still 
approximately valid.  Fig. 3 shows the error floor estimated by 
(10) for n = 1008 and T = 3. We have used the actual number 
of codewords with weight 2T+2 = 8, A8 = 27734105949, [20]. 
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