2,052 research outputs found

    The pain matrix reloaded: a salience detection system for the body

    Get PDF
    Neuroimaging and neurophysiological studies have shown that nociceptive stimuli elia salience detection system for the bodycit responses in an extensive cortical network including somatosensory, insular and cingulate areas, as well as frontal and parietal areas. This network, often referred to as the "pain matrix", is viewed as representing the activity by which the intensity and unpleasantness of the perception elicited by a nociceptive stimulus are represented. However, recent experiments have reported (i) that pain intensity can be dissociated from the magnitude of responses in the "pain matrix", (ii) that the responses in the "pain matrix" are strongly influenced by the context within which the nociceptive stimuli appear, and (iii) that non-nociceptive stimuli can elicit cortical responses with a spatial configuration similar to that of the "pain matrix". For these reasons, we propose an alternative view of the functional significance of this cortical network, in which it reflects a system involved in detecting, orienting attention towards, and reacting to the occurrence of salient sensory events. This cortical network might represent a basic mechanism through which significant events for the body's integrity are detected, regardless of the sensory channel through which these events are conveyed. This function would involve the construction of a multimodal cortical representation of the body and nearby space. Under the assumption that this network acts as a defensive system signaling potentially damaging threats for the body, emphasis is no longer on the quality of the sensation elicited by noxious stimuli but on the action prompted by the occurrence of potential threats

    Processing resources and interplay among sensory modalities: an EEG investigation

    Get PDF
    The primary aim of the present thesis was to investigate how the human brain handles and distributes limited processing resources among different sensory modalities. Two main hypothesis have been conventionally proposed: (1) common processing resources shared among sensory modalities (supra-modal attentional system) or (2) independent processing resources for each sensory modality. By means of four EEG experiments, we tested whether putative competitive interactions between sensory modalities – regardless of attentional influences – are present in early sensory areas. We observed no competitive interactions between sensory modalities, supporting independent processing resources in early sensory areas. Consequently, we tested the influence of top-down attention on a cross-modal dual task. We found evidence for shared attentional resources between visual and tactile modalities. Taken together, our results point toward a hybrid model of inter-modal attention. Attentional processing resources seem to be controlled by a supra-modal attentional system, however, in early sensory areas, the absence of competitive interactions strongly reduces interferences between sensory modalities, thus providing a strong processing resource independence

    Little engagement of attention by salient distractors defined in a different dimension or modality to the visual search target

    Get PDF
    Singleton distractors may inadvertently capture attention, interfering with the task at hand. The underlying neural mechanisms of how we prevent or handle distractor interference remain elusive. Here, we varied the type of salient distractor introduced in a visual search task: the distractor could be defined in the same (shape) dimension as the target, a different (color) dimension, or a different (tactile) modality (intra-dimensional, cross-dimensional, and, respectively, cross-modal distractor, all matched for physical salience); and besides behavioral interference, we measured lateralized electrophysiological indicators of attentional selectivity (the N2pc, Ppc, PD, CCN/CCP, CDA, and cCDA). The results revealed the intra-dimensional distractor to produce the strongest reaction-time interference, associated with the smallest target-elicited N2pc. In contrast, the cross-dimensional and cross-modal distractors did not engender any significant interference, and the target-elicited N2pc was comparable to the condition in which the search display contained only the target singleton, thus ruling out early attentional capture. Moreover, the cross-modal distractor elicited a significant early CCN/CCP, but did not influence the target-elicited N2pc, suggesting that the tactile distractor is registered by the somatosensory system (rather than being proactively suppressed), without, however, engaging attention. Together, our findings indicate that, in contrast to distractors defined in the same dimension as the target, distractors singled out in a different dimension or modality can be effectively prevented to engage attention, consistent with dimension- or modality-weighting accounts of attentional priority computation

    Sensory and cognitive factors in multi-digit touch, and its integration with vision

    Get PDF
    Every tactile sensation – an itch, a kiss, a hug, a pen gripped between fingers, a soft fabric brushing against the skin – is experienced in relation to the body. Normally, they occur somewhere on the body’s surface – they have spatiality. This sense of spatiality is what allows us to perceive a partner’s caress in terms of its changing location on the skin, its movement direction, speed, and extent. How this spatiality arises and how it is experienced is a thriving research topic, compelled by growing interest in the nature of tactile experiences from product design to brain-machine interfaces. The present thesis adds to this flourishing area of research by examining the unified spatial quality of touch. How does distinct spatial information converge from separate areas of the body surface to give rise to our normal unified experience of touch? After explaining the importance of this question in Chapter 1, a novel paradigm to tackle this problem will be presented, whereby participants are asked to estimate the average direction of two stimuli that are simultaneously moved across two different fingerpads. This paradigm is a laboratory analogue of the more ecological task of representing the overall movement of an object held between multiple fingers. An EEG study in Chapter 2 will reveal a brain mechanism that could facilitate such aggregated perception. Next, by characterising participants’ performance not just in terms of error rates, but by considering perceptual sensitivity, bias, precision, and signal weighting, a series of psychophysical experiments will show that this aggregation ability differs for within- and between-hand perception (Chapter 3), is independent from somatotopically-defined circuitry (Chapter 4) and arises after proprioceptive input about hand posture is accounted for (Chapter 5). Finally, inspired by the demand for integrated tactile and visual experience in virtual reality and the potential of tactile interface to aid navigation, Chapter 6 will examine the contribution of tactile spatiality on visual spatial experience. Ultimately, the present thesis will reveal sensory factors that limit precise representation of concurrently occurring dynamic tactile events. It will point to cognitive strategies the brain may employ to overcome those limitations to tactually perceive coherent objects. As such, this thesis advances somatosensory research beyond merely examining the selectivity to and discrimination between experienced tactile inputs, to considering the unified experience of touch despite distinct stimulus elements. The findings also have practical implications for the design of functional tactile interfaces

    A cross-modal investigation into the relationships between bistable perception and a global temporal mechanism

    Get PDF
    When the two eyes are presented with sufficiently different images, Binocular Rivalry (BR) occurs. BR is a form of bistable perception involving stochastic alternations in awareness between distinct images shown to each eye. It has been suggested that the dynamics of BR are due to the activity of a central temporal process and are linked to involuntary mechanisms of selective attention (aka exogenous attention). To test these ideas, stimuli designed to evoke exogenous attention and central temporal processes were employed during BR observation. These stimuli included auditory and visual looming motion and streams of transient events of varied temporal rate and pattern. Although these stimuli exerted a strong impact over some aspects of BR, they were unable to override its characteristic stochastic pattern of alternations completely. It is concluded that BR is subject to distributed influences, but ultimately, is achieved in neural processing areas specific to the binocular conflict

    Post-training load-related changes of auditory working memory: An EEG study

    Get PDF
    Working memory (WM) refers to the temporary retention and manipulation of information, and its capacity is highly susceptible to training. Yet, the neural mechanisms that allow for increased performance under demanding conditions are not fully understood. We expected that post-training efficiency in WM performance modulates neural processing during high load tasks. We tested this hypothesis, using electroencephalography (EEG) (N = 39), by comparing source space spectral power of healthy adults performing low and high load auditory WM tasks. Prior to the assessment, participants either underwent a modality-specific auditory WM training, or a modality-irrelevant tactile WM training, or were not trained (active control). After a modality-specific training participants showed higher behavioral performance, compared to the control. EEG data analysis revealed general effects of WM load, across all training groups, in the theta-, alpha-, and beta-frequency bands. With increased load theta-band power increased over frontal, and decreased over parietal areas. Centro-parietal alpha-band power and central beta-band power decreased with load. Interestingly, in the high load condition a tendency toward reduced beta-band power in the right medial temporal lobe was observed in the modality-specific WM training group compared to the modality-irrelevant and active control groups. Our finding that WM processing during the high load condition changed after modality-specific WM training, showing reduced beta-band activity in voice-selective regions, possibly indicates a more efficient maintenance of task-relevant stimuli. The general load effects suggest that WM performance at high load demands involves complementary mechanisms, combining a strengthening of task-relevant and a suppression of task-irrelevant processing

    Early cross-modal interactions and adult human visual cortical plasticity revealed by binocular rivalry

    Get PDF
    In this research binocular rivalry is used as a tool to investigate different aspects of visual and multisensory perception. Several experiments presented here demonstrated that touch specifically interacts with vision during binocular rivalry and that the interaction likely occurs at early stages of visual processing, probably V1 or V2. Another line of research also presented here demonstrated that human adult visual cortex retains an unexpected high degree of experience-dependent plasticity by showing that a brief period of monocular deprivation produced important perceptual consequences on the dynamics of binocular rivalry, reflecting a homeostatic plasticity. In summary, this work shows that binocular rivalry is a powerful tool to investigate different aspects of visual perception and can be used to reveal unexpected properties of early visual cortex

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Rehaussement de la mémoire de travail et de l'inhibition de la douleur par la neuromodulation du cortex préfrontal dorsolatéral gauche chez des personnes jeunes et ùgées = Improving working memory and pain inhibition using neuromodulation of left dorsolateral prefrontal cortex in young and older persons

    Get PDF
    Objectif: Cette thĂšse vise Ă  Ă©tudier si l’inhibition de la douleur par l’activation de la mĂ©moire de travail (MT) peut ĂȘtre rehaussĂ©e par la Stimulation Transcranienne Ă  Courant Direct (tDCS) chez des volontaires jeunes et des personnes ĂągĂ©es en bonne santĂ©. La MT permet de sĂ©lectionner l’information pertinente Ă  une tĂąche et de diriger l’attention vers l’exĂ©cution de cette tĂąche, permettant ainsi de limiter la capture de l'attention par des distracteurs, incluant la douleur. Cependant, cette inhibition de la capture attentionnelle par la douleur puisqu’il s’agit d’un processus descendant (top-down), peut ĂȘtre diminuĂ©e chez les personnes ĂągĂ©es en raison de la rĂ©duction des capacitĂ©s de la MT. La tDCS est une mĂ©thode prometteuse Ă  cet Ă©gard puisque la stimulation anodale du cortex prĂ©frontal dorsolatĂ©ral (DLPFC) gauche permet d’amĂ©liorer les capacitĂ©s de la MT. MĂ©thodes: Cette thĂšse comporte deux expĂ©riences menĂ©es sur quarante jeunes adultes (premiĂšre Ă©tude) et quinze personnes ĂągĂ©es (deuxiĂšme Ă©tude). Les expĂ©riences comportent deux sĂ©ances de tDCS (tDCS anodale et simulĂ©e), pendant lesquelles de la douleur et le rĂ©flexe nociceptif de flexion Ă©taient Ă©voquĂ©s par une stimulation Ă©lectrique Ă  la cheville, alors que les participants exĂ©cutaient une tĂąche n-back (0-back et 2-back). Le protocole expĂ©rimental comportait cinq conditions dont l'ordre a Ă©tĂ© contrebalancĂ© (0-back, 2- back, douleur, 0-back avec douleur et 2-back avec douleur), et qui ont Ă©tĂ© rĂ©alisĂ©es deux fois chacune (avant tDCS et pendant tDCS). RĂ©sultats: Les rĂ©sultats indiquent que la neuromodulation du DLPFC gauche permet d’amĂ©liorer l’inhibition de la douleur par la MT, autant chez les jeunes adultes que chez les personnes ĂągĂ©es. Cependant, le rĂ©flexe nociceptif de flexion n’a pas Ă©tĂ© modulĂ© par l’activation de la MT, suggĂ©rant que les effets bĂ©nĂ©fiques de la tDCS reposent sur des mĂ©canismes supraspinaux indĂ©pendants des voies inhibitrices descendantes. Ces Ă©tudes ont permis l'avancement des connaissances sur les interactions entre la cognition, la douleur et l'Ăąge et montrent comment la neuromodulation peut changer ces interactions pour amĂ©liorer l'inhibition de la douleur. Ces rĂ©sultats permettront le dĂ©veloppement de protocoles de neuromodulation pour la gestion de la douleur chez les personnes ĂągĂ©es.Objective: This thesis aimed to examine whether pain inhibition by working memory (WM) engagement can be enhanced by Transcranial Direct Current Stimulation (tDCS) in young and older healthy volunteers. Directing attention away from painful stimuli is under the control of WM that allows the selection of task-relevant information and directing attention towards task execution. However, top-down inhibition of nociceptive activity and pain may be altered in normal aging due to decreased WM. tDCS is a promising method in this regard since anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) was shown to improve WM performance. Methods: Two experiments were conducted on forty healthy (first study) and fifteen older volunteers (second study). They participated in two tDCS sessions (sham and anodal tDCS), in which the pain was evoked by electrical stimulation at the ankle. Participants performed an n-back task (0-back and 2-back) while they received random electrical stimulation to produce pain and the nociceptive flexion reflex, an index of spinal nociception. The experimental protocol comprised five counterbalanced conditions (0-back, 2-back, pain, 0-back with pain and 2-back with pain) that were performed twice (pre-tDCS baseline and during tDCS). Results: In both studies, neuromodulation of left DLPFC enhanced pain inhibition by WM. However, the nociceptive flexion reflex was not modulated by WM enhancement suggesting that improvement of pain inhibition by WM using tDCS is supraspinal and independent of descending inhibitory pathways. These studies improve our understanding of the interactions between cognition, pain and age and show how neuromodulation may change these interactions to improve pain inhibition. Findings support the development of neuromodulation protocols for pain management in older persons
    • 

    corecore