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Organisation of the thesis 
 

This thesis is presented in a thesis-by-publication format. Chapter 1 contains a general 

introduction to the topic of bistable perception and binocular rivalry as well as 

justification for the proceeding experimental chapters 2-5. Chapters 2-4 contain peer 

reviewed, published journal articles, which have been reformatted to fit the thesis format. 

Chapter 5 contains an article which has been accepted for publication pending revisions. 

Overview and chapter summary sections have been added to the chapters in order to 

integrate the findings with the overall thesis structure. Chapters 3 and 5 contain work in 

which the thesis author is the primary author, having sole responsibility for the work 

aside from minor stylistic edits conducted by the second author (the thesis supervisor) 

after the work was completed. Chapters 2 and 4 are papers in which the thesis author was 

a second and third author respectively.  

 

A discussion of the significance of the experimental papers presented in Chapters 2-5 to 

the field is contained in the concluding Chapter 6. This discussion includes a more 

detailed examination of the published literature relevant to the hypothesis and 

experimental chapters, and ties the findings presented in each chapter together.  

Appendices 1 and 2 contain additional unpublished data and analysis supplementary to 

Chapter 5. 
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Abstract 
 
When the two eyes are presented with sufficiently different images, Binocular Rivalry 

(BR) occurs. BR is a form of bistable perception involving stochastic alternations in 

awareness between distinct images shown to each eye. It has been suggested that the 

dynamics of BR are due to the activity of a central temporal process and are linked to 

involuntary mechanisms of selective attention (aka exogenous attention). To test these 

ideas, stimuli designed to evoke exogenous attention and central temporal processes were 

employed during BR observation. These stimuli included auditory and visual looming 

motion and streams of transient events of varied temporal rate and pattern. Although 

these stimuli exerted a strong impact over some aspects of BR, they were unable to 

override its characteristic stochastic pattern of alternations completely. It is concluded 

that BR is subject to distributed influences, but ultimately, is achieved in neural 

processing areas specific to the binocular conflict. 
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Chapter 1 

General introduction 

What we see is not just a product of what is out there in the world, it is not just light 

reflecting off objects, striking our retinas and being sent to the visual areas of the brain. 

What we see is, of course, in part based on this external stimulation; but it is also a 

product of much more. It is a result of our perceptual history, our experiences as 

individuals and many complex neural and cognitive processes of which we are largely 

unaware. What we see – and, more importantly, how we see – is as much a matter of 

cognition as it is a function of the mechanics of our visual systems. 

 

The realisation of this astonishing fact has developed over many years of study into the 

nature of visual perception. However, one particular phenomenon of perception reveals 

this more directly than any other: a phenomenon known as ‘perceptual bistability’. 

Perceptual bistability is any stable visual input that can be perceived in two or more ways 

by the visual system. If our visual perceptions were solely a product of external 

stimulation, given a stable input, we would correspondingly experience a stable 

perception; but this is not the case. When presented with these particular kinds of stimuli, 

our perception flips between multiple interpretations of the stable input. This is because 

such stimuli are designed to be ambiguous, and offer more than one perceptual 

interpretation. Such stimuli, above all other kinds, show us that visual perception is not a 

matter of computing external input, but rather is a process of interpretation, one that relies 

on what we have seen before as our visual systems develop, and also one based on the 

psychological, emotional and motivational states of the perceiver. 

 

Human fascination with bistable perception is not new. Many ancient Roman mosaics 

demonstrate bistable properties (Ling, 1998), which were surely recognised as such by 

savvy admirers and the artisans themselves. Since then, the relevance of these unstable 

image configurations to our understanding of visual perception and the mind was 

furthered by artists, scholars and curious minds such as Ptolemy, Porta, Wheatstone, 

Necker and many others. An overview of historical observations of bistable phenomena 

will be presented later in this chapter. The point being made is that bistable perception is 
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of enduring interest due to its simplicity and utility in revealing a most fundamental 

aspect of human existence: that our perceptions of the world, and all within it, are not an 

objective truth, but are in fact a product of the inner workings of our own minds. 

 

The best way to fully comprehend 'perceptual bistability', if you are unfamiliar with the 

concept, is to experience it yourself. This does not require complex apparatus (although 

some forms do require one). You can experience it simply by viewing one of its most 

popular incarnations; the Necker cube shown in Figure 1. A. The Necker cube is a two 

dimensional image depicting a cube projected in space; it was first reported by its 

namesake, Swiss crystallographer Louis Albert Necker in 1832 (Necker, 1832). Due to a 

lack of depth cues – other than the projections of the lines – the cube can be seen as 

protruding in one of two directions. These two depth interpretations can be experienced 

exclusively; and alternately; but never at the same time.  

 

Figure 1. The Necker cube and depth cues 

 
Figure 1 shows examples of the Necker cube, with and without additional depth cues.  
A) Viewing of the original wire-frame Necker cube results in two distinct depth 
interpretations; one where the bottom-left face is closest and the other where the top-right 
face appears closest to the observer. B) The addition of a shadow adds a depth cue that biases 
an interpretation of the bottom-left face of the cube as closest. C) Relative size, where objects 
closest to us appear larger is another depth cue that can bias our interpretation of the Necker 
cube. 

 

Look at Figure 1 A. and focus on the upper right face of the cube: it should appear to be 

extended outwards and toward you in depth. Now focus on the lower left face: you 

should now be able to see this as the closest plane of the cube. Free viewing of the 

Necker cube results in spontaneous reversals between the two depth interpretations. 
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These reversals are precisely what is meant by the term 'perceptual bistability'. The 

reversals experienced when viewing bistable images are why these figures are sometimes 

called ‘reversible figures’. 

 

The reversals of depth experienced when viewing the Necker cube are possible because 

the wire-frame cube is ‘depth ambiguous’. The ambiguity arises because there are no 

additional cues that support one depth interpretation over the other. The extension of the 

lines of the cube provide some depth information, but not enough to make one 

interpretation more likely than the other. Figure 1. B. demonstrates the effect of an 

additional depth cue; an object’s shadow. Although the location of a light source needs to 

be known before a shadow cue can accurately disambiguate an object’s extension in 

depth, the human visual system generally assumes that light comes from above, and the 

cube in Figure 1. B – with the addition of the shadow – biases an interpretation of the 

bottom left plane as closest. Another depth cue is relative size. Objects closest to us 

appear bigger and those farther away appear smaller. When the bottom left face of the 

cube is enlarged (relative to the top right face), this again biases our perceptual 

interpretation of the depth of the cube. The cues added to the Necker cubes presented in 

Figure B and C are examples of only two additional cues for depth that the visual system 

uses to interpret depth in two dimensional images. There are other depth cues that can be 

used, the essential point being that bistable illusions of depth arise due to a lack of 

additional cues that can help disambiguate the depth order in the image. 

 

The Necker cube is only one example of perceptual bistability, there are many more that 

may be familiar. One of these is the ‘young woman/old woman reversible figure shown in 

Figure 2. A, whose original creator is unknown. In the picture shown in Figure 2 A, either 

an old or young woman can be seen at any one time. Another example is of the face-vase 

illusion created by Edgar Rubin (Rubin, 1915) and shown in Figure 2. B. In this figure, 

either two faces – or one vase – can be seen, depending on which part of the image is 

interpreted as the foreground and which is the background. Another example is shown in 

Figure 2. C. of a shape that can be interpreted as either a duck or a rabbit. There are many 

more examples of perceptually bistable images and stimuli. The key feature of these 
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images is that they are ambiguous, and offer two or more perceptual interpretations. Of 

the examples here, many derivatives or entirely new examples are possible given that 

they satisfy this criteria. 

 

Figure 2. Examples of perceptual bistability involving object interpretations 

 

 
Figure 2 contains three examples of perceptual bistability that involve object interpretations. 
A) shows the ‘old woman-young woman’ reversible figure. B) The face-vase illusion, 
popularised by Rubin (1915) is an example of figure-ground reversals. C) The duck rabbit 
reversible figure. 

 

The importance of perceptual bistability to modern research is not only due to its ability 

to reveal the subjective nature of our perceptual experiences. It is also relevant because it 

allows us to explore the often hidden mechanisms underlying perceptual selection, 

attention and cognition. By manipulating certain elements of bistable perceptual stimuli, 

investigators can ascertain what is most salient or important to an individual’s perceptual 

system. Often, what is deemed to have perceptual salience, or importance, is shared 

among human beings as we all have very similar visual systems and biological 

motivations. However bistable perception can also be used to explore how an individual’s 

visual processes may differ from others, especially in cases where that individual may 

have unique life experiences, physiological conditions or motivations. For example, 

people with high levels of generalised anxiety (Nagamine et al., 2007) or conditions such 

as bipolar disorder (Miller et al., 2003) can experience a different pattern or speed of 

perceptual reversals to those without these conditions.  
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As a tool of inquiry, perceptual bistability offers a way of exploring the biases and 

expectations we hold as observers as we interpret our external environment and how 

perceptual selection, awareness and attention operates generally. Modern researchers 

have recognised this, and as such, research in perceptual bistability is abundant and 

continues to grow. Before exploring the relationship between perceptual bistability and 

perceptual selection further, a brief history of bistable perception is presented. 

 

Early observations of perceptual bistability 

Observations of perceptual bistability stem far back in human history. One of the oldest 

recorded was by the mathematician and astronomer Ptolemy (100-170 AD) on the 

appearance of the sails on boats (Piccolino & Wade, 2006). If viewed at a far enough 

distance, at any one time the sails could appear either concave or convex, and these 

interpretations would alternate. The bistable perception of the sails was dependent on a 

far enough viewing distance to make the smaller details that would reveal the true 

protrusion of the sails difficult to pick up with the naked eye. As discussed in Figure 1, 

impoverished depth cues are an essential element to all bistable phenomena involving 

depth reversals, which are also stronger and more convincing with monocular viewing. 

This is because binocular vision provides the richest source of information about depth 

and, when removed from the equation, further diminishes the depth information 

available. 

 

Ancient mosaics from Roman and Islamic architecture show awareness of perceptual 

bistability. One example was discovered in the Megiddo prison is Israel in November 

2005 and contains reversible elements similar to the Necker cube (Nature News, v.440); 

seen in the image in Figure 3 D. Most of these ancient mosaic patterns use geometric 

forms, similar to Necker’s cube, that contain ambiguity in depth interpretations, and can 

be seen as one or another depth at any one time: a clear example is a mosaic from 

Pompeii in Figure 3 B. Other mosaics display bistable properties in the way patterns 

appear to be grouped together, such as the mosaic in Figure 4 A and C.  
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Figure 3. Ancient mosaics displaying bistable properties 
Figure 3. Ancient mosaics 
displaying bistable properties. A 
& C show a mosaic from the 
Villa Romana del Casale, in 
central Sicily, Southern Italy. A) 
shows multistability in the way 
the patterns group together. C) 
Shows some bistable depth 
effects similar to the Necker 
cube. B) A bistable mosaic 
found in Pompeii similar to the 
Necker cube. D) Another 
ancient mosaic containing 
bistable properties recently 

revealed in the Mediggo Prison, Israel (from Nature News 440, 2007) (Image source: URL: 
http://www.opticalillusion.net/ambiguous-images/mosaic-illusions/) 
 

Distinct groupings of the shapes can be seen at any one time, but can suddenly flip to an 

alternative grouping. Reversals of grouping, and reversals of depth, are the two main 

categories of perceptual bistability arising from two-dimensional images, and both have 

been used in art long before they were studied scientifically. These two types of 

perceptual bistability do sometimes co-exist, with illusions of grouping also giving rise to 

illusory depth orders of the grouped patterns, where the dominant pattern is seen to hover 

above the non-dominant pattern. 

 

Another observation of depth reversals was made by English mathematician Robert 

Smith (Smith, 1738; as cited by Wade, 2005) and later in 1890 by Wilhelm Josef 

Sinsteden (Wade, 2005), who both described what is now commonly referred to as the 

‘silhouette illusion’. It was observed by both on a windmill, where the arms of the 

mechanism would appear to alternate in direction when viewed at a distance or as a 

silhouette. This illusion can be recreated in many ways, such as with a walking person or 

a spinning dancer (by Nobuyuki Kayahara in 2003). An example appears below in the 

drawing shown in Figure 4 of a horseback rider. 
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Figure 4. The silhouette illusion 
Figure 4. When certain objects are presented in 
silhouette, their orientation in depth can become 
ambiguous. Figure 4 shows an example of the 
bistable silhouette illusion in a drawing found 
online. The man on the horse can be seen as either 
approaching the observer, or riding away. 
Source: Drawing by Kelly Pounds (from 
www.kellscreations.com), retrieved 14th May 
2011. 

 

 

 

The astronomer David Rittenhouse (1732-1796) observed depth reversals similar to 

Ptolemy’s observation of boat sails (Rittenhouse, 1786). Rittenhouse noted that when 

looking at the craters of the moon with only one eye, that they could curiously appear as 

either indents (craters) or protrusions on the surface of the moon. Again, this bistable 

phenomenon was primarily due to the lack of additional depth cues and was dependent on 

monocular viewing. Other reversals of depth were also noted by Albrect von Haller 

(1708-1777) in the wax seals used on envelopes (von Haller, 1786). These reversals 

depended on different angles of illumination relative to the wax seals, specifically 

whether or not the shadows cast were above or below the bevelled seal. This illusion 

depends on an internalised norm of visual experience, namely that shadows are cast 

below objects, and tend not to appear above them, given that illumination most 

commonly comes from sunlight above us. Similar reversals arising from reliefs were also 

demonstrated by David Brewster (1781-1868), who is attributed the discovery of the 

hollow mask illusion. This occurs when changes in the source of illumination result in the 

mask appearing hollow and in relief; or, alternately, as a convex facial profile – it also 

depends on the internalised assumption that the source of illumination comes from above 

(Hill & Johnson, 2007). 
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Figure 5. Illumination source can bias interpretation of relief or extension. 

 
Figure 5. One assumption in visual perception is that illumination comes from above. Our 
interpretation of the images in Figure 5 include this assumption, even if it is inaccurate. A) 
The circles presented could be convex and illuminated from below, however they are 
commonly perceived as concave and illuminated from above. B) Similarly, the circles here are 
seen as convex and illuminated from above but they could just as likely be concave and 
illuminated from below. C) When illuminated from below, the convex mask on the right side 
appears convex, as does the actual concave face on the left. D) When the light source matches 
our internal assumption, and is from above, the face on the right appears accurately, as 
concave and in relief. Image source: unknown. 

 

Vision science historian Nicholas Wade (in Alais & Blake, 2005) discusses another 

observation of depth reversals made by the philosopher and mathematician Schröder, 

who published a reversible figure of a staircase (see Figure 6 A), which can still be seen 

in popular culture. The staircase can be seen as either of normal orientation or upside-

down, although the latter tends to be less readily seen due to its rare appearance in normal 

visual experience. As with the illumination of the wax seals, the likelihood of one 

perceptual interpretation over another is biased by what we expect to see based on our 

perceptual history.  

 

Louis-Albert Necker (1786-1861) documented how the apparent extension of some 

crystal patterns would appear to reverse between two depth orders. He based his simple 

drawing of the now famous Necker cube (see Figure 1 A) on these crystal formations 

(Necker, 1832). Necker’s cube appears to be the distillation of the more elaborate illusion 

using a staircase created by Ernst Schröder. It is one of the most enduring examples of 

perceptual bistability due of its elegance and simplicity; it has also been useful in 
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allowing researchers to explore how eye movements and focusing on particular areas of 

the cube can influence reversals, since the scarcity of the image features allows the 

experimental variables to be reduced to controllable numbers. 

 

Figure 6. Reversible staircases 

 
Figure 6. A) Ernst Schröder’s original staircase illusion is reminiscent of the Necker cube.  
B) Dutch artist M.C. Escher was inspired by Schröder’s illusion in his illustrations. 

 

Of all these bistable phenomena, reversals are more convincing when viewed with a 

single eye, or monocularly, as they rely on impoverished depth information. In lieu of 

cues to distinguish the true depth or projection of an object, the alternate interpretations 

possible are seen for discrete periods of time. Essentially, this is the common feature of 

all 2D bistable illusions of depth order; that the depth cues to disambiguate the object’s 

true depth are unavailable. Given such impoverished input, the visual system is unable to 

resolve true depth, and our perception fluctuates between the possible interpretations.  

 

There are exceptions that do not rely on ambiguous, or impoverished, depth information: 

these include grouping reversals in ancient mosaics discussed earlier, and in drawings 

where two disparate objects are depicted within the same figure, such as the old 

woman/young woman illusion or the rabbit/duck figure shown in Figure 2. There is 

another much studied form of bistability that depends on discrepant images being 

presented to the two eyes triggering a perceptual state known as ‘binocular rivalry’.  



Chapter 1: General Introduction 
 

 

10 

 

In normal viewing the images both eyes receive are very similar to each other. The slight 

discrepancies between them arising from the eyes’ lateral displacement on the head are 

used by the visual system to compute stereoscopic depth information. Our visual system 

is unaccustomed to receiving completely different inputs from the two eyes and when this 

occurs, rather than attempt to fuse the two eyes’ inputs we see one or the other for a short 

period of time before flipping to the other eye’s image. These alternations between the 

two eyes’ inputs constitute a unique form of perceptual bistability arising from a violation 

of the spatial rules of binocular vision.  Both binocular rivalry and bistable patterns 

constitute a spatial conflict that violates our internalisation of a physical law; that two 

objects cannot exist in the same place at the same time.  

 

Early observations of conflicting, or discrepant, binocular stimulation were made by 

Ptolemy, who placed different coloured rods in each eye’s axis (Wade, 2005). Another 

was Giambattista della Porta (1535-1615), who used a septum to separate each eye’s 

view and observed rivalry alternations (Wade, 1998). Other observations of rivalry were 

made by Jean Theophile Desaguliers (1683-1744) who used apertures to separate the two 

eyes’ views. However, it was not until the invention of the stereoscope by Charles 

Wheatstone (1802-1875) that binocular rivalry’s relationship to stereopsis was 

understood. 

 

Wheatstone is attributed with the invention of the mirror stereoscope and the first 

accurate descriptions of stereopsis. He was the first to note that binocular viewing lead to 

greater depth information than monocular sight, and that the discrepancies between the 

two eyes’ views were used by the visual system to calculate depth. He displayed two 

different letters, one to each eye, to show how sufficiently discrepant binocular 

stimulation leads to binocular rivalry alternations. Binocular rivalry, although 

demonstrating the same reversible properties of all perceptual bistable phenomena, 

constitutes a unique example and will be dealt with in more detail in the following 

chapters. 
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Figure 7. Historical figures who observed perceptual bistability 

 

 
Figure 7. A) A portrait of Ptolemy who made the first known observations of perceptual 
bistability. B) A portrait of Charles Wheatstone, who invented the mirror stereoscope and was 
the first to methodically document binocular rivalry as it relates to stereopsis. C) De Porta, 
one of the very first people to recognise the importance of binocular rivalry alternations to 
studies of vision. 

 

In more recent times, perceptual bistability has been examined in the context of 

psychology and neuroscience as a means of unveiling the hidden perceptual processes of 

the mind and brain that contribute to our perceptual awareness. Although interesting in its 

own right, recent investigations of perceptual bistability have focused more on what it 

can tell us about the underlying nature of visual perception and, in turn, the cognitive and 

neurophysiological processes that contribute to our conscious experience of the world 

(Baker, 2010). 

 

The gestaltists used perceptual ambiguity as evidence for their particular theory of the 

mind (Kohler, 1947). Gestalt psychology arose from a German philosophical tradition 

that viewed the brain as a holistic, parallel processor, with self organising tendencies. 

Although a somewhat flawed scientific approach, criticised for being merely descriptive 

rather than explanatory, Gestaltism did bring to the fore many interesting principles of 

perception and psychology, such as emergence, perceptual bistability and amodal 

completion (Lehar, 1999). Their tenant, that “the whole is greater than the sum of its 

parts” is still a useful statement when applied to the workings of the brain and, indeed, 
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visual perception. They argued that bistable images demonstrated the ‘all-or-nothing’ 

nature of a mental representation, and the mind’s ability to interpret perceptual stimuli as 

a unified whole, rather than just processing the components that appear in front of the 

viewer. 

 

Figure 8. Perceptual stimuli demonstrating Gestalt principles 

 
Figure 8. A) A Mooney face. B) Perceptual Completion of the Necker cube occurs despite 
missing contours. C) An image demonstrating the holistic nature of perception, the Dalmatian 
dog can only be seen as a whole, our perception of the dog is not achieved in discrete steps. 

 

The Gestalt psychologists proposed that many of the processes underlying the perceptual 

and mental examples they put forward were due to a unified mechanism of perception 

and cognition; that is, the mind’s self-organising and interpretive ability. What the 

Gestaltists called ‘reification’ – more commonly known as amodal completion – does 

indeed share some features with bistable perception. Kanizsa figures – shapes that are 

completed perceptually even though their full forms are not depicted in the stimulus – can 

also engage in bistable reversals under certain conditions (Grossberg, 1997). An example 

of this is shown in Figure 8 B; the amodally completed Necker cube can appear either on 

top of the circles, or lying behind the black circles as if they were apertures. The idea that 

perceptual bistability is a result of a common perceptual mechanism is also supported by 

more recent experimental evidence, some of which is presented later in this Chapter and 

in the experiments presented in Chapter 2 of this thesis.  
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In the later half of the 20th century, perceptual bistability was proposed as a possible 

means of measuring the neural correlates of consciousness (Crick & Koch, 1990). The 

utility of this approach is that if the sensory stimulus remains stable, yet the perceptual 

experience of it fluctuates, then a neural analogue of perceptual awareness, or 

consciousness, could be recorded using available neuroimaging techniques. This method 

has been pursued with vigour (Baker, 2010) and has revealed some wonderful and 

exciting aspects of how visual awareness is achieved in the brain.  

 

The utility of such methods, however, is limited to the technology available and may also 

be limited by our philosophical definitions and understanding of the term 

‘consciousness’. Being able to state where or how a process involved in visual awareness 

is achieved in the brain is somewhat different to understanding how consciousness arises. 

This is because the awareness of an object or image, although it can be established as an 

objective fact, cannot be grouped with the subjective experience of that object or, indeed, 

our personal awareness of it. Consciousness as such is somewhat different to our 

awareness of the presence or absence of physical objects; it is above and beyond these 

sensory processes and cannot necessarily be defined by them. While it is true that 

perceptual bistability can help shed light on the neural mechanisms of perceptual 

awareness, this awareness is arguably distinct from what we understand to be human 

consciousness. 

 

Even so, bistable perception can tell us a lot about the workings of awareness and 

cognition and how sensory stimuli is processed. It certainly can be used to help identify 

what aspects of an external stimulus most readily arise to visual awareness. It can also 

help further explain the precise workings of awareness and attention, if not the elephant 

in the room: consciousness. In addition, perceptual bistability can also be used to study 

what kinds of perceptual stimuli are most salient to individuals and to humans generally. 

Some studies, such as the one included in Chapter 3 of this thesis, compare the relative 

salience of emotive or arousing stimuli by pairing two stimuli in a perceptually bistable 

array, then measuring which one is seen first, or which is seen most often, or for the 

greatest amount of time, during the viewing period.  
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Figure 9. Examples of binocular rivalry stimuli 
Figure 9. Many different images can be used to 
elicit binocular rivalry reversals.  
A) Sine wave gratings are a popular stimuli, here 
shown filtered with Gaussian profiles that fade the 
edges.  
B) Simple patches of colour effectively provoke 
rivalry alternations when presented separately to 
each of the eyes.  
C) Complex images, such as those of a face and 
house shown here can also be used as rivalry 
stimuli. 
 
Image credit: Tong et al. 2006.  

 

 

 

 

Unfortunately, many forms of perceptual bistability are not amenable to large image 

changes. They are reversible because they contain impoverished information about depth 

or object identity, and because of this cannot be significantly altered to suit experimental 

demands. Fortunately there is one form of perceptual bistability that is fairly robust in the 

face of changing stimulus configurations and that is binocular rivalry. Since binocular 

rivalry is a conflict between the each eye’s inputs – and not between the two images used 

per se – these two images can be almost anything that the experimenter wishes; so long 

as they are distinct enough to generate inter-ocular conflict and not be fused together 

stereoscopically (Blake & Wilson, 2011). This feature of binocular rivalry makes it the 

perfect form of perceptual bistability to explore questions about what is salient to the 

visual system, such as what features and objects rise to awareness most readily and which 

ones do not. The next section explores the history of binocular rivalry research and also 

describes its properties in more detail. 
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Binocular rivalry: a unique type of perceptual bistability 

Unlike the examples of perceptual bistability discussed, binocular rivalry is primarily a 

laboratory-based phenomenon that cannot readily be experienced in everyday life without 

an apparatus to separate each eye’s view (for instructions on how to experience binocular 

rivalry, see Clifford, 2009). Prior to a full understanding of stereopsis and binocular 

vision, the suppression theory of binocular vision did include a role for binocular rivalry 

in everyday sight. Suppression theory dates as far back as Porta in the 1500’s and posits 

that we only see out of one eye at a time (Howard, 1995; page 338) even when the inputs 

are identical. This theory has consequently been disproved (see O’Shea, 1987). One 

might think that dissimilar binocular inputs in everyday viewing would give rise to 

binocular rivalry alternations; however, the conditions under which rivalry occurs are 

somewhat constrained. The two eyes’ inputs must be dissimilar enough to engage in 

rivalry, but must also be physically alike in terms of stimulus strength; otherwise the 

stronger eye’s image will persistently dominate awareness to the exclusion of the weaker 

one. An example of this is when one eye is covered with the hand. Although one eye 

receives a normal view of what is ahead, and the other eye is receiving a completely 

different image (of the hand), binocular rivalry does not occur. This is because the two 

images must be equated in luminance and contrast in order for rivalry alternations to take 

place. The hand covering the eye is both low in luminance and deprived of contrast 

information and, as a consequence, is never perceptually dominant. 

 

Figure 10. A child peeking 
 
 
Figure 10. The child in this photograph is not likely to 
experience binocular rivalry reversals in this situation, even 
though each eye is receiving markedly different retinal 
stimulation. 
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The inability of the obscuring hand to engage in binocular rivalry makes sense in terms of 

environmental considerations (Arnold, Grove & Wallis, 2007). When peering through a 

hole in a fence, we are not interested in the surface of the wall that the one eye is 

presented with, but in what appears through the hole. Likewise, if vision to one eye is 

impaired due to blindness or a refractive error of the lens causing a blurry retinal image, it 

makes sense that that eye’s darkened or blurry view would be discounted in favour of the 

other, clearer eye’s view. This is exactly what occurs in people born with a lazy eye, or 

strabismus: the weaker eye’s input is discounted in favour of the stronger eye’s. If not 

caught early in development, the muscle weakness underlying lazy eye can impair the 

development of stereoscopic vision (O’Neal, 1977), which is known to develop rapidly 

during the first five years of life with optimal corresponding binocular stimulation (Laws, 

1964).  

 

The proper development of stereoscopic vision is a crucial factor in the possibility of 

experiencing binocular alternations. Binocular rivalry depends on the regular functioning 

of the binocular system, which has learned that the two eyes’ inputs correspond to each 

other and represent a singular scene in the external world. If normal binocular stereopsis 

fails to develop, as in the case of individuals with uncorrected strabismus, binocular 

rivalry is generally not experienced as a series of perceptual fluctuations but is a constant 

condition of one eye (Herzau, 1998). Although estimates vary, the number of people with 

impaired stereoscopic vision who are unable to experience binocular rivalry alternations 

is roughly 3-10% of the population (Pai & Mitchell, 2010) 

 

That binocular rivalry is primarily a laboratory artefact does not exclude it from being 

used as a way to study and understand normal visual perception. Often, it is the manner in 

which failures occur in a system that can be most helpful in providing insights into how 

the system normally functions. For this reason, studies of binocular rivalry have been 

helpful in furthering our understanding of normal binocular vision and stereopsis (for 

example Wolfe, 1986; Blake, Yang & Wilson, 1991; and Harrad et al., 1994). In addition, 

binocular rivalry can be used to study the dynamics of perceptual selection and attention 

that operate under normal viewing conditions.  
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Binocular rivalry shares many properties with other forms of perceptual bistability, and 

can be classed as one instance of the same general phenomena (O’Shea et al., 2009). 

Although the average duration of each eye’s perceptual dominance depends on the 

relative strength (i.e., luminance, contrast or other perceptual salience) of the images 

(Levelt, 1965), the pattern of reversals is similar among the different forms of bistable 

phenomena (Zhou et al., 2004; Brascamp et al., 2005; and Klink, van Ee & van Wezel, 

2008). The particular pattern of reversals experienced during viewing of perceptually 

bistable stimuli is best characterised by a gamma distribution (Zhou et al., 2004 and 

others) with a stochastic probability of alternations (Murata et al., 2003). The ubiquity of 

this pattern of reversals is one line of evidence that a general perceptual mechanism 

underlies different forms of perceptual bistability (Carter & Pettigrew, 2003). 

 

Figure 11. Distribution of perceptual dominance durations during rivalry 

 

 
Figure 11. The distribution of durations for which each eye’s image is seen is usually best 
described by a gamma distribution. The y-axis represents the probability of a particular 
dominance duration (x-axis) during perceptual bistability.  

 

The stochastic pattern of alternations common to binocular rivalry and other forms of 

perceptual bistability tends to vary in rate between individuals (Miller et al., 2003). The 

rate of alternations can vary depending on age (Ukai, Ando & Kuze, 2003) and is also 

correlated to other factors such as generalised anxiety (Nagamine et al., 2007). An 

individual’s bistable reversal rates are even linked to their genetic make-up (Shannon et 
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al., 2011), which demonstrates that more global factors than those determined by the 

physical stimulus or the visual system are involved in determining the overall temporal 

rate of reversals.  

 

Although alternation rates vary among people, an individual’s rate of reversal tends to 

stay consistent across time. Alternation rates can, however, differ depending on the nature 

of the bistable stimulus viewed. Binocular rivalry rates can depend on the overall 

brightness, or luminance of the images; alternations with high luminance image pairs 

result in more rapid perceptual alternations than low luminance ones (Levelt, 1965). 

 

Despite the constrained conditions under which binocular rivalry can occur, its similarity 

with other forms of perceptual bistability, as well as its ability to be used more flexibly in 

terms of stimulus modifications, make it an excellent tool for exploring what kinds of 

stimuli are perceptually or cognitively salient. For this to be an effective endeavour, 

however, the properties of binocular rivalry alternations need to be fully understood. 

There are three main properties of binocular rivalry inputs that modify the amount of time 

one image is seen relative to the other that must be equated and accounted for before 

trying to compare experimental variations of rival images. These are stimulus luminance, 

contrast and spatial frequency (as established by Levelt ,1965). 

 

Levelt demonstrated that the amount of time one rival image is seen relative to the other 

can vary depending on its brightness (luminance), contrast and/or spatial frequency 

content. If one eye is presented with a low luminance image and the other eye a bright, 

high luminance one, the bright image will be seen for a greater proportion of the viewing 

time than the dull one. This is also true for two images that differ in contrast. Contrast is 

the average luminance difference between the lightest and darkest areas of an image, 

when this difference is great, the image is said to have high contrast. Take an image with 

very light, and correspondingly very dark parts with a high contrast value. If presented in 

binocular rivalry with a low contrast image with light and dark areas that are not as 

extreme, the high contrast image will dominate perceptual awareness for a larger part of 

the binocular rivalry viewing period.  
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Spatial frequency is another property of images that can alter the relative dominance of 

two rival images. This refers to the periodic cycles between the line components of an 

image: an image with high spatial frequency is one where the image components are very 

close together, and are best described as the parts of the image that convey fine detail. 

Low spatial frequency refers to the line and image segments that are more widely spaced, 

and can be characterised by the coarse image detail, such as the larger outlines of the 

head and profile that make up an image such as a face.  

 

Fine details such as the eyelashes, or creases or wrinkles of the skin correspond to the 

high spatial frequency components in the image. Images that contain a broad range of 

spatial frequency information, ranging from both high and low extremes, tend to 

dominate during binocular rivalry over images with less spatial frequency content, such 

as an image that has had its high or low spatial frequency components filtered out. 

Interestingly, images containing only extremely low spatial frequency information tend 

not to rival well with images containing only very high spatial frequency information 

(Yang, Rose & Blake, 1992). In fact, two rival images of this sort will more often fuse 

instead of engage in rivalry alternations. One possible explanation for this is that a broad 

range of spatial frequencies is contained in natural scenes. The binocular system may 

attempt to integrate two distinct narrow-band inputs because they do not necessarily 

represent two different scenes, but can be interpreted as two different components, or 

layers of a singular scene.  

 

Binocular rivalry in relation to stereopsis 

Binocular rivalry is a failure of binocular fusion, or stereopsis. As mentioned previously, 

the first methodological and scientific account of the phenomenon of binocular rivalry 

was made by Charles Wheatstone (Wheatstone, 1838). Prior to his invention of the mirror 

stereoscope, methodological studies of binocular vision were limited. The stereoscope 

allowed the presentation of binocular stimuli in a controlled fashion, not available with 

apertures or other makeshift methods (such as the use of a septum). This is because the 

precise location of the binocular images could be controlled and stabilised with the 

stereoscope. This allowed precise measurements and configurations of the binocular 
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image discrepancies that resulted in stereoscopic fusion and the perception of depth or the 

failure of this fusion: binocular rivalry alternations. 

 

In Wheatstone’s seminal treatise, he clearly outlines the way in which discrepancies 

between the two eyes’ views result in the perception of depth. This can be achieved by 

both monocular or binocular image information, but it is only the latter that provides 

accurate information about the relative distances between objects perceived (Palmer, 

1999). Monocular depth cues are only qualitative at best, and can provide information 

about whether or not two objects are closer or further away relative to one another. 

Binocular depth information provides information about the precise distance between two 

objects, and how far away the objects are relative to the observer. 

 

Figure 12. Wheatstone’s mirror stereoscope 

 
 
 
Figure 12. Wheatstone’s 
drawing of his mirror 
stereoscope. Distinct images 
can be presented separately to 
each of the eyes by virtue of 
the angled mirrors. Image 
source: Wheatstone 1838.  
 
The lower image is an 
illustration of how the two 
eyes views are displaced by 
the mirror stereoscope (source 
unknown). 
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How the visual system computes binocular depth information is still an active area of 

research (Blake & Wilson, 2010). We do, however, know what information is used by the 

visual system to compute depth: it arises from the slight discrepancies present between 

the two eyes’ inputs, the discrepancies created by their slightly different placement on the 

head. The small separation between the two eyes of usually a few centimetres or so 

ensures that objects at different depths are displaced leftward or rightward in one eye’s 

view relative to the other. This relative displacement of the object in the two eyes’ views 

is what the visual system uses to calculate an impression of their depth in space.  

 

The ability of the visual system to calculate stereoscopic depth depends on the objects 

appearing in the two eyes being the same: we need to be viewing a singular object or 

scene in space. Since in humans, both eyes face forwards, this is the normal experience 

we have. The assumption the visual system is making each time we combine the two 

eyes’ retinal images and perceive a scene with binocular depth is that of a singular or 

cyclopean worldview. Most of our visual experience from birth onward fortifies this 

assumption. So does the information about our external world collected from the other 

senses, specifically touch (Bushnell & Bourdreau, 1993). Through the co-operation of 

explorative touch and visual input, we can ascertain that the apple we see before us is 

indeed one apple; despite the small differences in view we are experiencing from each of 

our eyes. The coordination of information gleaned through different senses in the 

calibration of binocular vision implies that binocular rivalry, too, may be susceptible to 

sources of information from non-visual senses. This possibility is explored later in this 

chapter and also in the experiments presented in Chapters 4 and 5. Development of a 

cyclopean worldview is a necessary condition for binocular combination to occur.  

 

The neurophysiology of vision 

In order to discuss neural theories of binocular rivalry, a quick overview of the neurology 

of the visual system is needed. Broadly speaking, the visual system comprises the eyes, 

the optic nerve, the lateral geniculate nucleus (LGN) and the visual cortex, which is 

located at the back of the brain in the occipital lobe. Light hits receptor cells in the retina 

in the back of the eye. Via a process of chemical transduction, these receptors convert 
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light energy into an electrical impulse, which is sent down the optic nerve to the visual 

cortex. The visual system can be described in a feed-forward fashion as a hierarchy of 

processing areas. The first cortical processing area is called V1, or visual area 1, which is 

shown in Figure 13 by the light yellow section of the cortex. Neurons located in V1 

respond to the particular features of a visual array, such as orientation, contrast and 

colour and do so within small receptive fields. The activity of V1 neurons is spatially 

dependent; they only fire when stimuli are presented in their preferred location of the 

visual field; or rather, to the corresponding section of the retina that represents that area 

of the visual field (Hubel & Weisel, 1968). The activity of this visual area is therefore 

thought to constitute a spatially representative map of the visual field (Wandell, 

Dumoulin & Brewer, 2007).  

 

Figure 13. The anatomy of the visual system 

 
Figure 13. The anatomy of the visual system. Image credit: Terese Winslow. 



Chapter 1: General Introduction 
 

 

23 

After V1, visual signals are processed at further stages of the visual processing hierarchy. 

Later areas, such as V2, contain binocular neurons that are activated regardless of which 

eye is stimulated. V1 neurons, on the other hand, are monocular and respond to input 

from their preferred eye (Hubel & Wiesel, 1968). Later in the visual processing stream, 

more specialised visual areas are found that respond to more holistic stimulus properties, 

such as visual objects (Epstein & Kanwisher, 1998), faces (Kanwisher, McDermott & 

Chun, 1997) and movement (Braddick et al., 2001), although it should be noted that 

cortical area MT/V5, like V1 has a topographical organisation and can respond to motion 

signals at a similar latency to V1 due to a direct connection with the lateral geniculate 

nucleus in the optic chiasm. Aside from the topographical nature of complex motion 

processing, the later visual areas are generally not concerned with the location of the 

stimuli in the visual field; they respond to their favoured stimuli irrespective of its 

location in the visual field (Melcher, 2005; Graziano, Andersen & Snowden, 1994). 

 

Information from the visual cortex is processed further by other parts of the brain 

involved in more complex interpretation, such as the parietal and temporal lobes that are 

labelled in Figure 13. The parietal lobe is dedicated to representing space and our location 

within it, and is involved in our physical interactions with the environment (Andersen 

1995). The temporal lobe is concerned with the processing of objects; their identity and 

meaning (Lueschow, Miller & Desimone, 1994) and is involved in memory formation 

and retrieval (St Jacques, Kragel & Rubin, 2011). The visual pathways terminating in 

these two cortices are called the dorsal and ventral streams respectively. The dorsal 

stream is involved in spatial visual processing, and the ventral is concerned with the 

labelling or identification of what we experience (Goodale & Milner, 1992).  

 

Despite the descriptive convenience the concept of a linear visual processing hierarchy 

provides, visual areas are highly interconnected (Felleman & van Essen, 1991). The 

reciprocal pathways between the visual areas of the macaque monkey cortex are shown in 

Figure 14. The interconnectedness of visual areas mean that information is not simply 

relayed through the visual cortex in a linear manner: visual signals are processed in 

parallel in different visual areas that are subject to feedback from each other and from 
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non-visual cortical areas. Once a visual signal is processed, the activity it generates in 

early visual areas such as V1 can be subject to modulation from higher cortical visual 

processing areas (Angelucci & Bressloff, 2006). Hence, no single area of the visual 

cortex acts independently in representing a visual stimulus or feature. Even responses to 

the most basic of visual elements can be modulated by the simultaneous processing of 

other features present, or the larger context, background or meaning of the image. 

 

Figure 14. Connections between visual cortical areas of the macaque monkey. 
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Figure 14. “Hierarchy of visual areas in the Macaque monkey. This hierarchy shows 32 
visual cortical areas. These areas are connected by 187 linkages, most of which have been 
demonstrated to be reciprocal pathways”. Figure and description from Felleman & Van 
Essen, 1991. 

 

The interconnectedness of neural visual processing complicates its study. However, the 

fact that there does appear to be a certain extent of modular, feature-specific processing 

occurring is helpful. The way these modules interact in forming a complete perceptual 

experience is the new frontier for research in visual neuroscience.  

 

Neural theories of binocular rivalry 

Investigations into binocular rivalry directly after Wheatstone’s discovery were based 

mainly on its relationship to stereopsis. During the later 18th and early 19th centuries, 

visual scientists explored the basic properties of binocular rivalry as a visual phenomena, 

and established the general requirements for it to occur. This included the stimulus 

properties that alter the temporal course of binocular rivalry alternations over the viewing 

period. The understanding of binocular rivalry alternations as a violation of the norm of a 

cyclopean worldview assumes quite a high-level cognitive appraisal of the non-matching 

binocular inputs; specifically that they violate an internalised cognitive worldview. There 

arose quite an active debate, which is still in part ongoing, over whether binocular rivalry 

depends on a higher-order cognitive process of interpretation; or, rather, on binocular 

conflict in the earliest stages of the visual processing hierarchy (V1) representing each 

eye’s input. As it turns out, neither low- nor high-level accounts of rivalry, or indeed 

stereopsis itself, are sufficient. Most percepts involve both preliminary computations of 

retinal input – as well as higher-order cognitive processing – in order to be achieved. 

How the visual system responds to perceptual ambiguity is no different. The question of 

which type of processing (low-level or high-level) is most involved in a particular 

perceptual process is still a valid question, and can be used to characterise how feedback 

from visually peripheral brain areas can impact early visual processing. 

 

In order to comprehend the inter-connectedness of low- and high-level visual processes in 

binocular rivalry, it is helpful to first characterise how each stage of processing 
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contributes to our perceptions. In respect to binocular rivalry, low-level theories state that 

it is a conflict between the two eyes at a monocular neuron level (V1) which results in 

binocular rivalry. As was briefly touched upon in the last section, the visual system can 

be characterised by a hierarchy of visual processing stages. Information from each eye’s 

retina travels down the optic nerve and reaches the primary areas of the visual cortex, 

also called the striate cortex, and area V1. The striate cortex is the only part of the visual 

system that contains neurons that respond exclusively to monocular stimulation. 

Monocular neurons in the striate cortex are those that only respond when a particular area 

of the retina of one eye is stimulated. Binocular neurons are those which respond to 

retinal stimulation of either eye. If one part of the retina is stimulated in the left eye, a 

binocular neuron might respond to this; but it will also respond if the corresponding area 

of the right eye’s retina is stimulated. On the other hand, a monocular neuron will only 

respond if the retina of the one eye to which it is connected is stimulated. 

 

Low-level theories of binocular rivalry state that it is competition between these 

monocular neurons that result in rivalry alternations (for example Blake, 1989). High-

level theories of rivalry on the other hand, state that it is the conflict between the two 

image representations at later stages of visual processing that produce rivalry alternations 

(Leopold & Logothetis, 1999). As the retinal signal progresses to higher levels in the 

visual processing hierarchy, neural responses become more complex and global. At the 

earliest stages, visual neurons respond to small or specific image properties such as line 

orientation, the eye of origin (monocular neurons) and other properties such as colour and 

spatial frequency content. At higher levels of processing in the extra-striate cortex, the 

areas of the visual cortex further downstream to the striate cortex, neural responses to 

images are less feature based. The higher level properties to which extra-striate neurons 

respond can include object identity and the environmental context of the viewed image. 

For example, some neurons in the extra-striate cortex fire only when presented with 

faces; and some only when presented with places. The visual area containing neurons that 

respond to faces is called the Fusiform Gyrus, or the fusiform face area; the area that 

responds to places is called the parahippocampal place area. Other visual areas that 

respond to specific visual priorities, such as motion, have also been identified. High-level 
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theories of binocular rivalry consider these higher-level processing areas that are involved 

in representing images holistically to be the neural locus of rivalry alternations. 

 

Interestingly, both high- and low-level theories of binocular rivalry have gathered 

empirical support, which can be interpreted as reflecting the inseparable nature of low 

and high level visual processing. Going back to the incomplete, but influential ideas of 

the Gestalt psychologists, visual processing is a holistic process where discrete 

physiological functions are performed in parallel to produce the overall perceptual 

experience. That the whole is greater than the sum of the parts also rings true, as our 

experience of binocular rivalry, or any other definable perceptual consequence, cannot be 

explained solely by an isolated area or mechanism in the brain because they are achieved 

by a distributed network of neural areas related to memory and spatial attention.  

 

Evidence for low-level theories of rivalry come from functional image studies that 

demonstrate fluctuations between monocular neurons in the striate visual cortex/area V1 

(Polonsky et al. 2000). There is also evidence that activity of the lateral geniculate 

nucleus, a visual processing area even earlier than V1 in the visual hierarchy that contains 

only monocular neurons, also fluctuates in synchrony with the perceptual alternations 

accompanying binocular rivalry (Haynes, Deichmann & Rees, 2005; Wunderlich, 

Schneider & Kastner, 2005). This is interesting, as the thalamus is the source of delta 

brain wave activity that arises during slow wave sleep; and delta waves and binocular 

rivalry share a similar frequency range of 0.5-4 Hz. Perhaps an even lower, sub-cortical 

theory of binocular rivalry is warranted, as suggested by Einhäuser, Stout, Koch and 

Carter (2008) and explored further in the General Discussion (chapter 6). This possibility 

is countered by an absence of binocular rivalry related activity in LGN as recorded with 

single cell electrodes in animals (Lehky & Maunsell 1996) and requires further empirical 

exploration in human observers.  

 

These studies clearly show that monocular neurons are actively engaged in the image 

conflict involved in binocular rivalry. However, other neurophysiological research has 

shown that activity in area V1 is also modulated by ‘feedback’ from later processing 
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areas in the extra-striate cortex (Felleman & Van Essen, 1991). It is conceivable that the 

more complex properties of images undergoing rivalry, processed at later stages of the 

visual processing hierarchy can influence these V1 responses. It is also possible that 

monocular neurons in V1, and perhaps even pre-cortical dynamics, are acting as a 

gatekeeper to the progression of image processing to higher cortical areas. 

 

High-level or ‘stimulus’ theories of binocular rivalry are supported by experiments 

showing that when early monocular responses in V1 neurons are overridden by certain 

flickering stimulus presentation, binocular rivalry can still occur. Called “flicker and 

swap” rivalry, this particular stimulus presentation involves two rival gratings of 

orthogonal orientation: one coloured red and the other green. As in conventional 

binocular rivalry presentations, the two different gratings are at first presented one to 

each eye. Instead of a static presentation however, each grating is flickered on/off at a 

rate of between 18 and 20 Hz, or cycles per second. In addition, about three times a 

second (at a 3 Hz cycle), the two gratings are swapped between the two eyes.  

 

When experimental subjects view the flicker and swap stimulus, they experience rivalry 

alternations; that is, the perceptual dominance of a particular grating, be it red or green, 

extends over periods where the grating is switched between the two eyes. If rivalry were 

only between the two eyes’ inputs, and not between the images presented, a physical 

swap occurring during each eye’s period of perceptual dominance should be seen. That 

the current dominant perception of one of the gratings is maintained after that grating is 

swapped to the other eye shows that rivalry alternations are not just a matter of which eye 

is dominant at any one time, but also what stimulus is currently dominant. 

 

The flicker and swap experiments, although a convincing demonstration of the 

importance of stimulus representations to binocular rivalry alternations, are unusual 

because they rely on a narrow window of flicker rates. When the rival gratings are simply 

swapped between the two eyes, the effect all but disappears (Bhardwaj, O’Shea, Alais & 

Parker, 2008). This has been explained in part by a computational model of binocular 

rivalry that accounts for the flicker and swap effect (Wilson 2003). Wilson presents 
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evidence that the particular cycle rate of flicker required for flicker and swap rivalry to 

occur involves discreet stimulus presentations that are too short to engage monocular 

processing in V1. A 20 Hz rate of on/off flicker involves discrete stimulus presentations 

of 50 milliseconds (ms), which is insufficient: for an adequate and sustained response, 

stimulus presentations of 100 ms or above are required. The flicker is, in effect, disabling 

the monocular responses necessary for eye-based rivalry to occur, and instead generates 

stimulus-based rivalry.  

 

Other evidence for stimulus rivalry comes from experiments that show that discrepant 

image parts presented across the two eyes can group together during binocular rivalry. If 

two different images are taken apart, like a puzzle, and then each puzzle piece is 

distributed between the two eyes, rivalry alternations can occur between completed image 

representations (Kovacs, Papathomas, Yang & Feher, 1996). The piecemeal stimulus 

used by Kovac’s et al. is shown in Figure 15. Participants can still view the completed 

images undergoing rivalry, even though the image components have been scattered 

between the two eyes. Again, this demonstrates that it is the stimulus representation, not 

the conflicting information at purely a monocular level, that generates rivalry 

alternations. Functional imaging studies have also been carried out that support the idea 

that stimulus-based neural representations are involved in binocular rivalry. One of these 

studies showed activity in specialised processing areas – the extra-striate cortex, the 

fusiform face area and the parahippocampal place area – fluctuate in activity 

corresponding to a participant’s perceptual experience of binocular rivalry between faces 

and houses (Tong, Nakayama, Vaughan & Kanwisher, 1998).  

 

Figure 15. Piecemeal binocular rivalry stimuli 
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Figure 15 contains the stimuli used by Kovacs et al. (1996). A) The two rival images, as 
presented to each eye. B) The piecemeal versions of the two images.  

 

  



Chapter 1: General Introduction 
 

 

31 

Although the evidence for a stimulus-based account of binocular rivalry is convincing, 

there are some disclaimers to be made about the generality of the findings. Flicker and 

swap rivalry tends to occur only with a narrow range of stimulus parameters that 

encourage this form of pattern rivalry. Also, there are periods in which perceptual 

experience does actually correspond to eye-based accounts of rivalry. For some of the 

viewing period, especially in the preliminary stages, perceptual dominance is based on 

the dominant eye’s input and does not follow the perceptually dominant grating to the 

other eye. Similarly, when viewing the ‘puzzle-piece’ rivalry stimuli used in Kovacs et al. 

(1996), there are periods in which the piecemeal presentation received by one of the eyes 

is the dominant one perceived, and not the combined stimulus representation of the 

unified image between the two eyes’ inputs. Also, fluctuations of neural activity in extra-

striate areas corresponding to rivalry alternations are not necessarily their source. They 

could be due to the processing of the currently dominant percept after it has been selected 

for awareness in earlier processing stages. The evidence indicates that both eye-based and 

stimulus-based rivalry are possible. Both may be operating concurrently when viewing 

conventional binocular rivalry displays.  

 

Aside from the evidence that neural processing at the level of stimulus representations 

can influence binocular rivalry, there is also an active field of research exploring how 

cognition and attention relate to rivalry dynamics. This thesis explores the idea that 

binocular rivalry dynamics are due to a less conscious, more hardwired component of 

attention; one that is associated with general physiological arousal. Before exploring the 

relationship between attention and perceptual bistability, it would be helpful to briefly 

cover the relevant aspects of research into the psychology of attention. 

 

Psychological investigations of attention 

How human beings allocate attention to the external environment, and what events or 

objects present in the environment can capture out attention without wilful control, have 

been subject to much investigation in the field of psychology. Attention can be separated 

into two broad categories. One, where we purposefully attend to a particular subject or 

object in front of us, originates from within and is consequently referred to as 
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‘endogenous’ attention. The other, where external events or objects can capture our 

attention against our will, is termed ‘exogenous’ attention, or attention that is allocated to 

stimuli external to ourselves by virtue of their ‘attention grabbing’ properties. Both 

endogenous and exogenous attention have been subject of much study, with the latter 

being more amenable to certain types of experimental methodology, given that the 

subjective nature of endogenous attention is more difficult to define and measure. What 

motivates us to attend to objects that might otherwise not be salient is governed by a host 

of internal and unobservable variables, whereas the physical properties of an external 

stimulus that can capture our attention are more easily identified and controlled. Even so, 

both are of great interest to psychologists and scientists of the mind, and to some extent 

both must be considered when contemplating the unified perceptual outcomes of 

attention. 

 

Psychological investigation into the type of exogenous perceptual stimuli that capture our 

attention has its origins in the 1980s, although observations of orienting responses in both 

humans and other animals had been made previously in the areas of biology, 

neuroscience and other fields. One of the pioneers in the psychology of attentional 

capture was Anne Triesman, who popularised the experimental paradigm of ‘visual 

search’ tasks, which involve searching a visual array of features for a target feature that 

has been defined prior to the trial or by virtue of its uniqueness in respect to the other 

elements of the array. The time taken to detect the target feature can be used as a measure 

of the salience of that feature, given the context in which it is presented. Context is a very 

important aspect of visual search, and is established by the nature of all the other 

elements in the search array. These non-target elements are referred to as ‘distractors’.  

 

Triesman’s research revealed that particular targets are more salient than others, and are 

more readily detected because of their uniqueness relative to the distractor elements in an 

array (Treisman, 1988). For example, if a circular target is present amongst cross 

distractors, as seen in Figure 16 A, the uniqueness of the target makes it instantaneously 

recognisable and perceptually salient. This type of target is referred to as a ‘pop-out’, or 

singleton. Triesman’s research also examined ‘conjunctions’, where a target’s uniqueness 
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is due to a conjunction of two or more features also present in the distractor elements. 

This type of visual search is less automatic than ‘pop-out’ displays, and requires serial 

processing of the elements of the visual array before the target can be located. An 

example of a pop-out (A) and a conjunction (B) stimulus array are shown in Figure 16 

below. 

 

Figure 16. Visual search arrays 

 
Figure 16. Examples of visual search arrays. A) Includes two singletons; the circle and the 
red cross which each contain properties not shared with the distractors and consequently 
‘pop-out’. B) Shows a conjunction search array, where the unique target shares both of its 
distinguishing characteristics (colour and shape) with distractor items. 

 

Detection of pop-outs and conjunction targets in visual arrays involve two types of visual 

search which Triesman thought were dealt with by two different types of attention. Pop-

out detection is fast and almost automatic, whereas conjunction searches are slower and 

more methodical. These differences were used to support her Feature Integration Theory 

of visual attention (Treisman & Gelade, 1980). The theory states that different maps of 

visual features are used to consciously integrate visual features into a perceptual whole. 

She coined the terms ‘bottom-up’ and ‘top-down’ attention, which to this day are still 

present in psychological and neuroscience vernacular. These terms can be considered as 

the same two forms of attention described previously; exogenous and endogenous 

attention, respectively.  
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The main purpose of the Feature Integration Theory was to describe and explain how 

features are bound together to form conscious perceptual experiences. The theory stated 

that different features of a complex visual stimulus are processed in separate stages, 

represented as ‘feature maps’. A schematic depiction of how feature maps represent the 

visual environment is shown in Figure 17 below. Also introduced was the idea of a 

‘salience map’, which contains information about the most salient features of the visual 

scene before us. Although details of Treisman’s theory have been largely discounted by 

more recent research, the idea of a salience map is still popular, and in fact the behaviour 

of area V1 is considered by some as constituting a neurological substrate for the mapping 

of salient visual features. Whether salience is a property of the visual stimulus, or the 

mindset of the observer, is an interesting question; it is, in part, answered in the 

affirmative on both sides. There is evidence to suggest that the physical properties of 

certain types of stimulus are the primary determinant of perceptual salience. However, it 

is also possible that the tuning of a salience map in area V1 could be influenced by non-

visual feedback about what is perceptually important or salient.  

 

Figure 17. Feature Integration Theory 

 

 
Figure 17. A schematic representation of feature maps. Each ‘map’ is dedicated to a 
particular feature in the visual stimulus such as colour, orientation, size and others. Image 
credit: Christopher G. Healey 
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Studies by Yantis and Jonides in the 1980s and 1990s were conducted to discover which 

visual elements, events or objects are intrinsically salient, and therefore activate bottom-

up, or exogenous attention. They conducted visual search experiments in an attempt to 

ascertain whether or not any particular stimulus captured attention intrinsically and 

automatically – irrespective of the number of distractors included in the search arrays 

(Yantis & Jonides, 1984; Yantis, 1993). In order to determine whether attentional capture 

was automatic, they employed numerous parameters in the visual search tasks that tested 

an assumption of automatic attentional capture. This assumption was that if an object 

captures attention automatically, it should do so regardless of the number of distractor 

elements presented. Of the multitude of target types tested, Yantis found that one 

particular stimulus – above all others – consistently and automatically captured attention, 

irrespective of the number of distractor items: the ‘sudden onset’ of a target; i.e., one that 

appears suddenly during the search trial in a previously unoccupied area of the visual 

search array. An example of a sudden onset target array is shown in Figure 18 below. 

 

Figure 18. An example of a sudden onset visual search trial 

 

 
 

Figure 18. An example of stimuli used in a sudden onset trial. A) The first stage of the trial 
involves the presentation of six placeholders. B) When the trial letters are revealed in the next 
stage, a new letter (P) appears where no placeholder was before, constituting a ‘sudden 
onset’. Image from: Cole et al. Journal of Vision January 1, 2003 vol. 3 no. 1 article 3. 
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The common characteristic of stimuli that capture our attention is that they indicate the  

appearance or approach of something new in the visual scene. Visual processing is a 

physiologically energy-intensive task, especially in complex sensory environments. Over 

time, the visual system tends to reduce its response to constant elements in a scene, a 

phenomenon known as adaptation. It is only when a new element appears, or a significant 

change in a pre-existing element occurs, that full processing is again engaged. The visual 

system possesses specialised neurons and receptors for detecting transient changes and 

events such as these. The visual pathway responsible, called the magnocellular pathway, 

begins with magnocellular neurons in the lateral geniculate nucleus a part of the 

thalamus, a subcortical brain area close to the chiasm of the optic nerve. Magnocellular 

responses are predominantly linked to retinal receptors in the periphery of our visual 

field. The more sustained elements of visual processing are attributed to pavocellular 

pathway responses, which are related to receptors located in the fovea of the retina 

comprising our central vision. This organisation is biologically adaptive, as the 

appearance of new, but presently unattended objects or events in a visual scene is most 

likely to occur in the perimeter of our visual field. Salient objects appearing in our 

periphery have the ability to orient our sustained or foveal attention to their source. This 

orienting response is achieved both physically and cognitively, and is a relatively 

hardwired and automatic response present in nearly all organisms with a complex 

nervous system. The orienting response can be elicited by stimuli originating from not 

only vision, but also other senses such as hearing or touch. 

 

In some reptiles, visual awareness is only possible when moving objects are present. This 

represents an extreme case of the biological salience of transient stimuli: stimuli in which 

motion is arguably always a characteristic. The parts of the mammalian brain that 

respond to stimuli indicative of danger, in an automatic fashion, are thought to be an 

evolutionary artefact of the more ancient reptilian nervous system, and are casually 

referred to as ‘the reptilian brain’. Human beings have not ‘outgrown’ this ancient 

motion-sensitive response because it is – and probably always will be – useful to our 

survival. In modern times, we need to be aware of cars suddenly approaching, rather than 

predators chasing us; an involuntary and quick response to impending danger is always 
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going to be a useful reaction for any life form. In contrast to transient visual responses, 

sustained attention is more a quality of higher cognitive processes involved in learning 

and communication. Although unnecessary to a reptile, this form of attention is 

undoubtedly useful for the everyday tasks required of an average human, resulting 

presumably in its evolutionary selection and retention. 

 

Sustained and transient attention can be paralleled to the concepts of exogenous and 

endogenous attention introduced earlier, and also Triesman’s terms ‘bottom-up’ and ‘top-

down’ attention. In most of the research conducted on attention and sensory salience, this 

dichotomy is made explicit. Regardless of what they are called, there is strong evidence 

of these two distinct forms of attention. Although the amenity of separating attention into 

two distinct forms for methodological reasons is appealing, it also seems reasonable to 

assume that internally- and externally-driven attention often act in cohort.  

 

Once a stimulus captures our attention, we have then to decide what to do about it, if 

anything. Transient stimulation essentially is a first step toward sustained attention. Even 

though that sustained attention need not be engaged with transient stimulation first, 

transient events almost always activate sustained processes that appraise the salient event 

in order to determine what it is, and what needs to be done in response. In the same way 

that eye-based and stimulus-based binocular rivalry processes act in conjunction, 

transient and sustained visual processes do not operate in a vacuum, but rather, act 

together to update and maintain our perceptual experience through time. Given this co-

operation, the two should not be artificially separated in cases when they may interact. 

They may be two facets of the same holistic process of attention and awareness, but their 

differences suggest that that they are separable components of a larger process.  

 

Binocular rivalry and attention 

Past studies of attention and binocular rivalry have examined whether we can exert 

conscious control over the perceptual reversals that occur when viewing bistable stimuli 

with attention. Observers have been instructed to try to hold one or the other perceptual 

outcome arising from viewing a bistable stimulus (Meng & Tong, 2004; van Ee, 2005), or 
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attempt to increase or decrease the rate of reversals they experience (Lack, 1978). These 

studies have consistently found that although willpower can exert some limited control 

over the predominance of one or the other perceptual state during binocular rivalry 

viewing, it cannot override the natural progression of the perceptual alternations 

altogether. The limited extent to which purposeful attention can determine bistable 

perceptions has been taken as evidence that perceptual bistability is the result of a 

somewhat hardwired, or involuntary, perceptual mechanism (Leopold & Logothetis, 

1999).  

 

Object-based attention to one or the other perceptual interpretation is less effective in 

controlling perceptual dominance compared to ‘non-object’ based efforts, for example, 

those that attempt to speed or slow reversal rates (Lack, 1978). Object-based attention can 

be used to determine the initial dominance of a binocular rivalry target (Mitchell, Stoner 

& Reynolds, 2004); however, its effect over the full duration of the viewing period is 

negligible (see Meng & Tong, 2004). Wilful control over the rate of perceptual reversals 

yields much larger effects and improves with time and practice (Lack, 1970). This type of 

control does not attempt to alter the proportion of time each perceptual outcome is 

experienced; instead, it operates on the overall rate of alternations.  

 

Object-based (or selective) attention is a little more effective in maintaining a particular 

perception during viewing of other types of bistable stimulus like the Necker cube (Meng 

& Tong, 2004). This suggests that binocular rivalry may be more hardwired than other 

forms of perceptual bistability due to its dependence on binocular conflict mediated by 

early visual area V1. Even so, the effectiveness of non-selective attention over the rate of 

reversals is clear for both the Necker cube and binocular rivalry, as can be seen in Figure 

19 below. Even though these differences show that binocular rivalry is not as open to the 

influence of endogenous attention, this does not rule out that the other similarities 

between different forms of perceptual bistability – binocular rivalry included – are at least 

in part due to the activity of a common mechanism. It is possible that in addition to a 

centralised process, that each form of bistability is also constrained by the level of 
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processing engaged by the stimulus. This possibility is explored in more detail in Chapter 

2, which contains a systematic comparison between pattern rivalry and binocular rivalry.  

 

Binocular vision is not a visual process that can be overridden by will. We cannot stop 

combing the two eyes’ images in stereopsis– unless we deliberately cross our eyes. 

However, our perceptions of objects, such as a wire-frame cube, can be altered to some 

extent: it is possible to view a 2D drawing as a flat piece of paper or alternately as 

representing a 3D scene by will alone. Even so, Necker cube reversals do involve an 

involuntary component; even though observers have more success in holding on to one or 

the other depth interpretation, this cannot be achieved indefinitely, as shown by the 

results presented by Meng and Tong (2004) as seen in Figure 19.  

 

Figure 19. Results from Meng & Tong, 2004 

 
Figure 19. Graph and figure legend From 
Meng & Tong 2004: A) Comparison of the 
proportion of voluntary control over 
alternation rates for Necker cube reversal 
and binocular rivalry in Experiment 3. 
Bar graphs indicate the proportion of 
modulation in alternation rate for each 
voluntary control condition relative to 
passive viewing. Error bars represent ±1 
SEM. Observers showed a strong ability 
to modulate the alternation rates of both 
Necker cube reversal and binocular 
rivalry. B) Normalized rates of alternation 
across contrast levels for binocular 
rivalry. Observers showed substantial 
control of rivalry alternation rates, and 
could roughly double the rate of fast 
alternations as compared to slow 
alternations. Moreover, the amount of 
control over rivalry alternations 
significantly increased as a function of 
stimulus contrast. 
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Interestingly, given the preceding discussion about the two different modes of attention, 

there appears to be a dichotomy in the way that attention can modulate perceptual 

bistability. There is evidence that different types of attention work differently on the 

perceptually dominant and suppressed images during binocular rivalry alternations. 

Higher-order visual effects, such as the grouping of subjective contours (Sobel & Blake, 

2003) and other contextual influences (Sobel & Blake, 2002) appear to affect rival stimuli 

only while they are perceptually dominant. Transient effects, using sudden-onset stimuli 

– such as small flashes (Kanai et al., 2005) or pop-out effects – can operate during the 

suppression of a rival stimulus to lift that image into perceptual awareness (Ooi & He, 

1999), much like the way transient events can direct sustained attention to their source. 

So called ‘vision for action’ such as attention to certain forms of motion allows for 

greater control over binocular rivalry than attention to static gratings (Hugrass & 

Crewther 2012). 

 

Kanai et al.’s 2005 study showed that visual transients – such as flashes of light around 

rival stimuli – cause perceptual reversals. When a flash of light was presented in 

proximity to the rival stimuli, the dominant perceptual state quickly swapped to the 

alternative state. Flashes of light can be considered prime examples of stimuli that 

activate bottom-up, exogenous attention as they constitute sudden onsets, shown by 

Yantis and Yonides to be the one perceptual element to reliably and consistently activate 

automatic visual processing (Yantis & Jonides, 1984; and Jonides & Yantis, 1988). That 

these kinds of transient stimuli can alter rivalry dynamics supports the idea that the 

mechanism underlying perceptual bistability is linked to exogenous attention.  

 

Periodic and automatic shifts in attention used to monitor our environment are another 

possible mechanism of the perceptual alternations experienced when viewing bistable 

stimuli. In support of this idea, the distribution of dominance durations, (the gamma 

distribution), is common to the temporal pattern of reaction times during visual search 

tasks and perceptual rivalry (Wolfe, Torralba & Horowitz, 2002). There may be an 

unconscious perceptual process that is common to both bistable alternations and 

perceptual sampling of the visual scene around us. Shifts in attention can be reliably 
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induced by transient stimuli, as sudden onsets in visual search demonstrate. Chapters 4 

and 5 of this thesis explore how transient cross-modal stimuli can help clarify the 

relationship between binocular rivalry and involuntary (i.e. exogenous) attention. 

Comparison of the relative effect of inter- and intra-sensory transient stimuli also 

provides a way to gauge whether a common mechanism is involved in the temporal 

dynamics of binocular rivalry. The existence of perceptual bistability across the senses 

may reflect a ‘modality-agnostic’ component of all forms of bistable perception, 

including binocular rivalry.  

 

Perceptual bistability in non-visual sense modalities. 

One of the most convincing arguments that perceptual bistability arises from a common 

mechanism is that it is not exclusive to stimuli presented in the visual sense. As was 

discussed in the earliest section of this chapter, many different types of stimuli give rise 

to bistable reversals. These stimuli all share one feature: they are inherently ambiguous 

and offer two or more perceptual interpretations. This feature can be considered as the 

one essential requirement for perceptual bistability to occur, and it is a feature that does 

not limit the type of stimulus needed to elicit bistable phenomena to any one sense. 

Perceptual bistability can be achieved with stimuli presented in both touch and auditory 

modalities, and even via olfactory means (Zhou & Chen, 2009). 

 

Presenting a sound-stream that can be grouped in two different ways evokes auditory 

bistability (Pressnitzer & Hupé, 2006, review by Brancucci & Tomassi, 2011). Such 

sound streams generally contain discrete sounds (not continuous tones). Usually, two 

different pitched tone streams are put together. The bistable alternation is not between 

one or the other pitch, but between hearing the two streams as separate and hearing them 

grouped together to form one coherent rhythmic sound stream. Tactile bistability can 

occur with a tactile version of the ambiguous dot motion quartet (Carter, Konkle, Wang, 

Hayward & Moore, 2008) and even a moving cylinder (Holcombe & Seizova-Cajic, 

2008). When a finger is in contact with the moving, textured cylinder, the textured 

surface touches the finger at intermittent times. If the point of contact is the same location 

on the finger, these discreet contacts contain some degree of ambiguity; they could 
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correspond to the cylinder rotating left or right. Perception of the cylinder’s direction of 

rotation can therefore be bistable.  

 

An interesting question to arise in this area is whether or not information from one sense 

can influence another engaged in bistable alternations. Another question of interest is 

how two sense modalities, both engaged in bistable alternations, might behave – and this 

is addressed in detail in the General Discussion (Chapter 6). Some previous studies have 

found a small influence of stimuli from one sense modality on the dominance durations 

or pattern of bistable reversals in another sense (Blake, 2005). Given that object-based 

and endogenous attention have little impact on the overall predominance of one 

interpretation during bistable alternations, it is not surprising to find these effects have 

been small. This is because the cross-modal pairings used enhance the depiction of one or 

the other rival stimulus, in much the same way that wilful attention might. 

 

In contrast, stimuli that activate exogenous attention are expected to yield a substantial 

cross-modal influence over perceptual bistability, which is the subject of Chapters 4 and 

5. Before concluding that cross-modal effects on bistability are limited, these effects need 

to be investigated using certain forms of attention-grabbing stimuli already known to 

exert an influence over perceptual bistability (for example Kanai et al., 2005). These 

stimuli might also need to be suited to how each of our senses interact with each other in 

normal perceptual experience, such as auditory temporal driving of vision (Shipley, 

1964). Given the evidence that bistable alternations are susceptible to modification by 

exogenous stimuli, these types of stimuli are used to investigate cross-modal influences 

during perceptual bistability in Chapters 4 and 5. 

 

Hypothesis 

This thesis addresses two questions. The first has already been covered adequately in 

previous literature, but is extended by research presented in Chapter 2. The second 

question, although suggested previously (for example by Carter et al., 2007), is 

approached in a unique way by incorporating novel stimuli into the binocular rivalry 

experimental paradigm.  
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1. Is there a common mechanism underlying perceptual bistability, and what evidence 
is there for the existence of this mechanism? 

Although the type of bistable stimulus may differ, the question regarding a ‘common 

mechanism’ is an attempt to explore if there are neural and cognitive processes of 

perceptual interpretation that are common to all forms of perceptual bistability. A 

singular brain area or network need not necessarily underlie this mechanism. 

Commonality might be achieved by a singular, centralised network; but it might also 

arise from isomorphic patterns of neural responding in the areas dedicated to processing 

the particular qualities of the bistable stimulus. The extent that stimulus-specific 

processes do or do not determine bistable alternations can be used to estimate the 

involvement of a common mechanism. 

 

Chapter 2 of this thesis explores the types of evidence that can be used to demonstrate 

that a shared perceptual process underlies different forms of perceptual bistability by 

comparing binocular rivalry with a form of bistability between two patterns called 

monocular rivalry. Although binocular rivalry involves conflict between binocular inputs, 

it has also been shown to share many perceptual similarities to monocular rivalry, which 

is a conflict between stimulus patterns, not the two eyes. Despite the similarities, there 

does appear to be a stimulus-specific component of binocular rivalry alternations as 

evidenced by differences in suppression. This could support the idea that the 

commonalities between different forms of perceptual bistability are due to similar 

patterns of conflict resolution in sensory-specific processing. In addition, these processes 

appear to be modulated by a centralised neural process related to perceptual awareness 

and attention rather than being determined by it.  

 

2. Is this common mechanism related to exogenous perceptual selection? 

As discussed earlier, endogenous – or wilful – attention is limited in its ability to 

determine perceptual dominance during binocular rivalry. This has been taken as 

evidence that bistable reversals are a product of a hardwired mechanism not susceptible 

to conscious control (Leopold & Logothetis, 1999). This thesis asks if this mechanism is 
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the same one that underlies exogenous perceptual selection and attention. Whether 

exogenous attention can alter the overall dominance of one perceptual state during 

binocular rivalry has not been sufficiently established due to the transient nature of the 

stimuli required to elicit it. If an appropriate sustained stimulus is used, it is predicted that 

exogenous attention will determine perceptual state during binocular rivalry more 

effectively than endogenous attention. This prediction was tested in Chapters 3, 4 and 5. 

For the experiments presented in Chapter 3, a visual stimulus was designed to elicit 

exogenous attention indefinitely throughout binocular rivalry trials. This ‘looming’, or 

approaching, motion stimulus – unlike singular flashes or events – is steady across the 

trial period while still evoking strong stimulus-driven attention. In the absence of 

observers’ attempts to wilfully control their perceptual state, this stimulus predominated 

over a rival motion stimulus of the opposite direction with equal image and motion signal 

strength. These experiments support the prediction that stimulus-driven, or exogenous, 

attention is a more effective determinant of perceptual state during binocular rivalry than 

endogenous attention.  

 

Exogenous perceptual selection operates across all sensory domains. It needs to be open 

and automatic in order to operate effectively. If it is centrally involved in bistable 

perceptual dynamics, cross-modal stimuli designed to activate exogenous attention 

should affect rivalry dynamics in comparable ways. This hypothesis is explored in 

Chapters 4 and 5. Chapter 4 explores how visually-congruent ‘looming’ sound cycles 

alter the results reported in Chapter 3. Temporal synchrony between the motion pulses 

was found to be a critical factor, which motivated the experiments in Chapter 5. Chapter 

5 examines the phenomenon of auditory driving and binocular rivalry, showing that task-

irrelevant sound and flicker streams can alter binocular rivalry rates. Chapter 5 also 

examines how these stimulus streams can alter other perceptual and motor processes, 

including the eye movements and the perception of interval duration. 

 

The results, together with the theoretical and empirical similarities between exogenous 

selection and the dynamics of perceptual bistability are argued in the final General 

Discussion Chapter 6 to support the theory that some component of binocular rivalry 
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dynamics is a product of a distributed mechanism involved in attention and vigilance. 

Strong auditory effects were found in Chapters 4 and 5 in partial support of the 

hypothesis that perceptual bistability dynamics are influenced by the activity of 

distributed processing. Despite these significant cross-modal effects, auditory-driven 

exogenous attention did not determine binocular rivalry alternations completely. As with 

the results of Chapter 2, this points to the involvement of a stimulus-specific component 

of binocular rivalry that is separate from generalised processes underlying attention. 

Nonetheless, non-visual processes can affect some part of the temporal dynamics of 

binocular rivalry. The present results suggest that this process may be the same as those 

governing exogenous perceptual selection and arousal that gives rise to conscious 

attention
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Chapter 2 

Monocular rivalry exhibits three hallmarks of binocular 
rivalry: Evidence for common processes  
 
The work in this chapter is published as: 
O'Shea, R.P., Parker, A.L., La Rooy, D., & Alais, D. (2009). Monocular rivalry exhibits three 
hallmarks of binocular rivalry. Vision Research, 49(7), 671-81. 
 

Overview 

The first set of experiments presented in this thesis explores the theory that all forms of 

perceptual bistability arise from common processes. It extends studies comparing 

different types of bistable stimuli by comparing binocular and monocular rivalry. 

 

Abstract 

 Binocular rivalry occurs when different images are presented one to each eye: the images 

are visible only alternately. Monocular rivalry occurs when different images are 

presented both to the same eye: the clarity of the images fluctuates alternately. Could 

both sorts of rivalry reflect the operation of a general visual mechanism for dealing with 

perceptual ambiguity? We report four experiments showing similarities between the two 

phenomena. First, we show that monocular rivalry can occur with complex images, as 

with binocular rivalry, and that the two phenomena are affected similarly by the size 

(Experiment 1) and colour (Experiment 2) of the images. Second, we show that the 

distribution of dominance periods during monocular rivalry has a gamma shape and is 

stochastic (Experiment 3). Third, we show that during periods of monocular rivalry 

suppression, the threshold to detect a probe (a contrast pulse to the suppressed stimulus) 

is raised compared with during periods of dominance (Experiment 4). The threshold 

elevation is much weaker than during binocular rivalry, consistent with monocular 

rivalry’s weak appearance. We discuss other similarities between monocular and 

binocular rivalry, and also some differences, concluding that part of the processing 

underlying both phenomena is a general visual mechanism for dealing with perceptual 

ambiguity. 2009 Elsevier Ltd. All rights reserved. 
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Introduction 

We experience the visual world in astounding richness and detail, yet our knowledge of 

how our conscious percepts arise is still quite poor (cf. Chalmers, 1995). One way to 

learn more about these processes is to study phenomena in which visual consciousness 

changes without any change in the stimuli being viewed (Crick & Koch, 1995). Such 

phenomena are known as perceptually multistable and include binocular rivalry (Porta, 

1593, cited in Wade, 1996), reversals of the Necker cube (Necker, 1832), of the Rubin 

face-vase figure (Rubin, 1915), and of the kinetic depth effect (Wallach & O’Connell, 

1953), and motion-induced blindness (Bonneh, Cooperman, & Sagi, 2001). Binocular 

rivalry is a particularly fascinating example, in which visual consciousness fluctuates 

randomly between two different images presented one to each eye. It has been studied 

extensively (for reviews see Alais & Blake, 2005; Blake & O’Shea, 2009) and has gone 

some way to shedding light on how visual awareness arises: conscious visual experience 

in binocular rivalry is thought to arise from activation, and suppression, of neurons at a 

succession of stages in the visual system via feed-forward and feedback connections (e.g., 

Blake & Logothetis, 2002).  

 

Our interest in this paper is in the relationship between binocular rivalry and another 

phenomenon of perceptual multistability, monocular rivalry. Monocular rivalry was 

discovered by Breese (1899) in the course of his foundational observations and 

experiments on binocular rivalry. He found that binocular rivalry-like behaviour also 

occurred when a red and a green grating were optically superimposed by a prism and 

presented to a single eye. Breese called it monocular rivalry to distinguish it from 

binocular rivalry. He reported that monocular rivalry alternations tended to occur at a 

slower rate than binocular rivalry alternations and that the perceptual alternations were 

less vivid: ‘‘Neither [stimulus] disappeared completely: but at times the red would appear 

very distinctly while the green would fade; then the red would fade and the green appear 

distinctly” (p. 43).  

 

One of the unresolved questions in the literature on perceptual multistability is whether 

common neural mechanisms underlie binocular and monocular rivalry. Rubin (2003), 
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Leopold and Logothetis (1999), and Maier, Logothetis, and Leopold (2005) have 

proposed that all examples of perceptual multistability represent operations of a single, 

high-level mechanism. If so, this would tie together diverse multistability phenomena 

including perception of ambiguous auditory stimuli (e.g., Einhäuser, Stout, Koch, & 

Carter, 2008), perception of traditional visual ambiguous figures such as the Necker cube 

(e.g., Meng & Tong, 2004), perception of illusory organisation such as Marroquin 

patterns (Wilson, Krupa, & Wilkinson, 2000), monocular rivalry, and binocular rivalry.  

 

There are at least three general similarities between monocular rivalry and binocular 

rivalry that suggest commonality. The basic phenomenology is similar in that both 

involve periods of alternating dominance. Both forms of rivalry become more vigorous as 

stimuli are made more different in colour (e.g., Wade, 1975), or in orientation and spatial 

frequency (e.g., Atkinson, Fiorentini, Campbell, & Maffei, 1973; Campbell, Gilinsky, 

Howell, Riggs, & Atkinson, 1973; O’Shea, 1998). The two forms of rivalry can influence 

each other, tending to synchronise their alternations in adjacent regions of the visual field 

(Andrews & Purves, 1997; Pearson & Clifford, 2005).  

 

Although monocular and binocular rivalry are similar in these three respects, this is by no 

means an exhaustive list of possible comparisons. Here we test whether monocular 

rivalry shares three other hallmarks of binocular rivalry. First, binocular rivalry can occur 

between any two images, providing they are sufficiently different. For example, Porta 

(1593, cited in Wade, 1996) observed rivalry between two different pages of text. 

Wheatstone (1838) observed rivalry between two different alphabetic letters. Galton 

(1907) observed rivalry between pictures of different faces. Yet monocular rivalry has 

always been shown between simple repetitive stimuli such as gratings, leading some to 

suppose that such stimuli are necessary for monocular rivalry (e.g., Furchner & Ginsburg, 

1978; Georgeson, 1984; Georgeson & Phillips, 1980; Maier et al., 2005). In Experiments 

1 and 2, we show that monocular rivalry occurs between complex pictures of faces and 

houses. We demonstrate this in Figure 1.  
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Figure 1. Monocular rivalry between complex pictures 

 
Figure 1. Illustration of one of the 
monocular rivalry stimuli from 
Experiment 2: a red face and a green 
house. To experience monocular rivalry 
stare approximately at the centre of the 
image, say at the bridge of the face’s 
glasses. Be patient! Monocular rivalry 
takes a while to develop. But after a 
time, 10–30 s or so, you will notice 
fluctuations in the relative clarity of the 
two images. You may even see one of the 
two images become exclusively visible 
briefly, along with brief composites in 
which different parts of the images 
appear in different parts of the visual 
field. (For interpretation of the 
references to colour in this figure 
legend, the reader is referred to the web 
version of this article.) 

 

Second, binocular rivalry has a characteristic distribution of dominance times, a gamma 

distribution, and the duration of one episode of dominance cannot be predicted by any of 

the preceding ones (e.g., Fox & Herrmann, 1967; Levelt, 1967). Yet the distribution and 

predictability of episodes of monocular rivalry dominance are unknown. In Experiment 3, 

we show that the temporal periods of monocular rivalry are similar to those of binocular 

rivalry: gamma distributed and stochastic.  

 

Third, binocular rivalry suppression is accompanied by a characteristic loss of visual 

sensitivity. When a stimulus is suppressed during binocular rivalry and becomes 

invisible, stimuli presented to the same retinal region are also invisible, provided the new 

stimuli are not so abrupt or so bright as to break suppression (e.g., Fox & McIntyre, 1967; 

Nguyen, Freeman, & Alais, 2003; Norman, Norman, & Bilotta, 2000; Wales & Fox, 

1970). This is usually demonstrated by showing a loss of sensitivity during periods of 

suppression relative to periods of dominance, however it is unknown whether monocular 
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rivalry also shows such suppression effects. In Experiment 4, we show that monocular 

rivalry does indeed produce threshold elevations during suppression, although the effect 

is weaker than in binocular rivalry.  

 

The experiments in this paper have been published individually in abstract form (O’Shea, 

Alais, & Parker, 2005, 2006; O’Shea and La Rooy, 2004). Here we draw these 

experiments together and give their details to provide evidence for similarities between 

monocular rivalry and binocular rivalry.  

 

Experiment 1  

Maier et al. (2005) reviewed studies of monocular rivalry, and concluded that monocular 

rivalry occurs only between simple, faint, repetitive images, such as low-contrast 

gratings. They observed, however, that alternations in clarity could occur between 

complex images, such as the surface of a pond and a reflection on it of a tree, although 

they did not measure rivalry with such stimuli. Boutet and Chaudhuri (2001) optically 

superimposed two faces that differed in orientation by 90 . They reported that the two 

faces alternated in clarity in a rivalry-like way, but they did not measure rivalry 

conventionally. They forced observer’s choices about whether one or two faces was seen 

after brief stimulus presentations of 1–3 s. Monocular rivalry, however, usually takes 

several seconds, or even tens of seconds, before oscillations become evident (e.g., Breese, 

1899). We decided to measure monocular rivalry with complex images in a conventional 

way, by showing observers optically superimposed images for 1-min trials, and asking 

them to track their perceptual alternations using key presses. We used images of a face 

and a house. Moreover, we explicitly compared monocular rivalry with binocular rivalry 

for identical stimuli over a range of stimulus sizes. We chose to manipulate size because, 

at least with gratings, it has powerful effects on binocular rivalry (e.g., Blake, Fox, & 

Westendorf, 1974; Breese, 1899, 1909; O’Shea, Sims, & Govan, 1997). 
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Method 

Observers 

One female and three males volunteered for this experiment after giving informed 

consent: HF (age 23), DLR (age 33), and RS (age 24) had some experience as observers; 

ROS (age 50) was a highly trained observer. All had normal or corrected-to-normal 

vision. All observers were right handed. HF and RS were naive as to the purpose of the 

experiment. 

 

Stimuli and apparatus 

Stimuli were digitized photographs of ROS’s face and part of his house on plain 

backgrounds, similar to that shown in Figure 1 except that they were greyscale. Stimuli 

were 0.77, 1.54, 3.08, 6.16, and 12.32 of visual angle square. The smaller images were all 

scaled-down versions of largest image (800x800 pixels) and scaling was done using NIH 

Image software. (Scaling from large to small minimises spatial frequency distortions that 

can arise when scaling from small to large). They were surrounded by two bright vertical 

bars, each 0.5 wide, as tall as the stimulus, and separated from the edge of the stimulus by 

0.5; these were to help observers align the stimuli binocularly. Stimuli were displayed on 

two identical Sony Trinitron, 19-in., colour monitors with a spatial resolution of 1152  

870 pixels and a frame rate of 75 Hz. Each eye of the observer viewed only one monitor 

from a distance of 1 m through a mirror stereoscope. The experiment was controlled by a 

Power Macintosh 8600 computer running specially written software (Handley, Bevin, & 

O’Shea, 2005).  

 

The room was entirely dark, with the monitors as the sole light source. Presenting 

superimposed images of the face and house to both eyes created monocular rivalry. 

Presenting the image of the face and house separately to each eye created binocular 

rivalry. The luminance of the stimuli on each screen was 10 cd/m2, and that of the 

vertical bars was 30 cd/m2. Otherwise the screens were dark (0.2 cd/m2). The standard 

deviation of the luminances in the two images was 2.45 cd/m2 for the face and 3.44 

cd/m2 for the house.  
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Procedure  

There were two sessions each containing a block of 10 binocular rivalry trials and a block 

of 10 monocular rivalry trials. In each block, observers received two presentations of the 

images at each of the five image sizes. During binocular rivalry trials, one presentation of 

each stimulus size was of the face to the left eye and the house to the right eye, and the 

other was of the opposite arrangement. Order of trials was random within blocks. Order 

of blocks was counterbalanced over observers and over sessions. Each trial lasted for 60 s 

and was followed by an inter-trial interval of at least 45 s. Observers reported their 

perception of either the face or house by pressing the ‘Z’ or ‘?’ keys, respectively. They 

pressed a key whenever, and for as long as, a particular stimulus exceeded a criterion 

level of visibility. For binocular rivalry, this criterion was that an image was exclusively 

visible over at least 95% of the field. For monocular rivalry, this criterion was that an 

image appeared to be at least twice as clear as the other, or was exclusively visible over at 

least two-thirds of the field (we call this a 66% visibility criterion).  

 

The experimental sessions were preceded by sufficient practice trials to enable each 

observer to respond consistently to both sorts of rivalry.  

 

Results and discussion  

All observers found it easy to press keys to signal their perception of the two images in 

both monocular and binocular rivalry. They also commented on some of their unusual 

perceptions. During binocular rivalry, they sometimes described composites, in which 

one image would replace the other over a few moments. For example, one might briefly 

see the left half of the face on the left side of the screen and the right half of the house on 

the right side of the screen before the face would then wipe out the remaining image of 

the house. More amusingly, one might briefly see the face with one eye replaced by the 

house’s window. Such composites are a common property of binocular rivalry, and have 

been studied by Wilson, Blake, and Lee (2001). Observers reported similar composites 

during monocular rivalry.  
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We quantified rivalry in three ways. First, we counted the number of times each key was 

pressed to obtain a rate measure of rivalry. Second, we counted the cumulative time each 

key was pressed to obtain a measure of dominance time. Third, we averaged the time of 

each individual key press to obtain a measure we call period.  

 

We analysed these data with three-factor, within-subjects ANOVAs (the factors were 

type of rivalry, size, and image reported). There was a significant effect of size on rate, 

F(4,12) = 12.29, p < .001, such that rate increased with size of the images (see Figure 2). 

All observers showed this pattern of results. An increasing alternation rate with image 

size is opposite to the usual finding with simple stimuli such as gratings (e.g., Breese, 

1899; O’Shea et al., 1997). Critically, there was no difference between monocular and 

binocular rivalry in the shape of the function relating size to rate.  

 

There was also one significant effect for dominance time: the face was seen for longer 

than the house, F(1,3) = 10.64, p < .05. The mean dominance time for the face was 12.44 

s (SD = 9.95 s) and that for the house was 6.90 s (SD = 5.47 s). This could have arisen 

from a general preference for faces over other stimuli in rivalry (e.g., Beloff & Beloff, 

1959; Engel, 1956) or from some preference for the spatial frequencies of the face image 

over the house image (cf. Lumer, Friston, & Rees, 1998; Tong, Nakayama, Vaughan, & 

Kanwisher, 1998). But it is not important for our purposes, because there were no other 

significant effects or interactions for this measure, showing that this advantage for the 

face was consistent over size and over type of rivalry.  

 

There were no significant effects for period. These were similar over stimuli, over sizes, 

and over the two sorts of rivalry. The increase in the rate of alternations with size for both 

sorts of rivalries is consistent with the idea that rivalry between complex stimuli is 

mediated by interactions among neurons in higher-level visual areas such as the 

inferotemporal cortex (Alais & Melcher, 2007; Sheinberg & Logothetis, 1997). Not only 

are such neurons responsive to coherent visual objects, such as the house and face stimuli 

used here, their receptive fields are far larger than those at earlier levels of the visual 
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system (Gross, Bender, & Rocha- Miranda, 1969; Yoshor, Bosking, Ghose, & Maunsell, 

2007) and would therefore be preferentially activated by the larger rival stimuli.  

 

Figure 2. Binocular and monocular rivalry alternation rate 

 
Figure 2. Plot of binocular rivalry (BR) and monocular rivalry (MR) rate (the number of 
episodes of dominance of each image per minute) against size of the images. The vertical bars 
show ±1 standard error of the mean. 

 

One possible alternative explanation is that image size is correlated with spatial-

frequency content. This might seem plausible because with grating stimuli, monocular 

rivalry is usually strongest at low spatial frequencies (Kitterle & Thomas, 1980; 

Mapperson & Lovegrove, 1984; O’Shea, 1998). But grating stimuli contain only a single 

spatial frequency, whereas our images are complex with a very broad spatial frequency 

spectrum that follows a fractal (1/f) amplitude profile. Such images are scale invariant 

(e.g., Field, 1994; Ruderman & Bialek, 1994) Complex images therefore show the same 

complex mix of spatial frequencies at all sizes of images.  
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Of more central importance for our purposes is that both monocular rivalry and binocular 

rivalry, which is robust over a very large range of spatial frequencies (O’Shea et al., 

1997), exhibited the same trend of increasing alternation rate with increasing image size. 

Given this, the similar trends shown in Figure 2 may be indicative of common 

mechanisms in monocular and binocular rivalry. We further test this idea in the next 

experiment by assessing the effects on the two sorts of rivalries of adding colour 

differences to the two rivalling images.  

 

Experiment 2  

Monocular rivalry does not require coloured stimuli (e.g., Experiment 1), but its 

alternation rate is faster when stimuli have complementary colours (Campbell & Howell, 

1972; Rauschecker, Campbell, & Atkinson, 1973; Wade, 1975). Similarly, binocular 

rivalry does not require coloured stimuli, but its alternation rate is also faster when the 

rival stimuli have complementary colours (Hollins & Leung, 1978; Thomas, 1978; Wade, 

1975). The only studies we are aware of in which the effects of colour on monocular and 

binocular rivalry were compared in the same experiment with the same observers’ 

viewing grating stimuli came to different conclusions. Kitterle and Thomas (1980) found 

that colour affected monocular but not binocular rivalry whereas Knapen, Kanai, 

Brascamp, van Boxtel, and van Ee (2007) found that colour affected monocular and 

binocular rivalry similarly. In Experiment 2, we also examine the role of colour on 

binocular and monocular rivalry but extend it to include complex broadband images.  

 

Method  

The Method of Experiment 2 was very similar to that of Experiment 1. The differences 

were that a second set of stimuli, that used by Tong et al. (1998) was added, and one of 

the male observers (RS) from Experiment 1 did not participate. All stimuli were 6.16 

square. Tong et al.’s stimuli were similar to those of Experiment 1, except that they 

comprised a different male face (younger, clean-shaven, and without glasses) and a 

different house (older, of a Georgian style, and showing more elaborate architectural 

details). Pixel luminances in Tong et al.’s face and house had standard deviations of 3.22 

cd/m2 and 4.98 cd/m2, respectively. There were 12 binocular rivalry and 12 monocular 
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rivalry trials in which observers again tracked their rivalry alternations. In four repetitions 

of each pair of stimuli the images were achromatic, in four the face was red (CIE x = 

.315, y = .321) and the house green (CIE x = .270, y = .347), and in four the face was 

green and the house red. Mean luminances of all stimuli (colour and greyscale) were the 

same as that in Experiment 1. See Figure 1 for an illustration of one of the monocular 

rivalry stimuli.  

 

Results and discussion  

Again observers had no trouble recording perceptual alternations in monocular and 

binocular rivalry, and again they reported episodes of composites for both types of 

rivalry.  

 

We analysed the same three measures of rivalry with four-factor, within-subjects 

ANOVAs (the factors were type of rivalry, colour, stimulus set, and image reported). The 

only significant effect was colour on rivalry rate, F(1,2) = 19.87, p < .05, such that the 

alternation rate was greater with coloured images than with achromatic images (see 

Figure 3). All observers showed this pattern of results. The difference between the rates 

for monocular and binocular rivalry was not significant, F(1,2) = 5.19, p > .15.  

 

Figure 3. Colour and binocular and monocular rivalry alternation rates 

 
 
Figure 3. Plot of binocular rivalry 
and monocular rivalry rate (the 
number of episodes of dominance 
of each image per minute) for 
achromatic and for coloured 
images. The vertical bars show ±1 
standard error of the mean. 
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Figure 3 shows that adding colour differences to two complex rivalling images increases 

the rate of both monocular and binocular rivalry (the interaction between type of rivalry 

and colour was not significant, F(1,2) = 0.03) without consistently affecting the other 

measures of rivalry. This is different from the result of Kitterle and Thomas (1980) who 

found that colour enhanced monocular rivalry between gratings, but did not enhance 

binocular rivalry. Although it is possible that this indicates a difference between simple 

and complex stimuli, we suspect that there is some other explanation, especially because 

others did find that colour differences enhanced binocular rivalry rates with gratings 

(Hollins & Leung, 1978; Thomas, 1978; Wade, 1975). For example, Kitterle and 

Thomas’s binocular rivalry rates for achromatic stimuli were about four times greater 

than their monocular rivalry rates. Possibly, then, a ceiling effect limited the scope for 

binocular rivalry to be enhanced by coloured stimuli.  

 

In any case, we are confident that with complex stimuli, adding different colours to 

different complex images does enhance both binocular and monocular rivalry. This is 

consistent with some general rivalry mechanism that assesses the degree of difference 

between representations of two images and instigates rivalry accordingly. Adding 

different colour to different images adds another dimension along which the stimuli 

differ, which would be expected to lead to more vigorous rivalry. In a related vein, 

adding colour to rival images also tends to reduce piecemeal rivalry, because it adds a 

unifying attribute to each image and tends to lead to more coherent alternations.  

 

By concentrating on overall rivalry alternation rates in the first two experiments, we have 

ignored the finer-grained temporal dynamics of rivalry. In Experiment 3, we will conduct 

a comparison of monocular and binocular rivalry on a finer temporal scale. 

 

Experiment 3 

The temporal dynamics of binocular rivalry have been well studied. For example, Levelt 

(1968) showed that the distribution of dominance times approximates a gamma function. 

Moreover, Levelt demonstrated that the duration of one episode of dominance of one 

image cannot be predicted from the duration of any of the previous episodes, meaning 
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that each dominance episode is a statistically independent sample from an underlying 

population distribution of dominance times. We set out to determine whether monocular 

rivalry also conforms to these principles, comparing it with binocular rivalry dynamics 

measured on identical binocular rivalry stimuli. In this we were following the example of 

van Boxtel, van Ee, and Erkelens (2007) who used similar comparisons to argue that 

binocular rivalry and dichoptic masking share similar processing.  

 

Essentially all of the studies of the temporal properties of binocular rivalry have used 

simple repetitive stimuli such as gratings. For comparability with these studies, we use 

grating stimuli for both monocular and binocular rivalry.  

 

Method  

Observers  

Three of the authors acted as observers, along with four inexperienced observers who 

were unaware of the aims of the experiment. All observers had normal vision.  

 

Apparatus  

The computer controlling this experiment was a Macintosh G5, running Matlab 7.0.4 

scripts that used the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). Stimuli were 

displayed on a 14-in. DiamondPro monitor showing 800 x 600 pixels at a 90 Hz vertical 

refresh rate (75 Hz for observers DL, ROS, SM, SS). Stimuli were shown one on each 

side of the screen and viewed via a mirror stereoscope at a viewing distance of 57 cm.  

 

Stimuli  

Stimuli were two orthogonal square-wave gratings, one red and the other green, oriented 

±45 to vertical. The gratings had a spatial frequency of 2.2 cycles/deg with a Michelson 

contrast of 8% and were placed in a circular aperture subtending 4.6 . Gratings had a 

mean luminance of 31.30 cd/m2; the background had the same luminance. The gratings 

were superimposed and visible to both eyes for monocular rivalry conditions; the gratings 

were presented one to each eye for binocular rivalry conditions.  
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Procedure 

For both binocular and monocular rivalry, the observer’s task was similar to that in 

Experiments 1 and 2: to track episodes of perceptual dominance of one and the other 

stimuli by pressing keys on the computer keyboard. There were two trials lasting up to 5 

min for each viewing condition. Viewing condition was alternated for each observer over 

trials; each observer started with a different condition. 

 

Results and discussion 

We analysed the records of rivalry in two ways. First, we plotted distributions of 

dominance periods to which we fitted a gamma distribution. However, we also tried 

fitting a gamma distribution to the reciprocal of dominance duration (alternation rate), 

following Brascamp, van Ee, Pestman, and van den Berg’s (2005) recommendation that 

the gamma distribution provides a better fit to alternation rates than to the more 

commonly used dominance durations. When we compared fits to both types of data using 

the Kolmogorov–Smirnov goodness-of-fit test (the cumulative functions for this test were 

calculated without binning the data), we found they fitted equally well. Using a critical p-

value of 0.10 (as in Brascamp et al., 2005), we found that three out of 14 distributions of 

duration data were significantly different from the best fitting gamma distribution. For the 

same analysis based on the rate data, the outcome was the same: three out of 14 

distributions differed significantly from the best fit. Although Brascamp et al. did find 

rate-based fits to be better (based on nearly 200 distributions), there was no difference in 

our small sample. For this reason, and to make it easier to relate our findings to the 

previous literature (where duration-based fits have been the standard), we show 

distributions of dominance periods together with best fitting gamma distributions of the 

following form:  

 
 

 where k is the ‘‘scale” parameter, k is the ‘‘shape” parameter, and a scales the height 

(amplitude) of the distribution.  
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Figure 4 shows the distributions of dominance periods separately for monocular and 

binocular rivalry for four observers (the results of the other three observers were similar). 

We show the fitted gamma functions with their parameters. The parameters of all fits are 

remarkably similar, showing that monocular and binocular rivalry exhibit globally similar 

alternation dynamics.  

 

Second, we computed autocorrelations between the recorded dominance sequence and the 

same sequence offset by various time lags in order to test the sequential independence of 

rivalry dominance times. Figure 5 shows the autocorrelation analyses from the same four 

observers for binocular and monocular rivalry. The correlation is arbitrarily 1.0 when 

there is no lag, and the error bars show 95% confidence intervals (computed from 1000 

iterations of a bootstrapping procedure). Similar to binocular rivalry (Levelt, 1968) there 

is no systematic tendency in monocular rivalry for a given dominance duration to be 

related to the previous dominance duration, or to dominance durations several phases 

earlier. Over the seven observers tested at 12 phase lags for monocular and binocular 

rivalry (a total of 168 points), there are only nine significant deviations from zero – about 

what would be expected from type I errors with our 95% confidence intervals (9/168 = 

0.053).  

 

In summary, the results of this experiment show that monocular rivalry possesses the 

characteristic temporal dynamics of binocular rivalry. The remaining hallmark of 

binocular rivalry is that there is an objectively measurable suppression of vision of one or 

the other images. In Experiment 4, we will search for the same suppression in monocular 

rivalry. 

 

  



Chapter 2: Monocular rivalry exhibits three hallmarks of binocular rivalry: Evidence for common 
processes  

 

 

61 

Figure 4. Distributions of perceptual dominance durations 

 

 
 

Figure 4. Distributions of dominance durations for four observers for binocular rivalry (left 
panels) and for monocular rivalry (right panels). The continuous plot shows that best-fitting 
Gamma distribution fitted to the data. The periods were binned into 125 ms intervals. 
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Experiment 4 

One technique commonly used to study binocular rivalry has been to measure the depth 

of suppression. This is done by measuring the detection threshold for a probe stimulus 

presented to an eye during suppression, and comparing it against the threshold for the 

same probe measured during dominance (Blake & Camisa, 1979; Blake & Fox, 1974; 

Fox & Check, 1972; Wales & Fox, 1970). Generally, for simple stimuli such as gratings 

and contours, probe sensitivity is reduced during suppression to about 60% of the level 

measured during dominance (Fox & McIntyre, 1967; Nguyen et al., 2003; Norman et al., 

1999; Wales & Fox, 1970).  

 

Surprisingly, the probe technique has never been used to assess the depth of monocular 

rivalry suppression. We set out to do so. Of course, it is not possible to use monocular 

probes (as done in binocular rivalry probe experiments) for monocular rivalry because the 

rivalling stimuli are both present in the same eye. Instead, our approach was to use a 

contrast increment of one of the monocular- rivalry stimuli as a probe. Again, for 

comparability with previous research, we used orthogonal gratings as rivalry stimuli. 

Gratings were red or green, oriented ±45 to vertical. We briefly and smoothly pulsed the 

contrast of the red grating according to a temporal Gaussian profile, varying the 

amplitude of the pulse to find the threshold. These thresholds were measured during 

dominance and suppression to quantify suppression depth for monocular rivalry. As a 

comparison, we also measured suppression depth for the same stimuli under binocular 

rivalry conditions. 

 

Method 

The Method was similar to that of Experiment 3 with the following exceptions. Observers 

were the three authors who participated in Experiment 3 and JC, who also participated in 

Experiment 3. Instead of tracking monocular or binocular rivalry, observers pressed a key 

either whenever the red or the green grating was dominant, using similar response 

criteria: at least 95% visibility for binocular rivalry and at least 66% visibility for 

monocular rivalry. Randomly on 50% of trials this caused a probe, a contrast increment, 

to appear briefly on the red grating. Observers then made another key press to say 
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whether the probe appeared or not. Feedback was given for correct and incorrect 

responses. The probe followed the first key press by 150 Ms, and had a Gaussian profile 

over time (with a half-width of 67 Ms) to ensure the probe was smooth and free of 

transients. The Gaussian amplitude had a variable peak that was controlled by an adaptive 

QUEST procedure (Watson & Pelli, 1983) involving two randomly interleaved staircases 

to find the contrast increment threshold for the probe. Each QUEST was preceded by four 

practice trials and comprised 40 trials. Observers responded to at least four QUESTs in 

each of four conditions (probe presented during dominance vs. suppression and 

monocular vs. binocular rivalry). Observers alternated between dominance and 

suppression conditions, and alternated between monocular and binocular rivalry. Starting 

condition was counterbalanced over sessions and over observers. 

 

Results and discussion 

Before discussing the thresholds, it is important to note that the phenomenology of probe 

detection in the two sorts of rivalry differed in the same way as the rivalries differed. The 

essential character of binocular rivalry is that its perceptual alternations are of visibility, 

whereas those of monocular rivalry are of clarity. During binocular rivalry, a suppressed 

stimulus is invisible. Observers agreed there were three basic experiences when such a 

stimulus was probed. For low-contrast probes, the probe was invisible too. Observers 

pressed the key to say that no probe was presented, and were surprised when the feedback 

told them of their error. For intermediate-contrast probes, the probe would sometimes 

cause the rival stimulus to break suppression partially, so that the pulse could be seen on 

the parts of the previously suppressed grating. For high-contrast probes, the probe would 

cause the rival stimulus to break suppression, so that the contrast pulse could be seen on 

the previously suppressed grating.  

 

During monocular rivalry a suppressed stimulus is still visible but its visibility is reduced. 

This means the experience of the probe was necessarily different from that in binocular 

rivalry. Observers could not agree on different qualitative experiences of the probe; all 

felt that there was no phenomenal suppression at all! It was only when the results were 

collated that the small but significant effect of suppression emerged (see below). That is 
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not to say detection of the probe during monocular rivalry suppression or dominance was 

easy; it was hard. The probe resembled the naturally occurring fluctuations in the 

visibility of the suppressed stimulus.  

 

Figure 5. Autocorrelation analysis 

 

 
 

Figure 5. Results of the autocorrelation analysis for four observers for binocular rivalry 
(open circles) and for monocular rivalry (filled squares). Apart from the arbitrarily perfect 
autocorrelation when the signal was not lagged, there were no statistically significant 
deviations from zero. 95% confidence intervals, calculated using Fisher’s r-to-Z’ method, 
were erected around the correlation at each non-zero lag. All included a correlation of zero. 

 

We analysed the mean thresholds for the four observers using a two-way, within-subjects 

ANOVA. This found both main effects (rivalry type: monocular vs. binocular; and rivalry 

phase: dominance vs. suppression) to be significant, but critically there was an interaction 

between them, F(1,3) = 21.12, p < .05. The thresholds are shown in the upper panel of 

Figure 6. Suppression depths are shown in the lower panel of Figure 6. Suppression depth 
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is calculated by subtracting from unity the ratio of the dominance threshold to the 

suppression threshold. A suppression depth of zero (i.e., the complete absence of 

suppression) would occur if suppression and dominance thresholds were equal. 

Suppression depths approach unity (i.e., very strong suppression) when suppression 

thresholds are much greater than dominance thresholds. For binocular rivalry, typical 

suppression depths are around 0.40 (e.g., Fox & McIntyre, 1967; Nguyen et al., 2003; 

Norman et al., 2000; Wales & Fox, 1970); the lower panel of Figure 6 shows that the 

suppression depth we measured for binocular rivalry is consistent with this value. 

Suppression depth for monocular rivalry is much weaker at around 0.10. Nevertheless, 

this value is significantly greater than zero, t(3) = 4.67, p < .05.  

 

Figure 6. Depth of visual suppression 

 
 

Figure 6. Upper panel. Average 
thresholds for the four observers for 
detecting the contrast increment during 
dominance and during suppression, for 
both binocular rivalry and monocular 
rivalry. Lower panel. The dominance and 
suppression thresholds from the upper 
panel expressed as suppression depth 
(i.e., one minus the dominance-to-
suppression ratio). Error bars show 1 
standard error of the mean. 

 

 

 

 

 

 

It could be argued that the weaker suppression depth of monocular rivalry than binocular 

rivalry is because observers used a more liberal criterion of invisibility for the former. We 

used this criterion to equate, as far as possible, the number and durations of rivalry 
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periods. The results of Experiments 1 and 2 show that we were largely successful. The 

essential character of monocular rivalry is that episodes of suppression are seen as 

reductions in the clarity of the suppressed stimulus. It is possible that if we had asked our 

observers to wait for the rare instances of monocular rivalry that reached a 95% criterion 

of visibility, we would have measured deeper suppression. Nevertheless, we conclude 

that the thresholds we have measured are an accurate indication of the depth of 

suppression during typical monocular rivalry.  

 

General discussion 

Our main question was whether similar neural mechanisms underlie monocular and 

binocular rivalry. Our experiments showed that the two phenomena do exhibit important 

similarities. In Experiments 1 and 2, we demonstrated that both kinds of rivalry can occur 

between complex images, and that they are affected similarly by the size of the rivalling 

images, as well as by their colours in quantitatively similar ways. In Experiment 3, we 

illustrated the similar temporal dynamics of the two sorts of rivalry, showing that both 

exhibit a gamma distribution of dominance durations with comparable parameters and 

that neither shows any temporal correlation of one episode of visibility with any of the 

preceding episodes. In Experiment 4 we demonstrated that both sorts of rivalry involve 

suppression of visual sensitivity to the non-dominant stimulus, albeit to a very different 

degree. These qualitative and quantitative (with the exception of suppression depth) 

similarities between monocular and binocular rivalry are consistent with the idea that 

their underlying processes involve common neural mechanisms (cf. Leopold & 

Logothetis, 1999; O’Shea, 1998; Papathomas, Kovács, Fehér, & Julesz, 1999).  

 

There are other similarities between monocular and binocular rivalry. For example, 

rivalry rate grows with orientation and spatial-frequency differences between the rivalling 

images (e.g., Atkinson et al., 1973; Campbell et al., 1973; O’Shea, 1998). It has been 

long known that binocular rivalry is difficult to control voluntarily (Breese, 1899); 

monocular rivalry is equally difficult to control voluntarily, both for gratings and for 

complex images (O’Shea, 2006). Moreover, the temporal limits over which rivalry will 

survive asynchronous flicker are similar for the two forms of rivalry, at around 350 ms 
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(van Boxtel, Knapen, van Ee, & Erkelens, 2006). And as we pointed out earlier, 

alternations of one sort of rivalry in one region of the visual field synchronise with 

alternations of the other from an adjacent region (Andrews & Purves, 1997; Pearson & 

Clifford, 2005).  

 

Although the conclusion that monocular rivalry shares common processes with binocular 

rivalry has appeal, there are alternative explanations of monocular rivalry that need to be 

considered, as well as certain notable differences between the two phenomena that must 

be addressed. One of the competing explanations of monocular rivalry is that it is not 

strictly a perceptual alternation but an epiphenomenon produced by a combination of eye 

movements and afterimages. This line of argument was proposed by Furchner and 

Ginsburg (1978), by Georgeson and Phillips (1980), and by Georgeson (1984). They 

maintained that in the case of two superimposed orthogonal gratings, for example, steady 

fixation would build up afterimages that would tend to cancel visibility of both. If an eye 

movement were made parallel to one of the gratings, with a magnitude of half the spatial 

period of the other grating, it would leave the visibility of the first grating impaired but 

superimpose the negative afterimage of the second grating onto its own real image, 

causing that grating suddenly to become visible, as if it had just appeared after an episode 

of suppression. According to this explanation, if eye movements were made randomly, 

they would produce random distributions of dominance times such as we observed in 

Experiment 3, and they would also produce the dependencies of monocular rivalry on 

orientation differences such that it would be most pronounced for orthogonal gratings 

(O’Shea, 1998).  

 

We argue that eye movements and afterimages cannot be a complete explanation of 

monocular rivalry for at least four reasons. First, monocular rivalry occurs between 

afterimages themselves (Crassini & Broerse, 1982), which are fixed on the retina and 

therefore cannot combine with eye movements as required by the explanation. Second, 

observers report monocular rivalry composites, patches of the visual field in which one 

image is seen and adjacent patches in which the other is seen (Sindermann & Lüddeke, 

1972). Our observers also reported composites in all our experiments. Such composites 
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would require eye movements that move the retina in different directions in different 

regions, which is quite impossible. Third, Bradley and Schor (1988) measured eye 

movements during monocular rivalry of gratings. They found some disappearances in 

monocular rivalry that did follow the predicted eye movements, but they also found a 

proportion of disappearances that followed an incorrect eye movement. Fourth, the 

explanation requires that the images be simple, repetitive stimuli such as gratings, so that 

an afterimage can be displaced but still provide a matching overlay of the stimulus that 

generated it. Experiments 1 and 2 showed clearly that monocular rivalry is possible 

between complex images for which no eye movement can superimpose a matching 

afterimage.1 

 

Given the shortcomings of this alternative account of monocular rivalry, we conclude that 

monocular rivalry is indeed a genuine perceptual alternation, similar to binocular rivalry, 

and not an artefact of eye movements or afterimages. Nonetheless, despite the striking 

similarities between monocular and binocular rivalry, we elaborate below on three 

differences between the phenomena. We propose that these differences arise because 

binocular rivalry involves a distributed cortical network entailing both low-level and 

high-level processes (Blake & Logothetis, 2002; Freeman, Nguyen, & Alais, 2005; 

Nguyen et al., 2003) whereas monocular rivalry involves interactions only at higher 

levels. We agree with Maier et al. (2005) that monocular rivalry is likely to reflect a 

higher-level process because it involves global interpretations of the probable nature of 

the stimulus. Therefore, we propose that monocular and binocular rivalry share common 

high-level processing which can be characterised as interpretative processes (e.g., Alais, 

O’Shea, Mesana-Alais, & Wilson, 2000; Kovács, Papathomas, Yang, & Fehér, 1996). 

                                                
1 The same explanation could also apply to binocular rivalry of gratings. Indeed, van Dam and van Ee 
(2006) found that saccades changing fixation from one luminance to the opposite luminance (e.g., from a 
bright bar to a dark bar) were more likely to be followed by a binocular rivalry alternation to that grating 
than saccades changing fixation from one luminance to the same luminance (e.g., from a dark bar to a dark 
bar). This is not to say that binocular rivalry is an epiphenomenon of eye movements and afterimages. 
There is an abundance of evidence similar to that for monocular rivalry, including binocular rivalry with 
afterimages, binocular rivalry with complex images, and visibility of composites of the two rival stimuli, 
showing that eye movements and afterimages are not necessary for binocular rivalry. 
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The key distinction, then, between the two types of rivalry is that binocular rivalry 

involves additional inter-ocular interactions at early levels of the visual system.2 

 

The first difference between monocular and binocular rivalry was observed by Breese 

(1899) in his seminal study. He recorded that although binocular rivalry’s episodes of 

dominance involved alternations in visibility, monocular rivalry was weaker and usually 

involved alternations in clarity. Consistent with this, we showed in Experiment 4 that the 

magnitude of suppression during monocular rivalry is much less than in binocular rivalry. 

We propose that the marked difference in suppression depth is due to the different extents 

of the monocular and binocular rivalry networks rather than to fundamentally different 

processes. A model similar to that by Wilson (2003) or by Nguyen et al. (2003) or 

Freeman (2005) could serve here. Specifically, the same inhibitory mechanisms exist at 

monocular and at binocular levels: these sum their effects in binocular rivalry, but the 

monocular part does not participate in monocular rivalry, weakening the suppression. The 

idea of additive suppression components is consistent with recent findings that exclusive 

visibility during rivalry increases as more dimensions of stimulus conflict are combined 

(Knapen et al., 2007).  

 

An important consequence of the notion that monocular rivalry involves neural 

interactions common to the high-level part of the binocular rivalry network is that 

monocular rivalry should resemble other higher-level rivalries. Here, we review only one: 

stimulus rivalry, or flicker-and-swap rivalry. Devised by Logothetis, Leopold, and 

Sheinberg (1996), stimulus rivalry occurs when two rival images are swapped between 

the eyes at around 1.5 Hz, while also flickering on and off at around 18 Hz. The key 

observation is that observers report episodes of stable visibility of one of the images that 

endure for long enough to incorporate several interocular stimulus swaps. Each swap, 

however, is noticeable as a pulse of some sort during a single episode of visibility, 

                                                
2 Although the term ‘‘monocular rivalry” suggests a low-level process, it is simply because it has been 

misleadingly labelled, prompting Maier et al. (2005) to propose that monocular rivalry would be more 

appropriately called ‘‘pattern rivalry”.  
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showing a similar phenomenal absence of complete suppression in this sort of rivalry as 

in monocular rivalry. Logothetis et al. proposed that rivalry process acts on 

representations of images at a high level of the visual system where eye-of-origin 

information (a low-level property) has been discarded. Recent corroborative evidence for 

this comes from Pearson, Tadin, and Blake (2007) who showed that transcranial magnetic 

stimulation of V1 disrupts conventional binocular rivalry but has no effect on flicker-and-

swap rivalry.  

 

We argue that with eye-of-origin information removed, flicker-and-swap rivalry should 

be very similar to monocular rivalry. Supporting this, we recently found that suppression 

depth in this form of rivalry is also shallow (Bhardwaj, O’Shea, Alais, & Parker, 2008), 

similar to that of monocular rivalry. There are at least three other similarities between 

monocular rivalry and flicker-andswap rivalry phenomena that support our proposal. 

First, monocular rivalry and flicker-and-swap rivalry do not require that eye-of-origin 

information be retained (unlike conventional binocular rivalry). Second, flicker-and-swap 

rivalry is promoted by interspersing monocular rivalry stimuli between the swapping 

stimuli (Kang & Blake, 2006). Third, flicker-and-swap rivalry and monocular rivalry 

share some interesting parametric similarities. Both are enhanced at low contrast (Lee & 

Blake, 1999) and by making the images different colours (Bonneh, Sagi, & Karni, 2001; 

Logothetis et al., 1996). Moreover, Knapen et al. (2007) found that exclusive visibility in 

monocular rivalry is similar to that from flicker-and-swap rivalry over a range of colour 

differences. These similarities between monocular rivalry and flicker-and-swap rivalry 

are, of course, consistent with our overall conclusion that all forms of rivalry involve a 

similar, high-level mechanism. Indeed, Pearson and Clifford (2005) showed that all three 

types of rivalry, monocular, binocular, and flicker-and-swap, synchronise their 

alternations when all are presented together in adjacent regions of the visual field.  

 

The second major difference between monocular and binocular rivalry, and the hardest to 

reconcile, is that they are affected oppositely by contrast (O’Shea and Wishart, 2007). 

Binocular rivalry alternation rate increases with increasing contrast of the rival images 

whereas monocular rivalry alternation rate decreases with increasing contrast. Evidence 
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from imaging and transcranial magnetic stimulation support the claim that early visual 

processes are critical in eliciting binocular rivalry (Lee & Blake, 2002; Pearson et al., 

2007; Polonsky, Blake, Braun, & Heeger, 2000). Because early visual responses depend 

strongly on the level of stimulus contrast, exhibiting a graded monotonic response to 

contrast, it makes sense that binocular rivalry would be strongly modulated by contrast. 

Specifically, because increases in stimulus contrast would increase the V1 response to the 

rival stimuli, it is as expected that binocular rivalry should be more vigorous at high 

contrast.  

 

What is less obvious is why monocular rivalry would be more vigorous at low contrast. 

One reason may be that the global interpretative processes implied by Maier et al.’s 

(2005) work on monocular rivalry, and more generally by Leopold and Logothetis’s 

(1999) review, may be less stable at low contrast. That is, reduced signal-to-noise ratios 

and stochastic fluctuations would add considerable uncertainty to whether a monocular 

rivalry stimulus should be interpreted as one or two objects, and possibly to the depth 

ordering if two objects were signalled. To take Maier et al.’s (2005) real-world example, 

the bottom of a pond might be visible transparently even though the water’s surface may 

reflect the image of a tree. In this case, with both aspects of the visual scene imaged at the 

same retinal location, high contrast would facilitate a transparency interpretation and the 

correct depth order because both images would be reliably signalled with little ambiguity. 

Low contrast, however, would render the problem more difficult as both interpretations 

would be potentially valid but the correct transparency and order relationship would be 

hard to make with poorly visible cues. Under these conditions, an interpretative process 

with bistable behaviour appears to assume more prominence and perceptual alternations 

result.  

 

The lack of vigorous monocular rivalry at high contrast may be because there are robust 

cues for interpreting the image as stable, such as the visibility of the intersections of 

contours. It may also be because high-level neurons tend to be contrast invariant. That is, 

their contrast-response functions are much steeper initially with a longer saturated plateau 

(e.g., Sclar, Maunsell, & Lennie, 1990). A magnetic resonance imaging study (Avidan et 
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al., 2002) showed steeper contrast-response functions in human subjects along the ventral 

visual pathway from V1 through V2, V4/V8, and LO. Because of this tendency towards 

early saturating contrast-response curves, there is no reason to expect that a high-level 

monocular rivalry process should behave more vigorously at high contrast. Indeed, it 

would be mainly at low contrast, before reliable responses are elicited, that a high-level 

interpretive process would be least stable.  

 

The third major difference between monocular and binocular rivalry is that they are 

potentially affected oppositely by disparity. Knapen et al. (2007) have shown that 

monocular rivalry increases as two monocular rivalry gratings are given different 

disparities to make them appear to be at different depths. Shimojo and Nakayama (1994) 

and have shown that binocular rivalry decreases by adding disparities. Knapen et al. 

argued from their results that monocular rivalry and binocular rivalry are nevertheless 

similar, in that the strength of rivalry is determined by the difference between two stimuli 

in their component features: adding disparity to monocular rivalry stimuli increases their 

difference whereas adding disparity to binocular rivalry stimuli decreases the amount of 

interocular conflict between them. Knapen et al.’s approach, although from a different 

direction to ours, comes to a similar conclusion: that monocular rivalry and binocular 

rivalry are similar processes aimed at resolving ambiguity in visual inputs. 

 

Conclusion  

In summary, we have shown several qualitative and quantitative similarities between 

monocular and binocular rivalry. Both occur between complex images, both are similarly 

affected by the images’ size and colour, both involve fluctuations in image visibility that 

are random and sequentially independent, and both involve suppression of visual 

sensitivity to the non-dominant image. We propose that both sorts of rivalry are mediated 

by a common high-level mechanism for resolving ambiguity (Alais, O’Shea, Mesana-

Alais, & Wilson, 2000; Kovács et al., 1996; Leopold & Logothetis, 1999; Maier et al., 

2005), although this process cannot be the primary driver in the case of binocular rivalry, 

which must be initiated by mutually inhibitory interactions between neurons retaining 

eye-of-origin information in early cortex. This high level process for ambiguity resolution 
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probably exerts a modulatory influence on binocular rivalry, exerting its influence via 

feedback for such things as coordinating local rivalry processes into coherently rivalling 

global images (Alais & Melcher, 2007), whereas it is more likely to be the primary driver 

of monocular rivalry. 
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Chapter summary 

The current chapter has shown that monocular and binocular rivalry share many 

hallmarks. The differences between these two forms of perceptual bistability are a result 

of the processing specific to the different ways in which they are presented. This and 

other research comparing bistable stimuli establish the feasibility of the involvement of a 

common mechanism in perceptual rivalries. Whether this mechanism is also shared with 

exogenous perceptual selection is addressed in the following chapters. 
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Chapter 3 

A bias for looming stimuli to predominate during binocular 
rivalry 
 
The work in this chapter is published as: 
Parker, A. L., & Alais, D. (2007). A bias for looming stimuli to predominate in binocular rivalry. 
Vision Research, 47(20), 2661-74. 
 

Overview 

In the introductory Chapter 1, the limited effect of purposeful attention over the overall 

predominance of one or the other image undergoing binocular rivalry was discussed (i.e. 

the results of Meng & Tong 2004). The experiments in this chapter demonstrate that 

exogenous, or stimulus-driven attention can cause one image to be seen for significantly 

longer periods during binocular rivalry. These results provide evidence that perceptual 

bistability may be related to general mechanisms involved in exogenous perceptual 

selection, in support of Hypothesis 2.  

 

Abstract 

Concentric gratings that expand outwards are seen for a greater period of time relative to 

contracting gratings when engaged in binocular rivalry. During binocular rivalry (BR), 

which is a fluctuation in visual awareness between different images presented separately 

to each eye, equivalent images tend to be seen in equal proportion over the observation 

period. When one eye’s image is particularly salient, brighter, or moving, this equality is 

curtailed, and the stronger image predominates. Here a specific direction of motion is 

found to predominate over another of equal speed. This tendency is consistent with the 

ability of looming objects to orient attention, coupled with previous accounts of the role 

of stimulus-driven attention in binocular rivalry. 

 

Introduction  

Binocular rivalry is an unusual perceptual phenomenon that occurs when each eye is 

presented with one of two distinct images (Blake & Logothetis, 2002; Alais & Blake, 

2005). Rather than see the two different images fused or superimposed, a temporal 
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alternation occurs in which one eye’s input is seen to the exclusion of the other’s in an 

independent, stochastic series (Fox & Herrmann, 1967). Binocular rivalry is a widely 

studied area of vision science, in part because it provides a dissociation between the 

physical stimulus and perceptual awareness of it, an aspect which has made it a suitable 

experimental paradigm for studies of visual awareness. A more fundamental point of 

interest is the underlying mechanism of rivalry which is not yet completely understood. 

One major debate has concerned whether rivalry is caused by early and low-level 

interactions between monocular channels or by competing visual object representations at 

a later stage (Blake & Logothetis, 2002 NRN). More recently it has been suggested that 

rivalry may be a distributed process, capable of occurring at several levels of the visual 

pathway (Freeman, 2005; Nguyen, Freeman, & Alais, 2003; Ooi & He, 2003; Wilson, 

2003). 

 

It has been proposed that binocular rivalry results from competition between populations 

of monocular neurons responding to each eye’s input at some relatively early point in the 

visual cortex (Tong & Engel, 2001; Blake, 1989). Such a process would need to happen 

early in the visual hierarchy where neurons still carry eye-of-origin information. In 

contrast, single-cell studies in awake monkeys show that neural fluctuations correlating 

with perceptual alternations during rivalry are rather weak in early cortex but increase at 

successive stages along the visual processing hierarchy (Leopold & Logothetis, 1996; 

Logothetis & Schall, 1989; Sheinberg & Logothetis, 1997). Very recently, however, 

human fMRI studies have refocused the discussion regarding the origins of rivalry on 

early visual areas by showing that fluctuations corresponding to rivalry perception occur 

in visual area V1 (Polonsky, Blake, Braun, & Heeger, 2000) and even in the lateral 

geniculate nucleus (LGN) (Haynes, Deichmann, & Rees, 2005; Wunderlich, Schneider, 

& Kastner, 2005). This suggests an important role for lateral interactivity between 

neurons as well as feedback from higher areas in rivalry (Lee & Blake, 2004) because if 

rivalry were limited to early local competition there would be no rivalry between global 

stimuli (e.g., faces, global motions) represented in areas beyond LGN and V1 (Alais & 

Melcher, 2007; Alais & Parker, 2006). 
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It is well known that when the stimulus given to one eye is brighter, higher in contrast or 

contains motion, it has a stronger tendency to be seen than a duller or stationary rival 

stimulus (Blake, Yu, Lokey, & Norman, 1998; Levelt, 1965; Wade & de Weert, 1986). 

This overall ‘predominance’ of one target over a rival is usually achieved by a reduction 

in the average suppression duration of the dominant target, rather than an actual increase 

in its dominance duration. This is known as Levelt’s second proposition (Levelt, 1965) 

and it has been confirmed in a wide range of rivalry conditions, although it does not hold 

for motion stimuli and for certain contrast relationships (Bossink, Stalmeier, & de Weert, 

1993; Brascamp, van Ee, Noest, Jacobs, & van den Berg, 2006). In this paper, we 

examine predominance using rivalling global motion stimuli (expansion vs. contraction) 

and demonstrate a qualitative rather than a quantitative effect in predominance which 

indicates greater strength for expansion. 

 

Expanding patterns of movement indicating the approach of an object may be more 

perceptually important than receding motion because they can signal collision and may 

require an immediate, defensive response. There is some debate concerning whether 

approaching but not receding motion can capture attention (Abrams & Christ, 2005; 

Abrams & Christ, 2006; Franconeri & Simons, 2003; Franconeri & Simons, 2005). It 

seems that both these types of motion can capture attention in visual search tasks, 

however the possibility that approaching objects are more effective than receding ones, 

especially when motion onsets are omitted, was not directly addressed. Franconeri and 

Simon’s initial finding suggests that this may be the case. Neurophysiological evidence 

indicates that areas of the visual cortex sensitive to optic flow patterns of motion respond 

more strongly to expanding than to receding motion. A single-cell study of monkey 

MSTd found a greater preponderance of neurons sensitive to expanding optic flow as 

opposed to receding (Graziano, Andersen, & Snowden, 1994). This may arise due to the 

prevalence of expansion in normal experience; forward self-movement is the norm hence 

a stronger neural response to this direction would be developed. In the behavioural 

component of one functional MRI study, subjects did not report seeing any motion 

aftereffect for receding concentric grating stimuli, but strong motion after effects from 

expanding motion were reported (Berman & Colby, 2002). Given these asynchronies 



Chapter 3: A bias for looming stimuli to predominate during binocular rivalry 

 

77 

between expansion and contraction it seems likely that they might manifest in binocular 

rivalry when pitted against each other. Here, continuous versions of these two directions 

of motion will be compared under conditions of binocular rivalry. If expanding motion is 

a more salient stimulus in terms of behaviour or neural response it will predominate over 

a receding motion of the same speed. 

 

We find that looming/expanding stimuli do predominate over receding/contracting 

stimuli, even though the rival motions have equal but reversed speed profiles and are thus 

locally identical. Rivalry predominance in this case therefore appears to be determined 

qualitatively, rather than in quantitative terms of ‘stimulus strength’ (Levelt, 1965). This 

effect appears to be very robust as it persists even when the receding motion has a higher 

temporal frequency than the looming motion. 

 

Experiment 1: Rivalry between looming and receding motion 

The first experiment looked at binocular rivalry between looming and receding concentric 

gratings. Looming is a salient visual cue for survival as it may indicate approaching 

danger or collision. Quickly approaching objects capture our attention involuntarily in 

order for us to respond quickly, demonstrated in visual search paradigms (Franconeri & 

Simons, 2003). This kind of stimulus driven or exogenous attention can be viewed as a 

different kind of process from endogenous attention deployed voluntarily by an observer. 

Both types of attention have been shown to affect binocular rivalry (Ooi & He, 1999). 

Selectively attending to one of the rival targets can moderately extend its average 

dominance period relative to its rival stimulus (Lack, 1978; Ooi & He, 1999), and overall, 

attention appears to speed up rivalry alternation rate (Paffen, Alais, & Verstraten, 2006). 

The effects of attention have been found to be stronger for other types of perceptual 

bistability which involve no inter-ocular conflict such as reversible figures like the 

Necker cube (Meng & Tong, 2004). Attending either endogenously or exogenously to a 

target just prior to rivalrous presentation will usually cause that target to predominate in 

the first phase of rivalry (Chong & Blake, 2006; Mitchell, Stoner, & Reynolds, 2004). 

Unlike voluntary attention, the exogenous kind can affect a rival image during perceptual 

suppression. Transient events presented to a suppressed eye tend to produce a swap to 
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that eye’s stimulus. The ‘pop-out’ of an odd target in visual search achieves a similar 

result, even when transients are removed from the presentation (Ooi & He, 1999). 

 

Experiment 1 examines rivalry between looming and receding concentric gratings. 

Because looming visual objects are an effective stimulus for activating stimulus-driven 

attention, we expect there to be a bias in predominance favouring looming rather than 

receding stimuli. 

 

Method 

Subjects 

Fourteen subjects participated in Experiment 1. All had normal or corrected-to-normal 

vision. One subject was the primary author. Ten participated for course credit in an 

introductory psychology course and 4 were experienced in perceptual observation. Ten 

were female, the other 4 male. All but the author were naïve as to the purpose of the 

experiment. 

 

Stimuli 

Two concentric sine wave gratings were used as rival stimuli. They subtended 2 of visual 

angle at the viewing distance of 57 cm, had 25% Michelson contrast, a mean luminance 

of 31 Cd/m2, and a spatial frequency of 3 cpd. They were presented in a Gaussian 

envelope in the same manner as a Gabor patch. The concentric gratings were phase 

shifted to appear to either expand or contract. The magnitude of the phase shift was 

increased exponentially over a 1 second period from a baseline increment of 1 cycle per 

second to a maximum of 4 cycles per second, after which the increase was rapidly 

tapered off (see Figure 1a). These phase shifts were used in order to make the concentric 

grating appear to loom in an ecologically valid way, with an accelerating size/speed 

change. This speed profile was reversed to produce the receding stimuli. Continuous 

motion was created by repeating these profiles in a loop. The looming/receding gratings 

were presented one on each side of a CRT monitor and viewed through a mirror 

stereoscope to produce binocular rivalry. In condition A (n = 4), both rival gratings were 
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looped at 1 Hz. In condition B (n = 5), the looming grating was looped at 1 Hz and the 

receding at 3 Hz. In the last condition C (n = 5), the looming grating was looped at 3 Hz 

and the receding 1 Hz. These last two conditions were included to enable examination of 

the alternation patterns for each direction relative to the onset of the motion (not possible 

when both rival stimuli are pulsed in phase). 

 

Procedure 

Before each trial two black apertures were presented on each side of the screen. The 

mirror stereoscope was adjusted for each subject to achieve comfortable fusion. When 

ready a trial was initiated by pressing any key. In 2 minute trials, the five observers 

recorded their alternating dominance periods by holding down one of two keys. A total of 

four trials were collected for each of the three rival conditions (a total of 8 minutes each). 

Between trials the stimuli were interchanged between the eyes. After each trial the screen 

went blank and the observer could rest for a self determined period before resuming. 

During recording, observers were instructed to maintain fixation on the centre of the rival 

gratings. They were also instructed to hold down both keys to record instances of mixed 

or ‘piecemeal’ rivalry where neither direction was exclusively dominant. All participants 

were given ample experience observing and recording their rivalry perceptions prior to 

testing. 
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Figure 1. Results of Experiment 1 
 

 
Figure 1. Results of Experiment 1. (a) The speed ramps used for each binocular rivalry pair in 
Experiment 1. (b) The sum of dominance durations for each rival stimulus. (c) Mean duration 
of perceptual dominance for each rival stimulus. (d–f) Frequency distributions of dominance 
durations plotted for each stimulus for conditions 1, 2 and 3 respectively. Distributions were 
normalised in order to highlight differences between the shapes of the distributions rather 
than the area. 
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Results and discussion 

The data from Experiment 1 are shown in Figure 1. In panel b it can be seen that over the 

combined 8 min of rivalry dominance tracking, looming motion predominated 

significantly longer than receding motion in all conditions on paired t-tests (condition A: t 

= 5.601, p < .01, condition B: t = 4.723, p < .01, condition C: t = 2.673, p < .01). In each 

condition, the difference between the two dominance totals and the total observation 

period of 480 seconds represents total piecemeal duration. We also tested whether there 

was any difference between the total dominance times for each motion direction pulsed at 

different rates. There were no significant differences between the looming conditions (t = 

1.115, p > .05), nor the receding conditions (t = 1.09, p > .05) using Bonferroni’s 

Multiple Comparison test. 

 

The advantage of looming motion over receding can also be seen in the mean dominance 

periods shown in Figure 1c. Looming predominance persisted even when receding 

motions were pulsed in faster 3 Hz cycles and was significant for all conditions on paired 

t-tests except condition C, where the 3 Hz looming cycle was used (A: t = 5.345 df = 3, p 

= .0064; B: t = 3.549, df = 4, p = .0119; C: t = 1.528, df = 4, p = .1006). Across the three 

conditions, the mean dominances were very similar, and not surprisingly we observed no 

significant differences between conditions for alternation rate, mean number of swaps, 

nor proportion of coherent (non-piecemeal) rivalry. 

 

Figure 1d–f shows the distributions of dominance durations for the three conditions 

tested, fitted with a Gamma distribution. The fits to the looming stimuli all have a lower 

peak and broader upper tail than those for receding motion. To test the significance of 

these apparent differences we represented the same data in cumulative form (e.g., Figure 

4) and analysed it using the Kolmogorov–Smirnov (KS) statistic. The KS statistic is a 

sensitive non-parametric test that can be used to test whether the distance between two 

cumulative distributions is significant. As such it is ideal for examining differences 

between distributions of binocular rivalry dominance durations, providing more 

information than a test of mean duration alone. For all conditions, the looming vs. 

receding difference was found to be significant (condition A: d = 0.38, p < .01; condition 
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B: d = 0.26, p < .01; condition C: d = 0.22, p < .01, see Figure 4a–c). There is a 

possibility that reporting bias may have influenced our results by, for example, faster 

responding to a change to a looming motion from its receding rival or a piecemeal state. 

However this seems unlikely for two reasons; the majority of the subjects were naïve as 

to the hypothesis of the experiment and had no reason to favour one stimulus over the 

other. Secondly, the importance of accurately recording their perception was heavily 

emphasised. 

 

Finally, we checked to see whether there was any tendency for the predominance of 

looming over receding stimuli to vary over the observation period. In particular, since 

looming stimuli are attentionally salient and attention has been shown to bias the early 

phase of rivalry to the attended target (Chong & Blake, 2006; Mitchell et al., 2004), we 

wished to know whether this might account for the predominance of looming. Overall, 

we found no tendency for the looming predominance to change over the observation 

period, although all subjects reported beginning their rivalry alternation with looming as 

dominant. 

 

Experiment 2: Rivalry between linearly expanding and contracting motions 

In order to further clarify the predominance findings for looming motion found in 

Experiment 1, binocular rivalry between continuous linear expansion and contraction was 

examined. This was done using the same expanding/contracting concentric gratings used 

in Experiment 1, with the difference that the speed profiles were linear 

expansions/contractions rather than non-linear accelerations/decelerations. This stimulus 

(condition A) was intended to determine whether it is the exponentially increasing 

speed/size that is needed to elevate looming predominance in rivalry. In addition, we 

measured rivalry for two other kinds of stimuli: expanding/contracting coherent random 

dot motions (condition B), and expanding/contracting filtered noise images (condition C, 

See Figure 2). The reason for these conditions is that the bias found in Experiment 1 for 

looming gratings may be specific to coherent contours that expand consistently with an 

approaching visual object. If so, then we may not observe the same looming bias for 

random dots or filtered noise since the discontinuous features in these stimuli, despite 
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expanding and contracting like a retinal flow field, do not contain coherent and spatially 

continuous objects. Because of this, although the two random stimuli resemble patterns of 

expansion/contraction perceived during self-motion, only the concentric contours would 

expand coherently like an approaching visual object. If the salience of expansion in 

rivalry is confined to spatially coherent stimuli, it would indicate that this bias is tied to 

object processing. 

 

Method 

Subjects 

Eight subjects participated in Experiment 2, 5 female and 3 male. All had normal or 

corrected-to-normal vision. Seven of these were new subjects who participated in return 

for credit in an introductory psychology course. Three of the naïve subjects participated 

in all three conditions. The other four participated in only one condition each. The 

primary author also participated in condition 2. 

 

Visual stimuli 

Three different kinds of visual stimuli were used and are illustrated in Figure 2. Condition 

A: The same two concentric grating stimuli (with a RMS contrast of 10%) used in 

Experiment 1, but without the accelerating/decelerating speed ramps. Instead an 

intermediate and constant (linear) speed of 2 cycles per second was used. Condition B: 

Expanding and contracting coherent random dot motion arrays were presented in circular 

apertures 80 pixels wide (2 of visual angle). The background luminance was 0.3 cd/m2 

with dots of 8% RMS contrast. There were 150 dots, each 3 pixels wide and moving 2 

pixels per frame at 85 Hz screen refresh rate yielding an overall speed of 2.25 cp/s. 

Condition C: Four band-pass filtered (minimum SF 1 cycle p/deg maximum: 20 cycles 

p/deg) random intensity noise patterns (RMS contrast of 13%) that drifted either toward 

or away (approx. 1.86 deg visual angle per second) from the centre of the stimulus array 

were used as the rival stimuli. Although the incidence of coherent (complete) visual 

dominance of the two eyes’ inputs will likely be reduced by quartering the image into 

independent sectors, the periods in which the whole stimulus is perceived to expand or 
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contract can still be compared. 

 

Procedure 

For all three conditions of Experiment 2 the procedure was the same as that used in 

Experiment 1. Five observers participated in condition A (concentric gratings). Four 

subjects (including author AP) participated in condition B (random dots) and four in 

condition C (filtered random intensity noise). The task was to monitor periods of 

exclusive visibility of expansion and contraction, as in Experiment 1. 

 

Results 

The data from Experiment 2 are shown in Figure 2. In condition A, expanding concentric 

gratings predominated over contracting ones, similar to what was reported in the first 

experiment. The difference was significant for both the total dominance durations (Figure 

2a: one-tailed t-test t = 3.994, df = 4, p < .01) and mean dominance durations (Figure 2b: 

t = 3.995, p < .01). For four of the five subjects, expansion was the initially dominant 

phase of rivalry, in each of the four 2-min recording blocks. 

 

The distributions of dominance durations for expansion and contraction are shown in 

Figure 2d. They follow the same pattern as those obtained in Experiment 1 (where the 

stimulus was a repeating series of accelerations/decelerations) in that the gamma 

distribution fit to the looming data has a lower peak and a broader upper tail than the 

receding data. The distributions were significantly different on the Kolmogorov-Smirnov 

test (K–S d = 0.58, p < .0001, see Figure 4d). 

 

In conditions B (random-dot motion) and C (filtered random noise), interestingly, there 

was no tendency for expansion to predominate over contraction. For the random-dot 

motion, both the total dominance time (Figure 2a: t = 0.6451, df = 4, p > .05) and the 

average dominance duration (Figure 2b: t = 0.7610, df = 4, p > .05) were similar for both 

types of motion. The equality of dominance between the two random-dot motions is 

evident in Figure 2a and b and the gamma distributions in Figure 2e, which were not 

significantly different on the Kolmogorov– Smirnov test (K–S d = 0.17, p > .05, Figure 
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4e). Similarly, using filtered random noise, there was no dominance bias for expansion. 

This was true for both total dominance time (Figure 2a: t = 0.3261, df = 3, p > .05) and 

mean dominance duration (Figure 2b: t = 2.043, df = 3, p > .05), and for the Kolmogorov-

Smirnov test on the distributions of dominance times in Figure 2f (K–S d = 0.07, p > .05, 

Figure 4f). This suggests that the bias documented in Experiment 1 and in condition A of 

Experiment 2 is not due to a fundamental bias for a certain direction of motion but is 

specific to the expanding size of a coherent object defined by continuous contours. 

 

Finally, the proportion of the total observation time that coherent rivalry alternations were 

perceived (Figure 2c) differed between the three conditions (F = 7.624, p < .01, with the 

following condition means: A = 0.83, B = 0.65, C = 0.53). As anticipated, this was 

mainly due to significantly lower rivalry coherence in condition C, filtered random noise, 

and is borne out by the contrasts between the means involving condition C (A vs. B: t = 

2.436, p > .05; A vs. C: t = 3.840, p < .01; B vs. C: t = 1.543, p > .05). The reason for this 

is most likely that the filtered noise stimulus was spatially quartered, with each quarter 

drifting towards (or away from) the centre of the display along diagonal axes, instead of 

undergoing a global expansion/contraction like the other two conditions. Overall, 

however, mean alternation rates across conditions did not differ significantly between 

conditions (F = 0.4712, p > .05). 
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Figure 2. Results of Experiment 2 

 

 
Figure 2. Results of Experiment 2. (a) The total time each direction was reported perceptually 
dominant during binocular rivalry between the three rival pairs examined in Experiment 2. (b) 
The average duration of rivalry dominance for each stimulus. (c) Proportion of coherent 
rivalry (non-piecemeal) for each of the three conditions. (d–e) The normalised frequency 
distributions of the binocular rivalry dominance durations. A gamma function was the best fit 
for these distributions. Only the rivalry between expanding and contracting concentric grating 
stimuli show a marked difference in the fit parameters. 
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Discussion 

The results with respect to the dominance bias and the type of motion profile 

(accelerating vs. linear) are very clear. In condition A, where the same stimulus as in 

Experiment 1 was used (i.e., concentric sine-wave gratings), a dominance bias favouring 

expanding over contracting stimuli was still observed. Clearly then, whether the motion 

profile was accelerating or linear was of no consequence for the dominance bias as in 

both cases a strong advantage to looming/expanding to dominate was observed. It is 

possible that the reason for this is the rather small size of the stimuli, since larger stimuli 

would exhibit more pronounced local speed differences between the outer and inner 

portions of the stimulus. This is really a moot point since in most circumstances binocular 

rivalry targets are deliberately small in area to minimise the likelihood of piecemeal 

rivalry. However, it is noteworthy that neurons responsive to global expansions are found 

beyond V1 in areas where receptive fields are quite large (Duffy & Wurtz, 1991; 

Komatsu & Wurtz, 1988) and greater perceptual salience of accelerating approaching 

movement might therefore be achieved with stimuli subtending larger viewing angles. In 

any event, for the stimulus size we employed (2 visual angle in diameter) there was no 

difference between accelerating and linear speed profiles. 

 

The most interesting outcome of Experiment 2 was that no dominance bias was observed 

for the two stimuli with random spatial structure: the random-dot motion and the filtered 

visual noise. This therefore qualifies the first conclusion from this experiment in that 

expansion alone is not sufficient to produce a dominance bias over contraction; it must be 

expansion of spatially coherent contours. The basis for this is probably attentional. The 

random motion and random noise stimuli created percepts of expanding or contracting 

surfaces, but not of approaching/looming objects. Only the concentric grating created this 

impression, with the coherent size change of the circular rings as the stimulus expanded 

from the centre. It is for this reason that we favour an attentional interpretation, since 

looming objects are salient for grabbing attention in a stimulus-driven manner, as noted 

in Section 2. 
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Experiment 3: Rivalry between static radial gratings and expanding/contracting 
concentric gratings 

To learn more about the predominance found in the previous two experiments, we pitted 

expansion and contraction (separately) against a static radial grating. Binocular rivalry 

between static radial gratings and expanding/contracting concentric gratings has been 

examined previously by Wade and de Weert (1986), although their concentric grating 

stimulus alternated continuously between expansion and contraction. For this reason, it is 

not possible to determine from their data whether there was any bias for expansion to 

predominate over contraction. Experiment 3 compares separately rivalry between static 

and expanding gratings, and rivalry between static and contracting gratings. 

 

Subjects 

Five subjects participated in Experiment 3 across all conditions. Of these, four were naïve 

as to the purpose of the experiment and participated in return for credit in an introductory 

psychology course and had not participated in either Experiments 1 or 2. The other was 

the primary author. All had normal or corrected-to-normal vision. 

 

Method 

The same concentric gratings described in condition A of Experiment 2 were used. The 

static radial gratings were the same dimensions and contrast as the concentric gratings 

and had a radial spatial frequency of 8 cycles/rev. Following the same procedure used in 

the previous experiments, 5 observers tracked alternations in dominance between a static 

radial grating rivaling with: a static concentric grating (condition A), an expanding 

concentric grating (condition B), or a contracting concentric grating (condition C). 

 

Results 

The results of Experiment 3 are shown in Figure 3. The mean durations (Figure 3a) and 

total dominance times (Figure 3b) of the radial and concentric gratings across the three 

conditions were significantly different (one-way repeated measures ANOVA, mean 

duration F = 5.878, df = 9, p < .05, total time F = 33.39, df = 9, p < .01). When both rival 
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stimuli were static (condition A), the concentric grating appears to predominate slightly 

over the static radial grating, a point also noted by Wade and De Weert (1986). However, 

this tendency did not reach statistical significance as neither total time dominant across 

the combined 8-min observation period (Bonferroni post test contrasts; t = 2.397, df = 9, 

p > .05) nor the mean dominance duration (t = 1.416, p > .05) were significantly different 

between the two static gratings. However, the distance between the normalised 

dominance distributions was significantly different when converted into cumulative form 

and compared with the Kolmogorov-Smirnov test (K–S d = 0.3, p < .01, see Figure 4g). 

 

Not surprisingly, once the concentric stimulus was set in motion (conditions B & C) the 

patterns of dominance changed dramatically. For expanding concentric gratings, both 

total dominance time (Figure 3a: t = 10.65, df = 3, p < .01) and mean dominance duration 

(Figure 3b: t = 3.864, df = 3, p < .01) were significantly higher than was observed for the 

static radial grating. Contracting concentric gratings followed a similar pattern, but only 

reached significance where total time is considered (Figure 3a, total dominance time: t = 

6.711, df = 3, p < .05). No difference was found between the mean duration of the static 

rival and contracting grating (Figure 3b, mean dominance duration: t = 2.408, df = 3, p > 

.05). The dominance distributions for each condition are plotted in Figure 3c–e, and all 

were significantly different on the Kolmogorov-Smirnov distance test (A: K–S d = 0.3, p 

< .01; B: K–S d = 0.53, p < .01, C: K–S d = 0.32, p < .01, see Figure 4h and i). 

 

Finally, the proportion of observation time in which piecemeal rivalry was observed was 

not significantly different between the conditions (F = 0.8322, p > .05), and neither did 

alternation rate differ between conditions (F = 0.5619, p > .05). 
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Figure 3. Results of Experiment 3 

 

 
Figure 3. Results of Experiment 3. (a) The sum total of dominance durations across the 
observation period is shown for the three rivalry pairs examined in Experiment 3. (b) The 
mean dominance durations for these rival pairs. (c–e) The distributions of dominance; 
between the static gratings (c), expanding and static gratings (d) and contracting and static 
gratings (e). Adding motion appears to be the primary determinant of increased predominance 
when considering the sum and distribution of dominance of an image relative to a static rival. 
However, only the expanding grating mean duration differed significantly from its static rival. 

 



Chapter 3: A bias for looming stimuli to predominate during binocular rivalry 

 

91 

Figure 4. Cumulative distributions of perceptual dominance durations 

 

 
Figure 4. Cumulative distributions of binocular rivalry dominance durations. Dominance 
durations are binned then plotted cumulatively. These functions are compared using the KS 
statistical test for cumulative distributions. (a–c) The results of Experiment 1. (d–f) The results 
of Experiment 2 and (g–i) the results of Experiment 3. Looming and expanding concentric 
gratings produce a greater proportion of longer dominance durations when paired with 
receding gratings. The same asynchrony occurs when motion is added to one of the rival 
stimuli in Experiment 3 (h and i). The d (distance between functions) statistic and 
corresponding p value for each rival pair is displayed in each plot. 

 

Discussion 

Adding an expanding motion component to the concentric grating decreased the total 

amount of time it was suppressed, as well as increasing its sum dominance compared to 

the static rival. In contrast, adding contracting motion did not affect the mean of the 

dominance nor suppression durations, but did affect the overall time the stimulus was 

dominant and the distribution of dominance durations relative to the static rival. These 
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observations are consistent with previous reports showing that when one rival stimulus is 

moving it tends to predominate over another static one (Blake et al., 1998; Breese, 1909; 

Wade & de Weert, 1986). Interestingly, these observations also show a qualitative 

asynchrony between two directions of motion that are otherwise equal in strength. 

 

The most intuitive interpretation of the general predominance of motion is that by adding 

motion to one of the stimuli, we add a non-contested dimension to one of the rival stimuli 

that therefore confers an advantage on it. That is, from the point of view that binocular 

rivalry is mutually suppressive competition between low-level inputs, adding motion to 

one stimulus may boost its predominance because there is no competing motion in the 

other stimulus. In other dimensions, the two rival stimuli would compete on more or less 

an equal footing in terms of contrast, contour density, mean luminance, etc. However, 

adding motion to one of the stimuli, whether expansion or contraction, would give a 

competitive advantage to the motion stimulus because its motion dimension would not be 

subject to inhibition from the other competing stimulus. 

 

At the simplest level the predominance of moving rival stimuli over static ones may be 

due to a reduction in contrast adaptation early in the visual system. Locally, the moving 

stimulus produces a continuous oscillation of contrast levels, which will effectively 

reduce contrast adaptation. For the static stimulus, there is a constant input which will 

inevitably lead to contrast adaptation. This is significant because models based on mutual 

inhibition between inputs all predict that as one channel adapts it weakens its suppressive 

influence on the other channel which ultimately leads to a switch in dominance (Blake, 

1989; Wilson, 2003). If a moving stimulus resists contrast adaptation, but not the static 

stimulus, it will exert a stronger suppression over its rival. 

 

Consistent with the preceding experiments, the effect of expansion was stronger than for 

contraction, with the increase in mean dominance duration over the static rival being 

significant for expansion, but not for contraction. This asynchrony may be due to an 

enhanced neural response to expanding motion, as indicated in monkey (areaMSTd) 

physiology (Graziano et al., 1994) and human behavioural data on the motion after effect 
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(MAE) (Berman & Colby, 2002). The Berman and Colby study found that no MAE was 

perceptible when a contracting concentric grating was adapted. Other findings support the 

idea of specialised processing of expansion; for example that neural populations of the 

superior temporal sulcus (STS) preferentially respond to looming visual stimuli (Maier, 

Neuhoff, Logothetis, & Ghazanfar, 2004) and that human observers are biased to 

perceiving approaching motion in a three-dimensional apparent motion task (Lewis & 

McBeath, 2004). An asynchrony between expansion and contraction is not completely 

surprising given that the majority of our experience of optic flow arises because of 

forward motion and the likely consequence of this during development would be a greater 

neural response to process this direction. 

 

A second factor that may lie behind the increased predominance of the expanding motion 

stimulus is attention. Attention to one rival stimulus makes it less likely to become 

suppressed (Ooi & He, 1999) and alternation rates can be altered by attention (Lack, 

1978). Although the effects of attention in determining predominance of a stimulus are 

relatively modest in binocular rivalry compared to other bistable contexts (Meng & Tong, 

2004), moving objects are salient targets that can engage attention automatically, and in 

the absence of other stimuli of interest may continue to engage attention. Therefore, the 

finding that expansion is to an extent more effective than contracting motion may indicate 

that attention, rather than simply the strength of the motion signals, is determining its 

comparably elevated predominance. 

 

Experiment 4: Flash suppression between expansion and contraction, and moving 
and static stimuli  

Experiment 4 uses ‘flash suppression’ in an attempt to quantify more precisely the 

relative strength of the two moving concentric grating stimuli used in condition A of 

Experiment 2. Flash suppression (Wolfe, 1984) is a brief variant of binocular conflict in 

which one eye’s image is presented before the other for a short lead time. After this 

monocular lead period - or stimulus onset asynchrony (SOA) - a second rival image is 

presented to the other eye. The typical result, given a lead time of a second or so before 

the dichoptic phase begins, is the instant suppression of the lead stimulus. There are at 
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least two advantages of flash suppression. The first is that it can be used to determine the 

initial phase of binocular rivalry, without employing the attentional strategies of Mitchell 

et al. (2004) and Chong and Blake (2006). Second, the likelihood of a perceptual switch 

to the later stimulus can be measured as a function of lead time to compute a 

psychometric function, which is otherwise difficult in traditional binocular rivalry. In 

Experiment 4, we measure the threshold SOA required for a perceptual switch from the 

lead stimulus to the second stimulus, and we do this for different pairs of rival stimuli to 

clarify the biases found in the preceding rivalry experiments. 

 

Method 

The stimuli were exactly the same as used above in Experiment 2 condition 1, (the 

linearly expanding and contracting concentric gratings) and the static radial gratings used 

in Experiment 3. Only the paradigm (i.e., flash suppression) was different in Experiment 

4. Four observers participated (both authors, 2 naïve). All subjects had normal or 

corrected-to-normal visual acuity. The two naïve observers were experienced in 

perceptual observation and did not participate in any of the previous experiments. 

 

Condition 1: Flash suppression between expanding and contracting gratings 

Either an expanding or a contracting concentric grating was used as the lead stimulus. 

Linear expansions and contractions were used to ensure a consistent speed in the lead 

stimulus regardless of the moment at which the second ‘flash’ stimulus was delivered. 

The average latency required for complete flash suppression to occur was measured 

across a minimum of 75 trials using the QUEST adaptive staircase procedure (Watson & 

Pelli, 1983) for each of the two possible stimulus presentation orders (expanding lead 

with contracting flash, and contracting lead with expanding flash). Before each trial, 

subjects binocularly fused two black circular apertures presented on each side of the 

monitor. Upon initiating a trial by key press, the lead stimulus was presented to one of the 

eyes. The other eye remained exposed to the binocularly presented circular aperture filled 

with the mean background luminance. After a variable period of time determined by the 

staircase procedure, the flash stimulus was presented to this eye. After the second eye 

received the flash, both moving gratings remained on the screen for a further 500 ms after 
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which the screen returned to uniform grey. Subjects were then required to judge whether 

the swap to the flashed stimulus was complete or not by pressing one of two keys on the 

keyboard. The criterion for a complete swap was determined to be when the flashed 

motion instantly and completely suppressed the lead motion. If the dominance of the 

flash stimulus occurred nearer to the removal of both stimuli at the end of a trial, subjects 

were able to discern this alternation from instantaneous suppression and report it as an 

incomplete swap. After the subject’s response the empty black apertures reappeared for 

the next trial. The eye given the lead stimulus was alternated on each trial to counter any 

effects of eye dominance and adaptation, as was done in Experiments 1, 2 and 3. 

 

Condition 2: Flash suppression between static and contracting gratings 

The same method as condition 1 except that contracting concentric gratings were paired 

with static radial gratings. 

 

Condition 3: Flash suppression between static and expanding gratings 

Again, the same method as condition 1 is used except now expanding concentric gratings 

were paired with static radial gratings. 

 

Results and discussion 

Results for the expanding vs. contracting and moving vs. stationary data are shown in 

Figure 5. Figure 5a-c shows the raw data plotted as the likelihood of complete 

suppression (expressed as a percentage) as a function of a particular lead time for each 

subject across the three conditions shown in Figure 5 (5a: C1, 5b: C2 and 5c: C3). From 

these psychometric functions, we defined the lead time corresponding to 75% probability 

of a switch to the flashed stimulus as the ‘critical switch duration’. The average of these 

‘critical switch durations’ are graphed in Figure 5d-f. Figure 5d shows how flash 

suppression latencies vary according to the type of lead stimulus (stationary radial grating, 

expanding concentric grating, or contracting concentric grating) with data pooled across 

all the conditions employing that stimulus as a lead. Stationary lead stimuli required very 

short lead periods to be suppressed by either expanding or contracting motion in contrast 
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to moving leads which required much longer lead times before being suppressed by 

stationary or other moving stimuli. When the flash stimuli are plotted in the same 

fashion (Figure 5e) a complementary pattern emerges whereby moving flash stimuli 

more readily suppress a lead than stationary stimuli. The average critical switch duration 

for each stimulus alone and for each condition are shown in Figure 5f. 

 

Figure 5. Flash suppression thresholds 

 

 
Figure 5. Flash suppression thresholds. (a–c) Threshold probabilities for complete flash 
suppression (FS) expressed as a percentage. The x-axis shows lead time in number of refresh 
frames (each  11.76 ms at 85 Hz vertical refresh rate) in decibel scale. Moving stimuli require 
longer lead times in order to be suppressed by static rivals. Mean SOA’s required for FS are 
shown in parts d, e and f. 
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For condition 1 (expansion vs. contraction), all but one subject needed significantly less 

lead time to effect a complete perceptual switch when the lead stimulus was a contracting 

grating and the flashed stimulus an expanding grating (Figure 5a). The mean critical 

switch duration for expanding leads was 1.5 s in condition 1 (Figure 5f, dark gray bars), 

about one third longer than that required to produce a perceptual switch for contracting 

lead stimuli (1 s). This difference however was not statistically significant (t = 1.382, p 

> .05. One-tailed paired t-test). 

 

Data for the static radial grating pitted against a contracting (white bars) or expanding 

(gray bars) concentric grating are shown in Figure 5f which plots mean critical switch 

durations for four observers. A clear trend for moving lead gratings to resist suppression can 

be seen for both the contracting (t = 3.144, p < .05) and expanding directions (t = 

3.359, p < .05). The absence of any direction specific effect when each direction is paired 

with a static radial grating may be attributable to the transients associated with the onset 

of the ‘flash’ stimulus. Transients in the suppressed stimulus are highly salient at 

promoting the suppressed stimulus into dominance in binocular rivalry (Walker & 

Powell, 1979) and it may well be that the transients associated with the flash are strong 

enough to promote a switch regardless of whether the lead stimulus is an expansion or 

contraction. In regular rivalry, by contrast, these transients are not present and the 

expansion bias emerges. Also, flash suppression itself is dependent upon stimulus onsets, 

the presence of motion, regardless of direction appears to have the most influence over its 

time scale. 

 

Discussion 

Overall, the mean of the critical switch durations for the two ‘motion lead’ thresholds 

(contracting 1.8 seconds and expanding 2.1 seconds, Figure 5d) are more than four times 

greater than the mean of the static lead conditions (0.39 seconds). The longer threshold 

lead times for moving stimuli mean that motion stimuli better resist a perceptual switch to 

the new flashed static stimuli. Static lead stimuli, on the other hand, will readily switch to 

a new flashed motion stimulus after only half-a-second of lead time. Likewise, moving 

flash stimuli more readily suppress lead stimuli (Figure 5e). This points to the general 
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salience of moving stimuli over static stimuli, which has been previously well established 

in regular binocular rivalry (Blake et al., 1998; Breese, 1909; Wade & de Weert, 1986). 

We can now conclude that the salience of motion over static stimuli holds equally well in 

the context of flash suppression. The role of the lead time in the flash suppression 

paradigm is presumably to adapt those neurons responsive to the lead stimulus, making a 

switch to the second stimulus more likely when it is presented, similar to the role of 

adaptation postulated in models of binocular rivalry (Freeman, 2005; Wilson, 2003). 

Moving stimuli resist this adaptation resulting in longer critical switch durations. 

 

Turning to the comparison of expanding and contracting stimuli, we note that the lead 

time for the contracting stimulus to suppress an expanding lead was not significantly 

longer than that for the reversed stimulus order although a trend in this direction emerged. 

The difference between this result and the predominance of expansion found in the 

previous experiments is probably due to the increased sensitivity of the flash suppression 

paradigm to visual transients compared to regular binocular rivalry. Flash suppression is 

dependent upon a transient event, a lead or flash stimulus high in transients, such as 

moving gratings, can either interfere (as lead) or enhance (as flash) this process, 

irrespective of direction. 

 

General discussion 

The preceding experiments investigated the behaviour of expanding versus contracting 

stimuli, and moving versus stationary stimuli, in binocular rivalry and in flash 

suppression. The two main findings are that there is a consistent bias to favour expansion 

over contraction, and that moving stimuli strongly resist suppression in the paradigm of 

flash suppression, just as they are known to do in conventional binocular rivalry. Both of 

these observations can be understood within current accounts of binocular rivalry and 

known properties of visual motion-sensitive neurons and attentional factors. 

 

A bias in favour of expansion was documented for binocular rivalry in Experiments 1, 2 

and 3. This bias did not depend on whether the motions expanded linearly, or nonlinearly 

in an accelerating fashion as they would during typical optic flow. Interestingly, in 
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Experiment 2, we found that the expansion bias for dominance did not occur with the two 

stimuli with random spatial structure; the random-dot motion and the filtered visual noise. 

Only the stimulus that was both expanding and had spatially coherent contours showed 

the expansion bias. We suggest this is probably due to object processing and attentional 

factors. The expanding random dots and filtered-noise stimuli created percepts of 

surfaces undergoing expansion within a fronto-parallel plane, but not of approaching or 

looming objects. Only when there was a coherent size change (as in the expanding 

concentric gratings) did an impression of looming and expanding objects arise. For this 

reason we favour an interpretation in terms of attention to a visual object, since it is 

known that looming objects are salient for grabbing attention in a stimulus-driven 

manner. When a looming object is perceived, attentional orienting to the exact location 

and trajectory of this object becomes of primary importance and may activate preparatory 

or defensive movements mediated by a subcortical network involving the superior 

colliculus and amygdala or by a cortical network involving the ventral intraparietal area 

and a polysensory zone in the precentral gyrus (Graziano & Cooke, 2006). 

 

We believe the predominance bias in favour of expansion is not likely to be explained by 

early motion-sensitive neurons. Early cortical neurons respond to local features, and 

locally, the expanding and contracting motions in each eye were equal in magnitude but 

simply opposite in direction. In terms of global stimulus properties, it is known that 

global motions such as expansions are processed by neurons beyond primary visual 

cortex, for example in MST and STS (Duffy & Wurtz, 1991; Maier et al., 2004). 

Therefore, if rivalry is an early process, then any bias for global expansion must be the 

result of feedback from extrastriate areas signalling looming motion and/or visual objects 

on a collision path with the observer. Such feedback would presumably coordinate early 

and local binocular rivalry processes into a globally coherent ensemble. 

 

Another factor that may lie behind the increased dominance of the motion stimulus is 

attention. Moving objects are salient targets that can engage attention automatically, and 

in the absence of other stimuli of interest may continue to engage attention. Attention 

toward or away from both rival stimuli produces variance in alternation rates (Lack, 
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1978; Paffen et al., 2006) and attention to one stimulus has been shown to boost its 

predominance in rivalry (Lack, 1978; Ooi & He, 1999), although the effects are relatively 

modest in binocular rivalry compared to other bistable contexts (Meng & Tong, 2004). 

As noted before, attention is known to boost the response of neurons in the early part of 

the visual system that represent an attended feature (Alais & Blake, 1999; O’Craven, 

Rosen, Kwong, Treisman, & Savoy, 1997; Somers, Dale, Seiffert, & Tootell, 1999), 

particularly for basic attributes such as orientation and motion (McAdams & Maunsell, 

1999; Treue & Martinez-Trujillo, 1999; Treue & Maunsell, 1996). Thus attended rival 

stimuli are expected to be more resilient to suppression from unattended stimuli as they 

will be higher in effective contrast and therefore stimulus strength. 

 

There is also reason to suspect that the looming motion may retain some salience even 

when suppressed. It has been shown in an fMRI study that a fearful face undergoing a 

period of rivalry suppression still produces a response in the amygdala (Pasley, Mayes, & 

Schultz, 2004) despite not being in perceptual awareness, indicating that this subcortical 

mechanism still has access to suppressed stimuli. This does not occur for neutral 

expressions, perhaps because fearful faces are indicative of impending danger. It is 

worthwhile considering that the looming objects are also salient for attention and may too 

indicate impending danger and therefore activate alternative pathways to consciousness 

such as via the amygdala. This suggestion could be easily tested in an fMRI study. 

Interestingly, the visual pathway to the amygdala is via the superior colliculus where 

neurons respond to looming movement in all modalities. Therefore, the presence of a 

perceptually suppressed ‘looming’ object could still be present via this subcortical loop, 

and from there be fed into the visual areas which presumably underlie the rivalry 

suppression process. This additional source of looming response could potentially boost 

the total response to the looming stimulus when it is dominant, causing the increased 

predominance noted in Experiment 1, and curtailing suppression phases for looming 

stimuli. 

 

In conclusion, these experiments have demonstrated a robust tendency for expanding and 

looming contours to predominate over receding ones during binocular rivalry. This 
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occurs despite the fact the two motions are equal in motion energy and differ only in 

direction. We suggest that the inhibitory interactions that are essential to rivalry probably 

occur early in visual processing (Alais & Melcher, 2007; Blake, 1989; Tong & Engel, 

2001) and that subsequent neural processes such as attention and global motion 

processing feedback to influence and coordinate these early rivalry processes. 

 

Chapter summary 

The experiments presented in this chapter clearly show a bias for looming motion during 

binocular rivalry. The predominance of the looming motion suggests that binocular 

rivalry may be related to mechanisms governing exogenous attention. Although a 

stronger neural representation of expanding motions can explain the results, it is also 

possible that attentively salient stimuli are represented more strongly in visual cortical 

areas. That stimulus driven attention yields a stronger influence over binocular rivalry 

dominance than endogenous, or purposeful, attention might, supports the idea that 

perceptual bistability is achieved by an unconscious process of perceptual selection. 

Although it cannot be concluded that this is the same process that mediates exogenous 

perceptual selection in normal viewing, it is strongly suggestive of that possibility. 
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Chapter 4  

Multisensory congruency as a mechanism for attentional 
control over perceptual selection   
 
The work in this chapter is published as: 
van Ee, R., van Boxtel, J. J., Parker, A. L., & Alais, D. (2009). Multisensory congruency as a 
mechanism for attentional control over perceptual selection. Journal of Neuroscience, 29(37), 
11641-9. 
 

Overview 

The following experiments explore whether sounds and tactile stimuli congruent with one 

or the other rival stimulus can enhance that stimuli’s dominance duration during 

binocular rivalry. The experiments show that temporally congruent sound and tactile 

stimuli can further enhance the predominance of looming motion during binocular rivalry 

that was reported in Chapter 3, but only when subjects are actively attending to the cross-

modal pairing. Facilitation of wilful control with sound and touch significantly exceeds 

the effect of wilful control without cross-modal input. These findings suggest that cross-

modal stimulation facilitates processes involved in perceptual awareness and selection.  

The following experiments clearly demonstrate sensory neural processing that is 

extraneous to the site of binocular rivalry competition can modulate perceptual 

bistability.  

 

Abstract 

The neural mechanisms underlying attentional selection of competing neural signals for 

awareness remains an unresolved issue. We studied attentional selection, using 

perceptually ambiguous stimuli in a novel multisensory paradigm that combined 

competing auditory and competing visual stimuli. We demonstrate that the ability to 

select, and attentively hold, one of the competing alternatives in either sensory modality 

is greatly enhanced when there is a matching cross-modal stimulus. Intriguingly, this 

multimodal enhancement of attentional selection seems to require a conscious act of 

attention, as passively experiencing the multisensory stimuli did not enhance control over 

the stimulus. We also demonstrate that congruent auditory or tactile information, and 

combined auditory-tactile information, aids attentional control over competing visual 
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stimuli and visa versa. Our data suggest a functional role for recently found neurons that 

combine voluntarily initiated attentional functions across sensory modalities. We argue 

that these units provide a mechanism for structuring multisensory inputs that are then 

used to selectively modulate early (unimodal) cortical processing, boosting the gain of 

task-relevant features for willful control over perceptual awareness.  

 

Introduction   

Although lower organisms possess a direct coupling between sensory input and 

behavioral output, humans are able to intervene during this sequence and influence their 

output (Gilbert and Sigman, 2007), not only with respect to our motor actions but, 

intriguingly, also for our awareness. Although we are still learning about the precise 

mechanisms of this voluntary control and its necessary and sufficient conditions, we do 

know that it operates in a top-down manner through attention. For visual stimuli there is 

mounting evidence (Reynolds and Chelazzi, 2004) that attention to features and spatial 

locations can influence neural activity at early levels of cortical processing. It is unclear, 

however, how attention influences perceptual selection when multisensory signals are 

involved. A promising way to study awareness and voluntary attentional control over 

perception is to expose the sensory system to an ambiguous stimulus that generates 

bistable perception. This provides the opportunity to study multisensory processing 

related to the percepts rather than to the stimulus (Leopold and Logothetis, 1999; Blake 

and Logothetis, 2002; Tong, 2003).  

 

Here, we used perceptually ambiguous stimuli in a novel multimodal paradigm that 

combined competing auditory stimuli and competing visual stimuli. We studied whether 

multisensory congruency facilitates voluntary control over perceptual selection, reasoning 

that this would open a novel window on multisensory aspects of perceptual control and 

shed light on the level at which it occurs. For unisensory stimuli, quite a few reports have 

shown a role for attention in voluntarily selecting one perceptual interpretation in 

perceptually bistable stimuli. These have shown that observers can lengthen the duration 

that the selected percept is dominant, but they cannot exert full control over the selection 

process and spontaneous perceptual alternations still occur (Lack, 1978; Meng and Tong, 
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2004; van Ee et al., 2005). Very recently, a degree of unisensory attentional control has 

also been demonstrated over ambiguous stimuli in the auditory domain (Pressnitzer and 

Hupé, 2006). Different senses interact with each other, and it is known from audiovisual 

experiments that a stimulus in one modality can change perception in the other (Sekuler 

et al., 1997; Shimojo and Shams, 2001; Alais and Burr, 2004; Witten and Knudsen, 2005; 

Ichikawa and Masakura, 2006). We combine these findings to study attentional control 

over perceptually ambiguous stimuli in a multisensory context, focusing on the role of 

cross-modal congruency. Congruency may facilitate multimodal mechanisms of 

voluntary control, since there is more support for one of the two competing percepts 

when there is information from another sensory modality that is congruent with it.  

 

Many neurons in human posterior parietal and superior prefrontal cortices are involved in 

voluntary attentional shifts between vision and audition (Shomstein and Yantis, 2004), 

and attention to audiovisual feature combinations produces stronger activity in the 

superior temporal cortices than does attention to only auditory or visual features 

(Degerman et al., 2007). It has also been shown that the auditory cortex can be 

profoundly engaged in processing nonauditory signals, particularly when those signals 

are being attended (for review, see Shinn-Cunningham, 2008). What is the role of these 

multimodal attention-modulated neurons? None of the existing studies used competing 

cross-modal stimuli.  

 

We studied whether the ability to voluntarily select one interpretation from an ambiguous 

visual or auditory stimulus would be enhanced when it was combined with auditory, 

visual, tactile, or auditory-tactile information that was congruent with that interpretation.  

 

Materials and method   

We presented subjects with a binocular rivalry (Levelt, 1965) stimulus consisting of a 

looming concentric pattern in one eye and a rotating radial pattern in the other eye 

(Figure 1a) and a pair of auditory stimuli consisting of a looming sound and a spatially 

separated stationary tone triad (Figure 1b). The auditory stimuli were binaurally 

presented over headphones (Pressnitzer and Hupé, 2006; Bidet-Caulet et al., 2007). The 
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looming stimuli were rate matched (same frequency) in both the visual and auditory 

modalities. The rotating radial pattern was chosen to rival with the looming visual 

pattern, because it is orthogonal to the concentric looming stimulus and is symmetrical so 

that small eye movements in any direction would not unduly favor the visibility of one 

pattern over the other (Wade and de Weert, 1986; Parker and Alais, 2007). We 

deliberately designed the rotation rate to be different from the looming sound rate so that 

their changes over time did not match. Following previous attentional studies of 

unisensory ambiguous perception, we examined voluntary control over visual rivalry by 

comparing “active” and “passive” conditions (Helmholtz, 1866; Lack, 1978; Peterson and 

Hochberg, 1983; Leopold and Logothetis, 1999; Suzuki and Peterson, 2000; Hol et al., 

2003; Toppino, 2003; Meng and Tong, 2004; Chong et al., 2005; Slotnick and Yantis, 

2005; van Ee et al., 2005, 2006; Brouwer and van Ee, 2006; Chong and Blake, 2006; 

Hancock and Andrews, 2007). In the passive condition, no attentional control was exerted 

in favor of either visual pattern. There were two types of active condition. In one, 

observers were instructed to “hold” the visual looming pattern dominant, and in the other 

they were instructed to hold the visual radial pattern. All three conditions were tested 

with and without the sound stimuli present, amounting to six conditions in total.  

 

Visual stimuli 

The competing binocular rivalry stimuli were a rotating radial sine wave pattern in one 

eye and a concentric sine wave pattern looming at 1 Hz in the other (Wade and de Weert, 

1986; Parker and Alais, 2007). The visual stimuli had a mean luminance of 30 cd/m2, a 

contrast of 25%, and were presented in a Gaussian envelope (SD 0.6°) (Figure 1a). The 

radial pattern consisted of seven cycles (propeller blades), rotating at 30.7°/s, producing a 

repetition frequency of 0.6 Hz at each visual location. The looming pattern had a spatial 

frequency of 3 c/degree, its motion being induced by a phase-shift that increased 

exponentially over a 1 s period from a baseline of 1 c/s to a maximum of 4 c/s, after 

which the increase was rapidly tapered off by a cosine profile. Continuous looming 

motion was created by repeating these profiles in a loop with 1Hz so that it matched the 

looming sound rate and mismatched the rotation of the radial pattern. The stimuli were 

presented one on either side of a cathode ray tube monitor and viewed through a mirror 
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stereoscope (viewing distance, 57 cm) to produce binocular rivalry. Stimuli were 

presented on a black square of 5.5°, with a white border; the rest of the screen had a 

luminance of 30 cd/m2.  

 

The visual stimulus used to disambiguate the ambiguous sound (Experiment 6) consisted 

of a white flickering disk (diameter, 7.5°; viewing distance, 57 cm) with a static frame 

around it. The disk flickered with on and off periods of 120 ms, equating the presentation 

sequence of the low tone in the ambiguous auditory stimulus.  

 

Auditory stimuli  

We used headphones to present competing stationary and looming sounds, meaning that 

attention needed to be used to follow the looming sound. The stationary sound was a 

constant, unmodulated tone triad (an “E major” chord) (Figure 1b), with maximum 

amplitude of 76 dB sound pressure level (SPL) on average. The competing tone triad was 

present in all experiments in which we used competing sound to resolve ambiguity in the 

visual domain (thus, in all experiments, except in Experiment 6). The looming sound was 

produced by modulating the amplitude of a pure tone (200 Hz) incremented from an 

amplitude of zero to a maximum amplitude designated by each subject to be comfortable 

(average, 74 dB SPL). The amplitude envelope had a profile identical to the phase-shift 

profile of the visual stimulus (1 Hz in Experiment 1 (Figure 1b); note that it was different, 

0.82 Hz in Experiment 2 (Figure 1c)) and was precisely phase synchronous with the 

carrier sinusoid (200 Hz) to prevent readily detectable anomalies. To assign different 

spatial directions to the two sounds, they were both presented binaurally, with the 

looming sound having an interaural time difference of 200 s so that it was heard to 

originate from a location 20° to the right (with respect to straight ahead) and the constant 

tone triad having an opposite phase difference of 200 s so that it was heard to originate 

from a location 20° to the left. The “tone pips” that we presented in Experiment 3 had a 

frequency of 1 Hz (i.e., at the visual looming frequency) (Figure 1d), a duration of 280 

ms, and an average maximum amplitude of 76 dB SPL.  
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 In the experiment where we examined whether a visual stimulus can disambiguate an 

ambiguous sound stream (Experiment 6), we followed a recent study on attentional 

control over auditory ambiguity (Pressnitzer and Hupé , 2006). We presented a high-

frequency pure tone H alternating with a low-frequency pure tone L, in an LHL_ pattern 

(van Noorden, 1975). The frequency of H was 587 Hz and that of L was 440 Hz. The 

duration of each tone was 120 ms. The silence “_” that completed the LHL_ pattern was 

also 120 ms long. The sequence is perceived either as one stream (LHL-LHL, i.e., 

grouped galloping rhythm) or as two streams (H-H-H-H and -L—L-, i.e., segregated 

Morse tones). The loudness of the tones was adjusted to a comfortable level (on average 

75 dB SPL), which was kept constant during the experiment. 

 

Figure 1. Speed profiles of the binocular rivalry and sound stimuli 
 
Figure 1. A) The vision speed profiles. The 
binocularly rivaling visual images consisted 
of a constantly rotating radial pattern and a 
looming concentric circle pattern. We 
deliberately designed the rotation rate (0.6 
Hz) to be different from the looming rate (1 
Hz) so that their changes over time did not 
match. B) The sound amplitude profiles. The 
two sounds that competed for attention 
consisted of a stationary tone triad (E chord) 
and a 1 Hz looming sound coming from 
opposite lateral locations (20 and 20° 
relative to straight ahead). Auditory and 
visual looming were rate matched and in 
phase (dashed vertical line). C) To examine 
whether it is either looming as such, or its 
rate, that caused the multimodal attentional 
control effects of the looming sound, we 
presented the looming sound with 0.8 Hz. D) 
To examine the role of sound rate, we 
presented tone pips with the same frequency 
(1 Hz) and phase as the looming visual 
pattern. Ramp and damp times were equal.  
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Tactile stimuli  

To produce stationary and looming tactile stimuli, we detached a loudspeaker from its 

sound box (commercially available Logitech R-10 computer speakers). The vibrating 

speaker membrane was lightly attached to the skin of the dorsal side of the left hand by 

an elastic band (supplemental Figure 6a, Appendix 3). The hand was placed on the left 

knee underneath the stereoscope. By playing the looming sound exactly the same as in 

the basic experiment, the observer felt a “looming” pattern (although this was perceived 

as increasing pressure) that was matched to the visual looming pattern. In the no-sound 

conditions, observers wore earmuffs so that the sound of the vibrating membrane on the 

hand was not heard.  

 

Procedure  

Subjects were instructed to maintain fixation on the center of the visual pattern which is 

easily possible for a monocular looming pattern with a fixed reference around it and with 

the small size used at the distance presented (Erkelens and Regan, 1986). They pressed 

one of two keys when the visual looming stimulus was dominant and the other when the 

radial pattern was dominant. They were instructed to release both keys during instances 

of superimposed and piecemeal pattern perception (which averaged 13.7%), where 

neither pattern was exclusively dominant. We consistently compared passive and active 

conditions. In the passive condition, no attentional control was exerted. In one of the 

active attention conditions, observers were instructed to hold the visual looming pattern; 

in the other, observers were instructed to hold the visual radial pattern. Stimulus 

presentation series lasted 2 min. Between series, the stimuli were counterbalanced 

between the eyes, comprising sessions of 4 min per condition. All three conditions were 

tested with and without the sound stimuli present, amounting to six conditions in total and 

a duration of 24 min per experiment. Six subjects did three 24 min experiments. We 

established that there was no clear dependence on order and that fluctuations in mean 

predominance between repeated sessions were such that it was sufficient to ask the other 

subjects to do only one 4 min session per condition. We discarded the first 30 s of each 

series list for data analysis to ensure rivalry alternations had stabilized.  
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In the experiment where we examined whether a visual stimulus can disambiguate an 

ambiguous sound stream (Experiment 6), the procedure was very similar. The 

experiment, again lasting 24 min, consisted of three 4 min sound-only and three 4 min 

sound plus vision sessions. In addition to the passive baseline condition, observers were 

instructed to hold the grouped sound (galloping) or the segregated sound stream (high and 

low Morse tones). The stimuli were presented using four 1 min series per condition. In 

the no-vision conditions, a small marker was fixated. In the vision conditions, subjects 

fixated the center of the flickering disk.  

 

In the experiment where we examined the role of congruent tactile “looming” 

(Experiment 7), we compared the attentional gains for the sound-only, the tactile-only, 

and the tactile plus sound conditions. Observers were instructed to hold the visual 

looming pattern or to passively view the stimuli. Stimulus presentation sessions lasted 

again 4 min consisting of two 2 min series with stimuli counterbalanced between the 

eyes. Informed written consent was obtained after the nature and possible consequences 

of the study were explained.  

 

Results   

Experiment 1: Quantifying the influence of sound on attentional control   

We first determined the baseline level of attentional control in unimodal, vision-only 

conditions by comparing hold versus passive conditions. Subjects (n  22; 14 male, 8 

female) tracked perceptual alternations in binocular rivalry. The mean perceptual 

durations for the looming visual pattern and the radial visual pattern (Figure 2) are 

lengthened in the hold relative to the passive conditions (from 2.6 +/- 0.2 s to 3.6 +/-  0.3 

for looming, and from 2.3 +/- 0.2 s to 3.0 +/- 0.3 s for radial patterns, both p 0.001, paired 

t-test), replicating previous work (Lack, 1978; Toppino, 2003; Meng and Tong, 2004; 

Chong et al., 2005; Slotnick and Yantis, 2005; van Ee et al., 2005). In total, superimposed 

or piecemeal pattern perception averaged 13.7% of the observation period. Further details 

of the influence of attentional control over perception in unimodal conditions are 

presented in supplemental Results (supplemental Figure 1; supplemental text, Appendix 

3).  
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Interestingly, in the sound present conditions, the data suggest that the presence of an 

attended and matched sound enhances a subject’s ability to select and hold a looming 

visual pattern (4.5 vs 3.6 s, in sound and no-sound conditions, respectively) (Figure 2) but 

slightly impairs their ability to select and hold an unmatched (radial) visual pattern (2.9 

vs 3.0 s). To quantify this multimodal attentional effect, we calculated the increase in 

perceptual duration for the hold task relative to the passive task and compared these 

values between sound-present condition and the no-sound condition. We defined the gain 

of multimodal attentional control as “hold-dependent increase in sound condition”/“hold-

dependent increase in no-sound condition.” These gains implicitly normalize differences 

in attentional control across subjects and isolate the multimodal aspects of attentional 

control. They are plotted in rank order for all subjects in supplemental Figure 1b, in 

Appendix 3.  

 

For the hold-looming condition, the mean multimodal attentional gain amounted to 29.3 

5.8% ( p 0.001, t-test) (Figure 3a), indicating that subjects were more successful in 

holding the visual looming pattern when the matched looming sound was present than 

when it was absent. (Alternatively, this gain can be denoted as a ratio of 1.293; we will 

use the ratio and percentage notations interchangeably for ease of discussion. Since the 

metric for the statistic analysis is a linear transformation of the ratio used to denote 

multimodal attentional gain, it has no bearing on the results.) The same attention-related 

change in perceptual duration was calculated for the rotating radial pattern. The effect of 

voluntarily holding the visual radial pattern with the unmatched looming sound present 

was on average 3.8  3.8% (Figure 3a), indicating that the presence of the looming sound 

decreased the ability to attentionally hold the radial visual pattern, although not 

significantly ( p 0.3, t-test) (supplemental Figure 1b, Appendix 3). The attentional gains 

for the looming and radial patterns were uncorrelated (supplemental  Figure 1c, Appendix 

3) (linear regression: r 2  0.055, p  0.29). This suggests that response bias did not cause 

the pattern of results, as there is no reason for the subject to assume that sound would 

facilitate holding the looming pattern but not the radial pattern. Results from the next 

experiment also add evidence against response bias.  
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Figure 2. Average durations of perceptual dominance 

 
 
Figure 2. a, The mean duration for 
the looming (left) and the radial 
(right) visual patterns. Subjects were 
able to hold (light gray bars) the 
looming pattern for the no-sound 
condition (relative to the dark 
passive bar) and even more so with 
looming sound present (for right pair 
denoted with “speaker icons”). Error 
bars denote 1 SE. b, To test for the 
influence of a phase offset, five 
observers (the ones who participated 
in all 7 experiments) repeated 
experiment 1 but now with a 
sustained phase offset (a quarter of a 
period) of the sound stimulus relative 
to the visual stimulus. The data are 
essentially the same, as we found 
without phase offset.  
 

 

 

It is worth noting that on average we did not find an influence of sound on mean percept 

durations for passive viewing. It has, nevertheless, been reported that concurrently 

presented looming sounds can increase perceptual dominance of a looming image in 

binocular rivalry even in passive viewing (Alais and Parker, 2006). However, this 2006 

study was different in two ways: First, it did not include a comparison between attention 

and no-attention conditions. Including a passive “no-attention” condition in the current 

experiments may have mitigated the effect of involuntary automatic attention. Second, 

the previous report involved only a single auditory stimulus (a looming sound), whereas 

our study involved a looming sound and a second competing sound in the form of a 

constant tone triad. Even though the looming sound was clearly audible over the tone 

triad, it is possible that the requirement of attention for the cross-modal effect only 

applies when the critical sound is accompanied by a competing sound. That is, in cases 
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where there are competing auditory stimuli, selectively attending to the relevant sound 

may be necessary. The absence of a competing stimulus could then explain why Parker 

and Alais (2006) got their cross-modal effect in the passive condition. Therefore, in all 

the following experiments, we present competing information in each of the sensory 

modalities. This, in turn, enables us to study multisensory processing related to the 

attentively selected percepts.  

 

In sum, congruent sound aids attentional control over visual ambiguity. In this 

experiment, we started with a high level of congruency between auditory and visual 

information. In the next experiments, we systematically manipulate the congruency to 

determine the importance of aspects of congruency for multimodal attentional control. 

Our experiments capitalize on congruence in frequency (rhythm). Pilot experiments 

indicated that changing the phase (offset in time) of the sound relative to the visual 

pattern did not significantly affect the influence of sound. As experimenters, we noted 

during the programming of our stimuli that without objective measures it was hard to 

validate the phase offset in any of our conditions; even a phase offset of 1/4 of a period 

between the looming sound and the looming visual pattern went subjectively unnoticed. 

Our observers confirmed this, as they could readily match the perceived offset in timing 

between the two patterns, particularly when attention to the two sensory modalities was 

involved (Kanai et al., 2007). This happens in the real world, as when experiencing the 

periodicity of pile driving at a close distance or at a farther distance: the different 

transmission times for visual and auditory stimuli produce different offsets. The brain is 

able to deal with this by constantly calibrating the point of synchrony, as shown by 

adaptation to artificial temporal delays (Fujisaki et al., 2004). Figure 2b depicts objective 

data of the five subjects (who all participated in all experiments yet to be presented), 

showing that the mean percept durations for a 1/4 period phase offset (between looming 

sound and vision) was very similar to the mean percept durations with zero phase offset. 

Although it is possible that there may be a systematic temporal offset effect (such as in 

the recently reported enhanced perception of visual change by a coincident auditory tone 

pip) (van der Burg et al., 2008), from our pilot work we expect that in our setting it must 
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be much smaller in magnitude than the frequency effect. Thus, the next set of 

experiments capitalizes on congruency in frequency (rhythm).  

 

Figure 3. Results of Experiment 1 

 

 
Figure 3. a, Results from Experiment 1. Black lines connect the data of a particular subject. b, 
A different rate of the looming sound impairs the multimodal attentional gain (Experiment 2). 
c, Tone pips with the same rate as the looming visual pattern enhance multimodal attentional 
control over the looming pattern, indicating that rate (or rhythm) is important (Experiment 3). 
d, Paying attention to the congruent looming sound is required to enhance holding the visual 
looming pattern (Experiment 4). e, The benefit of congruent sound also holds for the radial 
pattern and is not specific to the looming pattern (Experiment 5). The dashed lines between 
the panels connect data of identical subjects. Filled circles indicate significance (t-test, see 
Results); error bars denote 1 SE.  

 

Experiment 2: The rate (rhythm) of the sound is key to enhance attentional control   

We asked whether the synchronized periodicity in Experiment 1 was necessary or 

whether non-synchronized looming sounds would be equally effective in promoting 

multimodal attentional control. We slightly changed the rate of the looming sound 

envelope to 0.82 Hz (Figure 1c) and repeated the measurements with 13 subjects (9 male, 

4 female) from Experiment 1. In Figure 3b, we show individual subjects’ multimodal 

attention gain. The slight change in auditory looming rate dramatically changed the effect 

of sound from one of enhancing attentional control of bistable visual perception to one of 
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impairing attentional control, as shown by the impaired multimodal attentional gain 

(Figure 3b, left) ( 20.3  4.4%; p  0.001, t-test) (see supplemental Figure 2a, available in 

Appendix 3 as supplemental material, for percept durations). Thus, subjects were less 

able to hold the looming visual pattern when it was accompanied by a looming sound of a 

different rate than when sound was absent. After debriefing, observers reported that the 

mismatched looming sound was annoying and distracting, which may explain part of the 

impairing effects and might point to an automatic and obligatory component in cross-

modal integration (Guttman et al., 2005; van der Burg et al., 2008). In turn, this might 

mean that the cross-modal effect obtained may have been partly motivational; subjects 

might have made more effort to control bistability when the sound matched the to-be-held 

visual motion, whereas they might have been less motivated when the sound 

“annoyingly” mismatched the to-be-held visual motion. However, that would likely only 

cause the disappearance of the attentional effect measured in Experiment 1, not the 

observed decrease in dominance durations. Supporting an automatic component is the 

reported presence of cortical activity specifically related to coincident visual and auditory 

looming stimuli (Maier and Ghazanfar, 2007) and points to the functional significance of 

looming (approaching) stimuli (Neuhoff, 2001; Parker and Alais, 2007).  

 

This experiment underscores the importance of temporal congruency, versus the looming 

character of the sound, in enhancing attentional control. Because subjects were still 

explicitly instructed to pay attention to the looming sound, this finding supports the 

conclusion that the results of Experiment 1 were not a bias in response to instructions. 

Also, consistent with the findings of Experiment 1, the ability to voluntarily hold the 

visual radial pattern was impaired (relative to no sound) when a looming sound was 

present ( 12.2  4.8%; p  0.03) (Figure 3b, right; supplemental Figure 2a, Appendix 3).  

 

Experiment 3: Rhythmic tone pips also enhance attentional control   

If congruent rate is the key factor as indicated by Experiment 2, would another sound 

with a rate identical to the visual looming stimulus be sufficient to enhance attentional 

control? We tested this on the same 13 subjects (9 male, 4 female) using discrete tone 

pips presented at 1 Hz (i.e., at the visual looming frequency) (Figure 1d) and found 
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significant multimodal gain in holding the looming pattern dominant (13.8  3.2%, p  

0.001) (Figure 3c; see supplemental Figure 2b, available in Appendix 3, for percept 

durations). Although there is a significant decrease in effect compared with Experiment 1 

( p  0.05, t-test), this difference disappears when comparing only the subjects that 

participated in both experiments ( p  0.2, paired t-test), suggesting again that the looming 

character of the sound was not a cardinal factor of congruency. Furthermore, there was a 

small impairment in the ability to hold the radial pattern relative to the no-sound 

condition of 8.4 2.5% ( p 0.006) (Figure 3c; supplemental Figure 2b, Appendix 3). 

Therefore, the rate of the auditory signal is the factor that governs multimodal control of 

visual ambiguity, rather than the sound’s looming-like envelope.  

 

Experiment 4: Paying attention to the sound is essential to enhance attentional 
control   

In the experiments above, subjects were explicitly instructed to pay attention to the 

sound. We wished to determine whether paying attention to the sound was essential for 

multimodal control to occur. A group of 10 subjects (7 male, 3 female) who had not 

participated in any of the previous conditions performed an additional experiment before 

Experiment 1. They were given the instruction that the sound was not relevant to their 

task, although no explicit instruction was given to attend or to disregard the sound. 

Interestingly, we found for this group that multimodal gain was not significantly different 

from zero (1.6  4.3%, p  0.70; and 3.1  3.4%, p  0.40, for the looming and radial visual 

patterns, respectively (Figure 3d); and see supplemental Figure 3a, Appendix 3, for 

percept durations), meaning that the mere presence of a matched looming sound did not 

automatically trigger the ability to select and hold the looming visual stimulus. Instead, 

control over the visual stimulus requires an explicit act of attention to the sound stimulus. 

We then let this group of subjects do the previously described experiments, for which 

they showed average behavior (other panels, Figure 3). Supplemental Figure 3b in 

Appendix 3, directly compares the data of Experiments 1 and 4 for each individual of this 

group of subjects and emphasizes that the subjects’ ability to hold the visual stimulus was 

profoundly enhanced once the sound was attended. One could argue that the absence of 

an effect for these subjects could be attributable to being unpracticed at the task. 
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However, when comparing these subjects’ results in Experiment 1 (their second 

experiment) to the subjects whose first experiment was Experiment 1, there was no 

significant difference ( p  0.8, t-test) (supplemental Figure 3c, Appendix 3).  

 

Experiment 5: Generalization to other visual patterns—rhythmic tone pips enhance 
attentional control over the radial pattern   

Does ambiguity resolution hold for the radial pattern as well? Discrete tone pips (the 

same as used above in Experiment 3) were presented at 0.6 Hz to match the rotational 

frequency of the radial pattern. The tone pips were timed to occur each time a spoke 

pointed exactly downward, and this was explicitly indicated to the subjects (n  9, 6 male, 

3 female; participated in all previous experiments). We found significant multimodal gain 

in holding the radial pattern dominant (22.4 5.3%, p 0.006) (Figure 3e; see supplemental 

Figure 4, Appendix 3, for percept durations) when this train of congruent tone pips was 

present and attended. Conversely, the ability to voluntarily hold the looming pattern was 

impaired (relative to the no-sound condition) when attending the tone pips ( 7.8  2.1%, p  

0.003) (Figure 3e; supplemental Figure 4, Appendix 3).  

 

Together with Experiments 1 and 3, these results reveal that the resolution of visual 

ambiguity by congruent sound is not specific to looming visual stimuli as it also occurs 

when the auditory stimulus is temporally congruent with radial visual stimuli.  

 

Experiment 6: A congruent visual pattern aids in control over ambiguous sounds   

Thus far, our experiments have involved the resolution of ambiguity in the visual domain 

by a congruent auditory stimulus. Would congruent vision also facilitate control of 

ambiguous auditory signals? To test this, we presented subjects with alternating high and 

low tones (van Noorden, 1975), where observers either hear segregated tone streams 

(Morse) or a grouped (galloping) pattern (supplemental Figure 5a, Appendix 3). This 

stimulus has become a standard way to study auditory scene analysis, and in the only 

extant study that addressed attentional control of this ambiguous auditory stimulus, 

observers were able to lengthen the duration of the dominance of one of the alternatives 

(Pressnitzer and Hupé, 2006). Interestingly, there is evidence that perception of 
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ambiguous stimuli in the auditory domain can be biased by a visual stimulus (O’Leary 

and Rhodes, 1984), but this study did not specifically address the role of attentional 

control. As an unambiguous visual stimulus, we used a disk (diameter, 7.5°; see Materials 

and Methods) flickering at the low tone frequency. As a competing visual stimulus, we 

presented a static frame around the disk. We tested seven subjects (4 male, 3 female) who 

had all participated in the other experiments. We explicitly asked observers to pay 

attention to the flicker frequency of the disk, as pilot experiments made it readily obvious 

that without actively viewing the disk there is no effect of the presence of the disk (see 

supplemental Figure 5d, Appendix 3, for pilot data). Thus, even though subjects had 

already participated in experiments one to five in which they matched the frequency of a 

sound stimulus to a visual stimulus, in this experiment they did not automatically match 

the frequency of the visual stimulus to the sound stimulus. Interestingly, this was even the 

case when we presented the disk (and the frame) on a large projector screen with a 

diameter subtending a visual angle of 80° horizontal by 60° vertical. It must be said 

though that these pilot experiments using the whole field projection were ran for 1 min 

only. It could be the case that prolonged subjection to a whole field visual stimulus with 

the same frequency as the auditory stimulus might lead to automatic cross-modal effects.  

 

The results, using the 7.5° disk, showed a significant multimodal gain in holding the 

segregated Morse-like percept dominant (23.9  9.1%, p  0.039) when the flickering visual 

disk was present and attended (supplemental Figure 5c, Appendix 3; Figure 4, fourth 

bar). Conversely, there was an insignificant impairment in the ability to voluntarily hold 

the grouped (galloping) percept dominant when attending to the visual pattern ( 3.4  

9.9%, p  0.7) (supplemental Figure 5c, Appendix 3). These results reveal that the 

resolution of ambiguous perceptual signals by congruent stimuli is not limited to an 

auditory influence on visual processing but can also operate in the reverse direction with 

vision disambiguating sound.  
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Experiment 7: Generalisation to touch—a tactile pattern aids in disambiguating 
vision   

To this point, our experiments have involved vision and audition. Here, we introduce a 

tactile stimulus to test the prediction that trimodal congruency aids in attentional control 

over the visual looming pattern. To make a temporally congruent tactile signal, we 

attached a vibrating loudspeaker membrane to the skin on the back of the hand 

(supplemental Figure 6a, Appendix 3) and played the same competing sounds as we used 

in Experiment 1, being the looming and the tone triad. The looming sound was felt as a 

pulsing pattern that was temporally matched to the looming visual pattern. The tone triad 

was felt as tactile noise. Again, we explicitly asked observers to pay attention to looming 

feeling as pilot experiments made it readily obvious that without actively attending to the 

tactile looming there was no effect of the presence of the tactile stimulus.  

 

Five subjects (3 male, 2 female) participated, all of whom had participated in all other 

experiments. First, we tested the bimodal visuo-tactile condition. With only the congruent 

tactile stimulus accompanying the ambiguous visual stimuli, there was a significant 

multimodal gain in the ability to hold the visual looming pattern dominant (19.1+/- 8.4%, 

p <0.05, one-tailed t-test) (supplemental Figure 6c, Appendix 3; Figure 4, fifth bar). In 

the trimodal condition, when congruent stimuli were present in both the auditory and the 

tactile domain, an even stronger effect was observed, with multimodal gain in holding the 

visual looming pattern dominant increasing to 39.7 +/-14.3% ( p <0.05) (supplemental 

Figure 6c, Appendix 3; Figure 4, sixth bar), which was significantly higher than the 

tactile condition ( p <0.05, one-sided paired t-test). Importantly, and as found above, the 

ability to hold the radial pattern was not facilitated by tactile stimuli (18.6 +/- 12.4%; p 

<0.2), nor by combined audio-tactile stimuli ( 3.5 +/- 4.0%, p <0.4). Individual subject 

data are provided in supplemental Figure 6, Appendix 3.  

 

Discussion   

The primary finding is that the presence of an attended sound matching the temporal rate 

of one of a pair of competing ambiguous visual stimuli allows subjects much more 

control over voluntarily holding that stimulus dominant. Attentional control over the 
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other, temporally mismatched, visual pattern was also influenced by the sound but in the 

opposite manner. The size of this effect is remarkably large, given that attentional control 

over binocular rivalry is usually found to be quite weak (Meng and Tong, 2004; Chong et 

al., 2005; van Ee et al., 2005; Paffen et al., 2006). Importantly, we also showed that 

active attention to both the sound and the visual stimulus promoted enhanced voluntary 

control. Below, we argue that this may help to explain why other researchers in 

psychophysics have failed to find such intimate links between auditory and visual 

attentional control. We also demonstrated a facilitatory relationship in the opposite 

direction in that attentional control over audio ambiguity is markedly aided by a matching 

visual stimulus. Extending this generalisation, we demonstrated that a matching tactile 

stimulus enhanced attentional control in perceptually selecting competing visual stimuli 

and that this control was further strengthened in a trimodal condition that combined 

congruent audio-tactile stimuli with the bistable visual stimulus. Figure 4 summarises the 

generalisation of results across different visual patterns, sound patterns, and sensory 

modalities.  

 

Figure 4. Results of the cross-modal conditions 

 
Figure 4. The first bar from the left shows 
the basic finding (Figure 3a, Experiment 
1). The second bar depicts a generalisation 
across attended sound patterns: tone pips 
provided significant multimodal attentional 
gain in holding the visual looming pattern 
dominant (Figure 3c, Experiment 3). Next, 
the third bar shows that congruent tone 
pips aided the visual radial pattern as well, 
generalising our findings to visual stimuli 
other than looming patterns (Figure 3e, 
Experiment 5). The three right most bars 
show generalisations to other sensory 
domains. The fourth bar shows the role of vision on the dominance of competing sounds 
(supplemental Figure 5, Appendix 3, Experiment 6). The fifth bar shows the influence of touch 
on active visual ambiguity resolution, and the sixth bar depicts the combined effect of touch 
and audition on the ability to actively control visual ambiguity resolution (supplemental 
Figure 6, Appendix 3, Experiment 7). Error bars denote 1 SE.  
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When the sound was temporally delayed, subjects still sensed that vision and sound were 

linked because of their constant phase relationship (Figure 2b). In addition, although we 

have only provided formal evidence for a mandatory involvement of directed attention in 

the sound-on-vision experiments (Figure 3d), our pilot work (supplemental Figure 5d, 

Appendix 3) and the available literature suggest that attention must be engaged to 

promote cross-modal interactions (Calvert et al., 1997; Gutfreund et al., 2002; Degerman 

et al., 2007; Mozolic et al., 2008; for review, see Shinn-Cunningham, 2008). 

Nevertheless, although a systematic investigation of temporal offset and automation for 

the cross-modal effects goes beyond the scope of the present paper, it is interesting to 

note that the underlying rhythm mechanism for our rhythm-based effect may be different 

from the mechanism underlying automatically occurring coincidence-based auditory-

visual interactions (such as in the reported enhanced perception of visual change by a 

coincident auditory tone pip) (van der Burg et al., 2008).  

 

Our study is unique in that it uses competing bistable visual and bistable auditory stimuli, 

providing the opportunity to study how competing sensory processing in two modalities 

(related to percepts rather than physical stimuli) are influenced by signals from other 

modalities. How do our findings shed light on the mechanisms underlying the resolution 

of perceptual ambiguity? We suggest that the enhanced capacity for attentional selection 

of the congruent stimulus results from a boost of its perceptual gain, which is attributable 

to top-down feedback from multisensory attentional processes that select the congruent 

feature of the input signal. In support of this, for vision, it has been shown previously that 

the effect of top-down attention on extending dominance durations for perceptually 

competing stimuli is equivalent to a boost in stimulus contrast (Chong et al., 2005; Chong 

and Blake, 2006; Paffen et al., 2006). This is in line with recent studies on visual spatial 

and feature attention in psychophysics (Blaser et al., 1999; Carrasco et al., 2004; 

Boynton, 2005) and neurophysiology (Reynolds and Chelazzi, 2004) which demonstrate 

that the neural mechanism underlying attentional selection involves boosting the gain of 

the relevant neural population. This is observed in the early cortical stages of both visual 

(Treue and Maunsell, 1996; Treue and Martínez Trujillo, 1999; Lamme and Roelfsema, 

2000; Womelsdorf et al., 2006; Wannig et al., 2007) and auditory processing (Bidet-
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Caulet et al., 2007). From the present results, we can conclude that the scope of this 

feedback process can be extended to incorporate relevant multimodal signals. Thus, it 

appears that voluntary control over ambiguity resolution can be modeled as an increase in 

effective contrast (perceptual gain) of stimulus elements involving feature attention, as 

opposed to spatial attention. Dovetailing with this, voluntary control in perceptual 

bistability depends multiplicatively on stimulus features (Suzuki and Peterson, 2000), and 

an equivalence between stimulus parameter effects and attentional control is evident even 

at the level of fit parameters to distributions of perceptual duration data (Brouwer and van 

Ee, 2006; van Ee et al., 2006). It can also be demonstrated quantitatively, as in a recently 

developed theoretical neural model (Noest et al., 2007), that attentional gain modulation 

at early cortical stages is sufficient to explain all reported data on attentional control of 

bistable visual stimuli (Klink et al., 2008). Thus, there is converging evidence that an 

early gain mechanism is involved in attentional control of perceptual resolution of 

ambiguous stimuli, although it is too early to entirely rule out high-level modification.  

 

Although there is support for the idea that auditory and visual attention are processed 

separately (Shiffrin and Grantham, 1974; Bonnel and Hafter, 1998; Soto-Faraco et al., 

2005; Alais et al., 2006; Pressnitzer and Hupé, 2006; Hupé et al., 2008), our findings 

support the neurophysiological literature (Calvert et al., 1997; Gutfreund et al., 2002; 

Shomstein and Yantis, 2004; Amedi et al., 2005; Brosch et al., 2005; Budinger et al., 

2006; Degerman et al., 2007; Lakatos et al., 2007, 2008; Shinn-Cunningham, 2008) that 

the mechanisms mediating multisensory attentional control are intimately linked. To 

understand these seemingly disparate results, note first that psychophysical studies 

finding separate processing, focused on spatial attention, as opposed to our study. Our 

findings concern feature attention and agree with recent findings that feature attention can 

more profoundly influence processing of stimuli than spatial attention (Melcher et al., 

2005; Kanai et al., 2006). Note further that we presented the matched audio and visual 

stimuli simultaneously. The only other study on attentional control of ambiguous auditory 

and visual stimuli (Pressnitzer and Hupé, 2006) presented the stimuli from the two 

modalities separately in time, finding that results from the two modalities were unrelated. 

Although there are studies reporting that audiovisual stimulus combination is mandatory 
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(Driver and Spence,  1998; Guttman et al., 2005), this is not a general view (Shiffrin and 

Grantham, 1974; Bonnel and Hafter, 1998; Soto- Faraco et al., 2005; Alais et al., 2006; 

Hupé et al., 2008). Our experiments address this by using perceptually ambiguous 

competing auditory and visual stimuli, thereby dissociating attention and stimulation to 

reveal that active attention to both modalities promotes audiovisual combination, in line 

with other recent studies (Calvert et al., 1997; Gutfreund et al., 2002; Degerman et al., 

2007; Mozolic et al., 2008).  

 

Our data suggest a functional role for neurons recently found in human posterior parietal, 

superior prefrontal, and superior temporal cortices that combine voluntarily initiated 

attentional functions across sensory modalities (Gutfreund et al., 2002; Shomstein and 

Yantis, 2004; Degerman et al., 2007). We suggest that when the brain can detect a rhythm 

in a task, attention feeds back to unisensory cortex to enforce coherent and amplified 

output of the matching perceptual interpretation. Recently, neurophysiologists were able 

to demonstrate that an attended rhythm in a task enforced the entrainment of low-level 

neuronal excitability oscillations across different sensory modalities (Lakatos et al., 

2008). The fact that oscillations in V1 entrain to attended auditory stimuli just as well as 

to attended visual stimuli reinforces the view that the primary cortices are not the 

exclusive domain of a single modality input (Foxe and Schroeder, 2005; Macaluso and 

Driver, 2005; Ghazanfar and Schroeder, 2006; Kayser and Logothetis, 2007; Lakatos et 

al., 2007) and confirms the role of attention in coordinating heteromodal stimuli in the 

primary cortices (Brosch et al., 2005; Budinger et al., 2006; Lakatos et al., 2007, 2008; 

Shinn-Cunningham, 2008). We suggest that the same populations of neurons may control 

multimodal sensory integration and attentional control, suggesting that the neural network 

that creates multimodal sensory integration may also provide the interface for top-down 

perceptual selection. However, our understanding of multisensory neural architecture is 

still developing (Driver and Noesselt, 2008; Senkowski et al., 2008) and a competing 

view, rather than focusing on feedback from multisensory to unisensory areas, proposes 

that multisensory interactions can occur because of direct feed-forward convergence at 

very early cortical areas previously thought to be exclusively unisensory (Foxe and 

Schroeder, 2005; Ghazanfar and Schroeder, 2006). Testing competing views will require 
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further studies, possibly using neuroimaging techniques with high temporal resolution or 

neurodisruption techniques to temporarily lesion the putative higher-level area.  

 

Conclusion   

In sum, our novel paradigm involving ambiguous stimuli (either visual or auditory) 

enabled us to demonstrate that active attention to both the auditory and the visual pattern 

was necessary for enhanced voluntary control in perceptual selection. The audiovisual 

coupling that served awareness was therefore not fully automatic, not even when they had 

the same rate and phase. This suggests a functional role for neurons that combine 

voluntarily initiated attentional functions across different sensory modalities (Calvert et 

al., 1997; Gutfreund et al., 2002; Shomstein and Yantis, 2004; Amedi et al., 2005; Brosch 

et al., 2005; Budinger et al., 2006; Degerman et al., 2007; Lakatos et al., 2007, 2008), 

because in most of these studies congruency effects were not seen unless attention was 

actively used. This squares with psychophysics and neurophysiology showing intimate 

links between active attention and cross-modal integration (Spence et al., 2001; Kanai et 

al., 2007; Lakatos et al., 2007; Mozolic et al., 2008; Shinn-Cunningham, 2008). Thus, 

these attention-dependent multisensory mechanisms provide structure for attentional 

control of perceptual selection in two ways. First, in responding to intermodal 

congruency, they may boost the baseline response of the congruent alternative (as there is 

more “proof” for a perceptual interpretation when it is supported by two converging 

modality sources). Second, they may increase attentional control over perceptual 

selection because a multiplicative gain will be more significant when acting on a higher 

baseline, therefore allowing more attentional control.  

 

Chapter summary 

Although the experiments in the current chapter are designed to test whether non-visual 

stimuli can aid wilful attentional control over binocular rivalry, it is important to qualify 

what this means in terms of the type of stimulus used. Looming sounds and transient 

tactile and sound events, such as the sound pips used in this chapter, are all types of 

stimuli that engage exogenous, stimulus-driven attention. That these types of stimuli can 

assist wilful control over rivalry predominance where others do not (Meng & Tong, 
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2004) is congruent with the current hypothesis concerning the interconnectedness of 

exogenous perceptual selection and perceptual bistability.  

 

The type of attention producing the effects reported could be characterised as 

‘exogenous-based’ attention, in that purposeful control is first engaged by stimulus-

driven attention. Whether purposeful or not, the effect of attention is dependent upon the 

intrinsically salient nature of the stimulus used as the object of attention. As discussed in 

the introductory chapter, once transient attention is engaged, sustained attention is 

allocated to its source in order to decide what to do with that event or object. In this way, 

stimulus-driven attention works in concert with sustained attention. This results of these 

experiments clearly demonstrate the potential for this interconnection and is presented in 

support of the overall thesis hypothesis. 
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Chapter 5 

Temporal auditory information speeds visual selection for 
consciousness during binocular rivalry 
 
The work in this chapter is published as: 
Parker, A. L., & Alais, D. (2013). Temporal auditory information speeds visual selection for 
consciousness during binocular rivalry. Frontiers in Consciousness Research, in press. 
 
Overview  

The findings of Chapter 4 pave the way for further exploration of how auditory stimulus-

driven attention might affect rivalry alternations, which is the subject of Chapter 5. It is 

clear that sound pips presented at the same temporal rate of one of the visual stimulus 

undergoing rivalry influence it’s predominance. In this Chapter, whether or not sound 

streams unrelated to the visual stimuli can affect rivalry dynamics is explored. The 

experiments presented in Chapter 5 are motivated by the finding that visual transients 

unrelated to the rivalry stimulus can provoke dominance reversals (Kanai et al., 2005) 

and asks: will the same occur when the transient stimuli are presented in the auditory 

sense modality? If this is the case, it would strongly support the idea that exogenous 

attention and perceptual rivalry share a common, distributed process. 

 

Abstract 

Binocular rivalry occurs when discrepant images are presented to corresponding retinal 

regions of the two eyes resulting in continuous fluctuations in awareness between each 

eye’s image. Experiments are presented showing that rapid, perceptually salient sound 

streams increase the overall alternation rate during binocular rivalry viewing. These 

increases in alternation rate are not accompanied by changes in the stochastic pattern of 

alternations, nor precise entraining of alternations to the sound events, and occur most 

strongly with audio-temporal streams in the EEG beta-wave band frequency, indicating 

that increased physiological arousal underlies the result. Eye movements do not account 

for the magnitude of the increased binocular rivalry alternation rate, nor do key press 

errors contingent with the sounds. A duration discrimination task using the same sound 

streams resulted in expanded duration estimates for rapid auditory streams, adding 
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support to the role of a general mechanism. These results demonstrate that temporal 

information in the auditory modality can have a significant impact over the rate of visual 

processing during binocular rivalry and constitute further evidence that a general timing 

mechanism is involved in the perceptual fluctuations that occur during bistable 

perception. 

 

Introduction  

At any one time we are consciously aware of only a fraction of the environmental 

information that surrounds us. Which sensory information rises to conscious awareness 

depends on both the motivational state of the observer and the physical properties of the 

stimulus, such as loudness, temporal frequency or brightness. ‘Pre-attentive’ selection for 

consciousness is mediated by an evolutionarily old, neural substrate that moderates 

alertness and is not modality specific (Sturm & Willmes, 2001). It has been suggested 

that this substrate is also involved in the fluctuations in awareness that arise during 

bistable perceptual phenomena such as binocular rivalry. In order to clarify this link the 

present research examines how temporal auditory information affects visual selection for 

consciousness during binocular rivalry.  

 

Binocular rivalry involves fluctuations in awareness between monocular images that are 

sufficiently distinct to prevent binocular fusion. An illustration of how binocular rivalry is 

elicited is shown in Figure 1. During viewing of binocular rivalry stimuli, one eye’s 

image occupies conscious awareness briefly before swapping to the other eye’s image. 

These alternations continue indefinitely and involuntarily during the presentation period 

in a stochastic temporal pattern. Similar stochastic patterns of alternations are found for 

many types of bistable stimuli, including the Necker cube, the kinetic depth illusion and 

binocular rivalry (Zhou et al., 2004; van Ee & Klink, 2005; van Ee & van Wezel, 2008), 

monocular and binocular rivalry (O’shea , Parker, La Rooy & Alais, 2008) and even 

between auditory and visual bistable phenomena (Pressnitzer & Hupé, 2006). The 

pervasiveness of these dynamics suggests that although processing specific to the bistable 

stimulus takes place, the process determining overall temporal dynamics is shared. 

Suggestions of a shared temporal mechanism or oscillator underlying different forms of 
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bistable perception (Carter & Pettigrew, 2003; Leopold & Logothetis, 1999) are 

supported by links between bistable dynamics and physiological states such as 

neuropharmacology (Carter et al., 2005 and 2007), mood (Nagamine et al., 2007) and age 

(Ukai, Ando & Kuze, 2003). Further, two physiological markers of increased alertness 

and arousal; pupil diameter (Einhauser, Stout, Koch & Carter, 2008) and beta-wave EEG 

amplitude (Piantoni, Kline & Eagleman, 2010) predict the onset of binocular rivalry 

alternations.  

 

To further probe the idea that binocular rivalry fluctuations arise from a common 

temporal oscillator, we examined the affect of auditory temporal streams on binocular 

rivalry and other perceptual processes such as eye movements, perceptual-motor 

responding and duration discrimination. Auditory information is weighted heavily in our 

awareness of temporal frequency and onset, as demonstrated by auditory driving of 

flicker perception (Ogilvie, 1956 and Shipley, 1964) and the double flash illusion 

(Shams, Kamitani & Shimojo, 2002). Congruent sounds can moderately increase one 

visual interpretation over the other during binocular rivalry (Kang & Blake, 2005; Conrad 

et al, 2010; Chen, Yeah & Spence, 2011), especially with an effort of will (van Ee et al., 

2009). In contrast, diverting auditory attention away from gratings undergoing rivalry 

fluctuations reduces the perceptual alternation rate (Alais et al., 2010) as do diversions of 

attention to a visual task (Paffen, Alais & Verstraten, 2006), showing that cognitive 

resources involved in binocular rivalry are shared across modalities. However, no studies 

as yet have examined the temporal dynamics of binocular rivalry in the presence of 

auditory temporal information. To this end, seven participants recorded binocular rivalry 

fluctuations during exposure to streams of perceptually salient (72 dB) auditory tone pips 

or white-noise bursts unrelated to the visual stimuli undergoing rivalry. Given the 

evidence that a modality non-specific general mechanism involved in generalised arousal 

influences binocular rivalry, it was expected that binocular rivalry fluctuations would 

‘entrain’ to the temporal auditory information presented during the trials.  

 

 



Chapter 5: Temporal auditory information speeds visual selection for consciousness during 
binocular rivalry 
 

 

129 

Experiment 1: Binocular rivalry dynamics under ambient auditory temporal 
streams 

In the first experiment, streams of auditory and visual transient events were presented 

during observation of standard binocular rivalry stimuli (orthogonally oriented gratings). 

Single transient visual events (flashes of light) presented in close spatial proximity to a 

bistable stimulus reliably induce a switch from the dominant percept to its alternative 

(Kanai, Moradi, Shimojo & Verstraten, 2005). Given this and the cross-modal 

interactions discussed previously, if the mechanism determining bistable dynamics during 

binocular rivalry integrates information across modalities it is expected that a stream of 

similar attention-grabbing auditory events, will induce or entrain binocular rivalry 

alternations. Four types of perceptually salient temporal streams were used to test for this 

effect, over a range of ambient temporal frequencies. Two auditory (tone pips and white-

noise bursts), one visual (contrast increment) and one audiovisual (AV: tone and contrast) 

conditions were compared at temporal frequencies of (0.5, 1, 2, 3.9, 8.1 & 15 Hz). We 

also compared several patterns of temporal streaming: periodic, low random jitter, high 

random jitter. Since visual transients can trigger alternations in bistable stimuli (Kanai, 

Moradi, Shimojo & Verstraten, 2005) and auditory events can drive perception of visual 

temporal rate (Oglivie, 1956 and Shipley, 1964) it is expected that streams of auditory 

events will entrain or speed the pattern of binocular rivalry alternations.  

 

Figure 1. Alternating visual awareness during binocular rivalry 
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Figure 1: A) A conflicting stereoscopic image pair is presented to corresponding retinal 
regions of the two eyes by displacing each image on a CRT monitor and fusing the two images 
with a mirror stereoscope (shown by the light grey arrowed lines in A). Observers see only 
one of the images at any one time as binocular rivalry alternations occur between the two 
conflicting images. Observers wore headphones so auditory stimuli could be presented. B) An 
example time-line of binocular rivalry alternation key presses recorded during trials.  
 
 

Materials and method 

Visual stimuli: Two orthogonal sine-wave gratings oriented ±45° with a spatial 

frequency of 5.5 cycles per degree and subtending 1.5° visual angle were used to induce 

binocular rivalry. The gratings were horizontally displaced on a gamma-corrected, 

Diamond View 17” CRT monitor with a 90 Hz vertical refresh rate and 800 x 600 pixel 

screen resolution. The grating pair were binocularly fused via a front-surface mirror 

stereoscope positioned 57 cm from the monitor. Michelson contrast of the gratings was 

12%, 24% or 48% depending on the condition being tested. During visual temporal 

stream conditions, visual transients were created by increasing the contrast of the gratings 

two-fold, keeping mean luminance constant, for approximately 20 ms for each event in 

the temporal stream. 

 

Auditory stimuli: Two types of transient auditory events were used in the auditory 

temporal stream conditions: tone pips (20 ms duration, 800 Hz, 72 dB SPL, with a raised 

cosine on/off ramp) and white-noise bursts (20 ms 72 dB SPL cosine ramped). The AV 

condition combined the tone and contrast increments with the tones presented at a10 ms 

latency to the visual events to help create perceptual synchrony.  

 

Procedure: All trials were conducted in a sound-attenuated room using a G4 Macintosh 

PC, CRT monitor, headphones and a front surface mirror stereoscope adjusted for each 

subject prior to testing. Before testing commenced in the AV condition, the timing of the 

tone pips and contrast increments was verified with an oscilloscope, microphone and a 

photosensitive light emitting diode. Stimulus presentation and response recording were 

controlled with Matlab (version r2007a) with Psychophysics Toolbox (Brainard, 1997) 

and Statistics and Image Processing Toolbox functions. Participants recorded binocular 
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rivalry alternations by pressing and holding down one of two keys corresponding to the 

perceptual dominance of the left and right gratings or both keys during times when a 

blend of each eye’s image was seen. Testing included 126 1-minute trials measuring 

binocular rivalry alternations between a 12%, 24% or 48% contrast grating pair during 

auditory or visual temporal streams. Four types of transient event (contrast increments, 

tone pips, white noise and AV) were tested at six temporal frequencies; 0.5, 1, 2, 3.9, 8.1 

and 15 cycles per second (Hz). Trials were run in blocks according to transient type, 

conducted over sequential days. Trials were run in a randomised order within each block. 

Two additional conditions tested the 48% binocular rivalry gratings with tone pip and 

contrast increment streams that had been randomly perturbed to have a high (HTU) or 

low (LTU) temporal uncertainty. In the HTU condition, events were randomised across 

the 60 second trial. The LTU pattern randomised the timing of the event only within the 

cycle period being tested, e.g. within a 1 second window for the 1 Hz streams.  

 

Subjects: Seven adults aged between 24-48 (4 female, 3 male) all with normal or 

corrected-to-normal visual acuity and binocular depth perception acted as subjects. One 

subject did not complete the two random jitter conditions and a further two did not 

participate in the AV condition. 

 

Results 

 The key press data corresponding to observers’ perceptual alternations were converted to 

alternation rates (cycles per second) for each 60-second trial. Analysis of variance 

(ANOVA) of the alternation rates across conditions (within subjects factors: stream type 

(4) x binocular rivalry grating contrast (3) x stream rate (7)) resulted in significant main 

effects of stream type (F(3,9.92), p < .01), binocular rivalry contrast (F(2,10.44), p <.05) 

and stream rate (F(1.28, 9.228), p <.05, Greenhouse-Geisser correction for violation of 

sphericity). Binocular rivalry alternation rates were significantly sped in the presence of 

high-frequency 8.1 and 15 Hz streams auditory streams tested (simple contrasts 8.1 Hz: 

F=12.13, p <.05, 15 Hz: F=13.916, p <.01). All auditory event conditions resulted in a 

speeding of binocular rivalry at these two frequencies, as can be seen in Figure 2. The 

effect is similar for all the sounds used, including the white noise and AV stimuli, but  
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Figure 2. Binocular rivalry alternation rates during auditory and visual temporal 

streams 

 
 

Figure 2: Average binocular rivalry alternation rates in Hz (y axis) is plotted for conditions 
where observers experienced auditory or visual temporal streams at one of six different temporal 
frequencies; 0.5, 1, 2, 3.9, 8.1 and 15 Hz (x axis) and a baseline no-stream 0 Hz condition (grey 
vertical lines ±1SE). Six transient stimulus types were tested including regular streams of 
contrast increments (A), tone pips (B), white noise bursts (C) and auditory-visual events (D) as 
well as randomized streams of contrast increments (E) and tone pips (F). Fast 8.1 and 15 Hz 
temporal streams in the auditory modality significantly increased binocular rivalry alternation 
rates above the 0 Hz control condition whereas visual contrast increments had no significant 
effect. Changes in the contrast of the binocular rivalry gratings did not impact the effect of 
auditory streams (A-D, coloured lines), neither does adding random jitter to the temporal streams 
(E-F, blue and black lines). 

0Hz 0.5Hz 1Hz 2Hz 3.9Hz 8.1Hz 15Hz
0

0.2

0.4

0.6

0.8

1

A. Visual (Contrast Increments)

 
0Hz 0.5Hz 1Hz 2Hz 3.9Hz 8.1Hz 15Hz

0

0.2

0.4

0.6

0.8

1

B. Auditory (71 dB 800 Hz Tone Pips)

 

12% Contrast BR gratings
24% Contrast BR gratings
48% Contrast BR gratings

0Hz 0.5Hz 1Hz 2Hz 3.9Hz 8.1Hz 15Hz
0

0.2

0.4

0.6

0.8

1

A
lte

rn
at

io
ns

 p
er

 s
ec

on
d 

(H
z)

C. White Noise Bursts (73 dB)

0Hz 0.5Hz 1Hz 2Hz 3.9Hz 8.1Hz 15Hz
0

0.2

0.4

0.6

0.8

1

D. Audio-Visual (Contrast & Tone Pips)

0Hz 0.5Hz 1Hz 2Hz 3.9Hz 8.1Hz 15Hz
0

0.2

0.4

0.6

0.8

1

Stream Temporal Frequency

E. Visual (Contrast Increments)

 
0Hz 0.5Hz 1Hz 2Hz 3.9Hz 8.1Hz 15Hz

0

0.2

0.4

0.6

0.8

1

F. Auditory (71 dB 800 Hz Tone Pips)

 

Periodic Stream
LTU Random Stream
HTU Random Stream

II. Temporal Jitter Streams

I. Regular Interval Streams

N = 7

N = 7

N = 6

N = 7

N = 4

N = 6



Chapter 5: Temporal auditory information speeds visual selection for consciousness during 
binocular rivalry 
 

 

133 

does not occur with the visual contrast increments alone (F=0.13, p >.05). A separate 

ANOVA on the random temporal stream conditions replicated the same results for the 

regular tone pip and contrast increments streams, with no further elevation of binocular 

rivalry rates with randomly jittered temporal streams. The contrast of the binocular 

rivalry gratings did not interact with the main effect of the sound streams (F=0.74, p>.05) 

or the frequency at which they were presented (df=2.33, F=2.37, p>.05 Greenhouse-

Geisser correction). The proportion of piecemeal rivalry did not differ as a function of 

any of the conditions tested (F(2.34, 2.66) p>.05 Greenhouse-Geisser correction), as the 

small rival stimuli used (1.5° diameter) limit piecemeal rivalry (Blake, O’Shea & 

Mueller, 1992).  

 

To test whether the periodic audio-streams were entraining binocular rivalry alternations, 

an autocorrelation analysis was performed on the key press durations recorded. The 

probability of each eye’s dominance duration during binocular rivalry is stochastic 

(Levelt, 1968, Fox and Hermann 1967). If the regular event streams presented here were 

entraining binocular rivalry alternations, alternations should become more periodic and 

less stochastic. For trials data, the dominance durations were correlated with each other 

over 12 lags, with the first correlation (of no lag) giving a correlation coefficient of 1. 

Individual dominance periods in binocular rivalry remain stochastically independent of 

each other in all the conditions tested here. Although there were occasional instances of 

significant correlations, these did not occur more than would be expected from chance 

(less than 5% of the time) and no systematic differences across any condition were found 

(AVOVA: event rate main effect F(6, 1.178 p>.05 and event type F(2.41, p>.05). The 

underlying stochastic nature of rivalry alternations is preserved during the presentation of 

auditory temporal streams, indicating that such streams do not override or ‘capture’ the 

temporal pattern of binocular rivalry fluctuations.  

 

In a further test of entraining of the random stream patterns, time-lines of the binocular 

rivalry alternations and temporal streams were correlated with each other across 90 lags 

(corresponding to a one second lag at a sample rate of 90 Hz). A slight modulation in the 

correlation coefficients mirroring the periodic event streams could be seen, however none 
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of the correlations was significant when tested against 5% P values obtained from 

randomly shuffling and bootstrapping the data sets 1000 times. The cross-correlogram for 

one subject is shown in Appendix 2, Figure 5. The blue line shows the pattern expected 

from a perfect correlation between the streams of temporal events and binocular rivalry 

alternations. The red line shows the performed cross correlations, which were all non-

significant. This result is consistent with the lack of periodicity found between the 

dominance durations in the autocorrelation analysis, and the preservation of the stochastic 

properties of rivalry dynamics despite the temporal streams in the present experiment. 

Auditory temporal streams therefore do not entrain binocular rivalry alternations. 

Lack of entraining is also supported by informal subject interviews: observers noted that 

only occasionally did binocular rivalry alternations coincide with sounds or visual events 

in the temporal streams. Observers revealed that they found the white-noise transient 

events at the higher rates (8.1 & 15 Hz) irritating, but did not report irritation at lower 

cycle rates or for the pure tone pips. This provides qualitative support for the 

interpretation that the speeding of rivalry alternations accompanied by rapid transient 

event sequences is due to increased arousal. If the effect of transient events is due to a 

startle effect that adapts or diminishes over the trial, there should be a negative 

correlation or slope between alternation rate and time elapsed during the trial. A few 

significant correlations were found between alternation rate and time, but these were 

below 5% of the data points tested and had no particular pattern. Binocular rivalry 

alternation rates did not consistently change across the duration of the 60-second trials. 

Together with the lack of entraining, this suggests that the effect of sound events on 

binocular rivalry is not due to a quickly adapting orienting, or startle response but rather 

to an increase in general alertness. 

 

Discussion 

The results of Experiment 1 demonstrate a clear auditory temporal influence over 

binocular rivalry alternation rate. Fast auditory event streams significantly increase the 

temporal rate of binocular rivalry alternations with no concomitant change to the 

stochastic pattern of alternations. It is possible that auditory events presented in isolation 

invoke a single binocular rivalry swap, however the continuous sound streams used here 
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did not entrain the temporal pattern of binocular rivalry alternations over a lengthy 

period. This raised the possibility that response inhibition affects perceived salience of 

the temporal stream across the course of the trial. This was not supported by the non-

significant correlation between binocular rivalry alternation rates and elapsed trial time 

and an additional cross-correlation analysis between binocular rivalry alternations and the 

temporal streams performed on only the first 10 seconds of each trial. Rather than directly 

impacting binocular rivalry switches, the overall pace of alternations is being affected. 

This increase can be interpreted as the addition of ambient neural activity or noise to the 

binocular rivalry (BR) process. Neural noise refers to the activity of background neurons 

not directly involved in the neural process at hand but indirectly influencing it. Random 

background noise is included in models of binocular rivalry to account for the stochastic 

properties of the alternation periods (Wilson, 2003; Freeman, 2005) and the addition of 

visual noise modulates binocular rivalry periods according to the principles of stochastic 

resonance (Kim, Grabowecky & Suzuki, 2006). Sounds have been shown to act as a 

source of resonating noise during a visual detection task (Lugo, Doti & Faubert, 2008), 

and it follows that the effect of sound reported here may be due to the addition of noise to 

neural oscillations underlying binocular rivalry alternations, a possibility considered 

further in the General Discussion. 

 

Experiment 2: Binocular rivalry key press tracking accuracy during auditory 
temporal streams 

Even though the startle response does not appear to cause the increased binocular rivalry 

rates reported here, potential motor errors caused by the sounds need to be ruled out. To 

see if the auditory streams were affecting the accuracy of participants’ binocular rivalry 

tracking, their ability to track “pseudo-rivalry” was tested. Pseudo-rivalry is a form of 

simulated rivalry where two identical binocular gratings change orientation according to a 

shuffled version of an observer’s real binocular rivalry alternations. Differences in key 

press data and the pattern of pseudo-rivalry alternations are a measure of motor error. 

This procedure is carried out in Experiment 2, using the same transient event streams 

shown to speed rivalry previously (8.1 and 15 Hz). If the auditory streams resulted in key 

press responses related to the transient events that were not responses to real changes in 
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perceptual state during binocular rivalry there should be elevated errors during the 8.1 

and 15 Hz sound stream conditions, but not other temporal frequencies.  

 

Materials and method 

Stimuli: The visual and auditory stimuli were the same as those used in Experiment 1, 

however the pseudo-rivalry grating pairs were always the same orientation at any one 

time during the trials and changed orientation in a temporal pattern determined by each 

observers baseline binocular rivalry recordings from Experiment 1.  

 

Procedure: The procedure was identical to that used in Experiment 1, except that instead 

of tracking real binocular rivalry alternations participants (N=6) tracked physical 

alternations in orientation between two binocularly identical gratings that were switched 

according to a random shuffling of each subject’s own baseline alternations for the 48% 

contrast grating. Pseudo-rivalry alternations were tracked by observers in the presence of 

the contrast increment, tone and white noise streams as during the real binocular rivalry 

conditions tested in Experiment 1. 

 

Results and discussion 

Accuracy was quantified as the number of erroneous key presses that did not correspond 

to an actual change in grating orientation during each trial. Small elevations in error key 

presses were found for the contrast increment condition at the 0.5 Hz event cycle 

(difference contrast for rate by event type interaction comparing contrast increment and 

tones at 0.5 Hz F=9.731 p <.05 ) but not any other conditions. Some significant decreases 

in error rate were found for the tone pip and white noise conditions however a decrease in 

motor errors does not bear on the results of Experiment 1. Errors were not increased 

during the auditory conditions, indicating that erroneous key presses are not responsible 

for the effects reported in Experiment 1.  
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Figure 3. Key-press motor errors during binocular rivalry and auditory and visual 

temporal streams  

 
 
 

Figure 3: Key press errors made during the 0.5 to 15 
Hz temporal contrast increment (A), tone pip (B) and 
white noise burst (C) streams tested. Participant’s 
errors ranged between 0 and 4 unnecessary key 
presses per 30 second trial. Average error rates in 
some conditions were significantly lower (B, 0.5, 1, 2 
& 15 Hz, C: 1, 4 & 15 Hz) or higher (A: 0.5 Hz) than 
the no-stream control trial. Error rates tended to 
decrease during the temporal streams and showed no 
tendency to increase at 8.1 and 15 Hz, against a motor-
error explanation for the results of Experiment 1. 

 

 

 

 

 

 

 

 

 

 

 

Experiment 3: Eye movements during binocular rivalry and auditory temporal 
streams 

Loud, perceptually salient sounds could potentially provoke an orienting response 

including eye movements and/or blinks. Voluntary saccades can increase binocular 

rivalry alternation rate (van Dam & van Ee, 2006). It is possible therefore that increased 

eye movements contributed to the effects reported in Experiment 1. In order to test 

whether an increase in eye movements accompanies the speeding of binocular rivalry in 

the presence of transient auditory streams, pupil velocity and blinks were measured 
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during the conditions tested in Experiment 1 for streams of tones and white-noise bursts. 

For comparison, contrast increments and and the audio-visual condition were also tested. 

 

Materials and method 

Stimuli: The four types of transient event streams used in Experiment 1 were again 

tested: contrast increments, tones, white noise bursts and an audio-visual condition 

combining the contrast increments and tones. To better reveal differences between these 

conditions, only periodic 15 Hz temporal streams were tested as this rate produced the 

most effective increase in binocular rivalry alternation rate. 

 

Procedure: Binocular rivalry between the orthogonal sine wave gratings was recorded 

during a baseline condition that included no transient events as well as the four 15 Hz 

temporal stream conditions. The five conditions were tested in a sequence of 1-minute 

trials while observers wore head-mounted eye tracking goggles. The procedure was 

otherwise identical to that reported in Experiment 1, except for the eye-tracking goggles 

and calibration of the eye tracking system prior to each trial.  

 

Apparatus: The eye tracking hardware and software was the same used and reported in 

Macdougall & Moore (2005) with the exception that only positional eye movements were 

recorded, not head movements. The goggles were constructed using commercially 

available materials including lightweight swimming goggles (Aquasphere Seal, Genova, 

Italy) and two firewire (IEEE 1394) digital cameras (Firefly; Point Gray Research, 

BC,Canada). Weighing 146 g, these goggles are lighter than standard headmounted eye 

tracking devices making them optimal for recordings in the field. An IR light-emitting 

diode (HSDL-4220; Hewlett-Packard, Houston, TX) illuminated the left eye. An image 

of the left eye was projected to the camera via a dichroic mirror placed in front of the eye 

(Wideband Hot Mirror, OCLI, CA). This mirror allowed visible light to pass through but 

reflected the IR band light illuminating the eye to the camera above. The cameras were 

connected to a PCMIA firewire card (IEEE-1394 CardBus PC Card CBFW3U; Ratoc 

Systems International, San Jose, CA) inserted into the PC slot of a second desktop PC. 



Chapter 5: Temporal auditory information speeds visual selection for consciousness during 
binocular rivalry 
 

 

139 

Eye movements were calibrated with the aid of a 10 cm diameter fixation cross presented 

on the CRT monitor. The cross bisected the rival stimuli at its origin.  

 

Software and Calibration: A program written in Labview G (National Instruments, 

Austin, TX) was used to record the eye movement data at a sampling rate of 200 Hz. 

Images of the eyes were recorded at a visual refresh rate of 30 Hz. A “center-of-mass” 

algorithm was used to determine the center of the pupil. Using a spherical model of the 

eye, Fick coordinates were used to calculate horizontal and vertical eye position. The 

radius of these coordinates was determined by the measurements taken during calibration 

to the 10 cm fixation cross at the start of each trial. Central fixation was specified by the 

center of gaze relative to the eye tracker, not to a fixed point on the monitor. This point 

was calibrated while the subject fixated on the center of a binocular cross with horizontal 

and vertical arms subtending 10 degrees visual angle. Calibration of the cardinal axes was 

made when subjects fixated the outer edges of the cross and diversions of the eyes +/- 5 

degrees visual angle from the center of the binocular rivalry gratings.  

 

Subjects: Six subjects participated; five of which participated in Experiment 1, and an 

additional naïve subject who had not participated in any of the previous experiments. 

 

Results 

Replicating the binocular rivalry data from Experiment 1, alternation rates significantly 

increased while 8.1 and 15 Hz auditory streams played (F(4, 4.02), p <.05).  

For each trial, eye movement magnitude was calculated by dividing each distance by the 

maximum distance recorded in the trial to give a proportion between 0 and 1. This was 

done on the horizontal and vertical eye movements separately which are plotted as a 

magnitude between +/- 5 degrees visual angle in Figure 4. A threshold analysis was 

performed on combined horizontal and vertical data sets giving the total number of 

deviations from central fixation 75% above background noise. The total eye movements 

divided by the trial period yields the frequency of eye movements during each trial. A 

within-subjects one-way ANOVA was performed to detect any significant changes in eye 

movement frequency across the different conditions tested. 
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Figure 4. Eye movements during binocular rivalry during auditory and visual 

temporal streams 

 
Figure 4: Horizontal and vertical eye movements are shown for 2 of the 7 participants (A & 
B). Five binocular rivalry conditions were tested: binocular rivalry accompanied by contrast, 
tone pip, white noise and audio-visual temporal streams, all with a 15 Hz cycle rate, as well as 
a control, no-stream binocular rivalry condition. Increases in eye movements occurred for 
some observers in some conditions, but no systematic pattern was found across conditions. 

 

Eye movement counts did not significantly differ across conditions (F(4,1.61), p>.05); 

although, as can be seen in Figure 4, there is a tendency for increased eye movement 

frequencies during tone pip and audio-visual conditions for some subjects. Inspection of 

the individual data suggests that a small fraction of subjects experience increased eye 

movements during some sound conditions but not others. These increases were not 

statistically significant. 
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Discussion 

Eye movements due to an anxiogenic stimulus such the repetitive 72 dB sounds used in 

the current experiments are expected, however only slight, non-significant increases were 

found. Eye movements therefore do not underlie the increases in binocular rivalry rates 

during auditory temporal streams. This result, together with the results of Experiment 1 

and 2, point away from a role of the startle or orienting reflex in boosting binocular 

rivalry alternation rates at 8.1 and 15 Hz. The succession of sounds used was effective at 

priming against the reflex, as has previously been reported; pre-pulse presentations 

attenuate the startle reflex (Blumenthal & Goode, 1991). Startle-induced key press errors 

and eye movements do not account for the affect of auditory temporal information in 

speeding binocular rivalry. 

 

Although evidence of the startle reflex is missing, another way to measure its influence is 

with observers in altered states of consciousness. People with schizophrenia experience 

impaired habituation of startle responses (Braff, Grillon & Geyer, 1992), particularly to 

auditory stimuli. They also experience a markedly different pattern of binocular rivalry 

alternations that do not conform to parameters established in control groups. This is also 

true for individuals under the influence of psilocybin, a hallucinogenic drug (Carter et al., 

2005, 2007). If the speeding were due to the startle response repeating the current 

experiments on these participants is expected to show enhanced or unique effects.  

It is still possible that eye movements are related to the speeded binocular rivalry 

alternation effects reported in Experiment 1 but are not the primary cause of it. The slight 

increase in eye movements in the tone event stream conditions may be a parallel 

consequence of a shared, general source of the rivalry speeding: increased physiological 

arousal. Elevated general arousal might account for both the slight eye-movement 

increases and the rivalry speeding and any interaction of the two may be peripheral in the 

effect of sound over binocular rivalry. The lack of increased eye movements in the 

temporal stream conditions does not rule out the possibility that other eye movements not 

measured here, such as micro-saccades, contribute to the results of Experiment 1. This 

would need to be clarified with more sensitive eye movement recording. Although a 

limited data set prevents any firm conclusions from being made, it suggests that temporal 
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sound streams might affect eye movements, but are not the primary cause of increased 

binocular rivalry alternation rates found under the 15 Hz auditory streams. If increased 

general physiological arousal is a more likely cause, the auditory streams tested are 

expected to affect more distributed perceptual processes, such as our experience of time, 

which is the subject of the next experiment.  

 

Experiment 4:  Perception of duration during auditory and visual temporal streams 

The results of the preceding experiments support previous evidence that distributed 

neural processes affect the overall rate of binocular rivalry fluctuations (Carter et al., 

2005, 2007 and Nagamine et al., 2007). The source of these processes lie beyond those 

specific to vision, as the significant auditory influence on binocular rivalry rates reported 

here shows. However, the auditory influence reported in the previous experiment also 

exhibited a strong temporal-frequency dependency, with higher frequencies producing 

the greatest effects. The aim of Experiment 4 is to explore other aspects of audio-visual 

temporal processing to further elucidate the basis of the effect of fast auditory streams on 

binocular rivalry rate. To test whether the sound events used alter subjective perception 

of duration, a duration discrimination task was carried out using visual and auditory 

stimuli identical to those used in Experiment 1.  

 

It has previously been reported that intervals containing high frequencies of auditory or 

visual events are perceived as lasting longer than intervals equivalent in duration 

containing fewer or no events (Treisman, Faulkner, Naish & Brogan, 1990; Johnston & 

Nishida, 2001; and Johnson, Arnold & Nishida, 2006). This experiment attempts to test 

these effects using the auditory stream and binocular rivalry stimuli used in Experiment 

1. If the processes involved in time perception and bistable dynamics are shared, auditory 

temporal streams are expected to distort perceived duration in a similar way to binocular 

rivalry reversal rates 

 

Materials and method 

Stimuli: A duration discrimination task was carried out using the same visual and 

auditory stimuli as used in Experiment 2. Each grating was presented separately in two 
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intervals, with or without accompanying contrast increments or auditory streams. A 1 cm 

fixation cross was present at all times during trials and white Arial font 14 point text 

(‘Interval 1’ and ‘Interval 2’) were used between the intervals to warn subjects that an 

interval was beginning. The temporal stream stimuli tested were the tone pips and 

contrast increments and both periodic and the low temporal uncertainty (LTU) random 

jitter streams tested in Experiment 1. 

 

Procedure: In the two-interval duration discrimination task, a horizontally oriented 

grating of 48% contrast was presented that was identical in all other respects to those 

used before to induce binocular rivalry. One interval always contained a grating with a 

standard 2 Hz periodic event cycle. The 2 Hz interval was either visual or auditory 

depending on the condition and was used as a standard to which the faster test interval 

was compared. The duration of the 2 Hz intervals was 2 seconds, with a random duration 

in the range of 0-500 MS added or subtracted (to prevent event counting strategies). The 

comparison interval contained a grating at faster temporal streams of 3.9, 8.1 or 15 Hz 

depending on the condition (either tone pips or contrast increments, as used in 

Experiment 1). The subject’s task was to indicate which interval seemed longer. Using an 

adaptive staircase procedure (QUEST) with a minimum of 75 trials per session, the 

duration ratio between the standard and comparison intervals was varied above or below 

equivalence (a ratio of 1). Incorrect responses drove the duration ratio further from unity, 

while correct responses reduced the ratio towards unity and closer to physical 

equivalence. The QUEST procedure varied the duration ratio and converged on the point 

of subjective equality (PSE) where the intervals were perceived as being of equal 

duration. Each temporal frequency was compared to the 2 Hz standard in separate 

sessions.  

 

Subjects: Five observers participated in the experiment (aged 26-43, 3 female, 2 male). 

All but one participated in Experiment 1, including the author (AP) and subjects 1, 3 and 

7. Apart from the author, all were naïve as to the hypothesis of the experiment and both 

S1 and the new subject (S8) were unaware of both the pilot data and the results of 

Experiments 1 and 2. Observers were instructed to judge only the duration of the visual 
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stimulus when making their comparisons and not to use any conscious strategy (such as 

counting, tapping, etc.).  

 

Figure 5. Subjective duration of auditory and visual temporal stream intervals 

 

 
 

Figure 5: Psychometric functions from Experiment 4 showing performance on the duration 
discrimination task (5 observers pooled, minimum 75 trials per observer and condition). The 
x-axis shows the ratio of the standard to the comparison durations. The point of subjective 
equality shifts to the left as the temporal frequency of the event streams increases, indicating 
an expansion of perceived duration of the comparison interval relative to the standard. The 
blue solid lines show performance for two static-grating intervals, where no distortion was 
expected. Intervals containing 15 Hz temporal streams were perceived as equivalent in 
duration to a 2 Hz stream interval when they were objectively 60-75% shorter than it. 
Similarly, 8.1 Hz stream intervals needed to be around 30-50% shorter than the 2 Hz 
comparison intervals to be perceived as equal in duration. 
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Results  

Figure 5 plots the thresholds for subjective equality between the duration of the standard 

and comparison intervals at the 3.9, 8.1 and 15 Hz temporal streams tested; streams (A) 

contrast increments (B) tone pips with (C) periodic and (D) LTU randomly jittered 

temporal cycles. Frequencies of 3.9, 8.1 and 15 Hz event streams are effective at dilating 

the perceived duration of the comparison intervals relative to the 2 Hz standard. The point 

at which 15 and 2 Hz intervals are perceived as equal in length is when the faster 15 Hz 

interval is 30-50% shorter, as can be seen in Figure 5 where the 15 Hz dotted line 

intersects with 0.5 proportion of longer responses. This distortion also occurred for the 

3.9 and 8.1 Hz streams, and for all temporal stream stimuli, including the contrast 

increments. This pattern occurred in all of the individual observers. 

 

The dilation effect observed means that intervals containing increasingly faster cycles of 

events required significantly shorter presentations of the 2 Hz standard in order to be 

perceived as equivalent in duration (main effect of cycle rate F(3,11.79), p <.05). There 

was no significant difference between the tone-pip and contrast-increment events in their 

ability to dilate perceived duration (main effect F(1,1.26), p>.05), showing that auditory 

and visual event streams distort temporal judgments to the same extent. Dilation occurred 

with all comparison temporal frequencies tested (Helmert contrasts comparing control 

versus 3.9 Hz: F(1,15.74), p <.05, 3.9 Hz versus 8.1 Hz: F(1,23.28), p <.01, 8.1 Hz versus 

15 Hz: F(1,4.49), p>.05). 

 

The randomly jittered (LTU) 3.9 Hz cycles were not as effective as the periodic 3.9 Hz 

cycles in distorting duration judgments, but at all higher event rates both cycle patterns 

(periodic and LTU) were equivalent (main effect of cycle pattern: F(1,12.514), p <.05; 

interaction with event rate: F(2,6.48), p <.01. Helmhert contrasts on interaction effect: 2 

Hz standard versus 3.9 Hz: F(1,12.51), p <.05; 3.9 Hz versus 8 Hz: F(1,6.67), p>.05; 8.1 

Hz versus 15 Hz: F(1,0.63), p>.05). The reason for the difference between cyclic and 

random patterns only emerging at 3.9 Hz is not clear, but may be due to the longer cycle 

period at 3.9 Hz, relative to 8.1 and 15 Hz. Since the LTU randomisation involved 

jittering the temporal position of each event within its event cycle period, there is larger 
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scope for uncertainty with the slower 3.9 Hz event rates than the higher ones. Also, the 

broadening of the temporal frequency spectrum that occurs with the LTU events reduced 

the overall temporal frequency in this condition. These results are consistent with the 

equivalence of randomised and periodic event streams tested in Experiment 1. Overall it 

is the temporal frequency of events, not the pattern of events, that influences binocular 

rivalry rate and duration discrimination.  

 

Discussion 

Adaptation to visual temporal rate can dilate perceived visual duration in a spatially local 

manner (Johnson, Arnold & Nishida, 2006), evidence for a specifically visual component 

in perceived visual duration of the kind measured in the current experiment. The 

discrepant ability for visual streams to affect duration discrimination, but not binocular 

rivalry dynamics, indicates that local visual adaptation contributes to the effects reported 

here. However since non-visual (auditory) temporal information replicates Johnson, 

Arnold & Nishida’s results, a cross-modal timing process must also be at work. Binocular 

rivalry is also strongly tied to local visual processes in the primary visual cortex and 

adaptation at that level is thought to play a significant role in determining alternation rate 

(Lehky, 1988; Blake, Sobel & Gilroy, 2003; Wilson, Blake & Lee, 2001; and Alais et al., 

2010). With this in mind, the effects of sound in the current experiments might be due to 

auditory-elicited visual potentials. Sounds can elicit evoked potentials from cortical 

electrodes normally associated with visual evoked responses and might do so during 

rivalry and other visual processes, which could be tested in the future with an EEG 

experiment.  

 

Auditory event streams have been shown to distort temporal judgements previously 

(Treisman, Faulkner, Naish & Brogan, 1990) as have links between temporal judgements 

and binocular rivalry effects also been reported. The magnitude of change in the 

subjective perception of speed accounts for contextual effects of a motion surround on 

binocular rivalry (Baker & Graf, 2008). Parallels exist between this and the present 

results; both temporal duration judgements and binocular rivalry rate are modified by 

temporal information. The results of Experiment 4 mirror those of Experiment 1 with the 
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exception that significant time dilation did occur for the contrast increments and the 

lowest comparison event rate of 3.9 Hz (although only for the periodic cycle, not the 

randomised LTU cycle) that was not effective at altering rivalry rates in Experiment 1. 

The difference in the influence of the 3.9 Hz streams and the contrast increments is 

possibly due to the shorter time intervals used in the duration discrimination task.  

In conclusion, auditory temporal streams alter the temporal dynamics of binocular rivalry 

alternations as well as perceived visual duration, and arguably do so by acting on 

distributed physiological processes involved in alertness and attention.  

 

General discussion 

In summary, temporal auditory information can alter the pace of binocular rivalry when 

presented with fast streams of events (8 and 15 Hz) but not slower ones between 0.5-4 Hz 

(Experiment 1). None of the auditory streams entrained binocular rivalry alternations or 

significantly increased eye movements during the binocular rivalry trials (Experiment 3) 

and neither did they provoke significantly more motor-response errors compared to 

normal binocular rivalry tracking (Experiment 2). It appears that fast auditory streams 

affect a timing process in binocular rivalry alternations not involved in determining 

individual swaps, but rather the overall temporal frequency of alternations during 1-

minute periods. They also affect a timing mechanism involved in the subjective 

experience of duration (Experiment 4), pointing to the role of elevated general arousal 

rather than auditory driving of vision or the startle reflex in the present results. Auditory 

event streams have been shown to distort temporal judgements before (Treisman, 

Faulkner, Naish & Brogan, 1990), that they can consistently distort timing processes 

involved in binocular rivalry is a new finding. These results follow from previous studies 

showing that sound strongly influences visual processing in the temporal dimension 

(Recanzone, 2003 and Recanzone & Sutter ,2008) and that cognitive resources involved 

in binocular rivalry interact cross-modally (van Ee et al., 2009; Alais et al., 2010). 

Together the results of the four experiments - the superiority of fast streams, lack of 

entraining and no evidence of the startle reflex - point to increased general arousal 

induced by auditory temporal streams that persists in the presence of the stream. The 

sounds used were salient (72 dB SPL) and although they appear not to produce startle 
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blink responses they were informally reported as mildly irritating by subjects after some 

auditory conditions.  

 

The scope for temporal auditory information to alter binocular rivalry alternations is 

likely to be limited by processes specific to the inter-ocular conflict. Although reliably 

increasing alternation rate at fast cycles, the presence of sound streams did not entrain the 

pattern of perceptual alternations - no trend toward periodicity in the alternations 

emerged. Stochastic independence between each eye’s percept durations was preserved in 

these experiments. Forcing a state change with a visual transient has been examined 

before. Transient visual events initially disturb the inhibitory-adaptive balance by forcing 

awareness to a particular eye but a return to stochastic alternations eventually returns 

(Blake, Westendorf & Fox, 1990). That the periodic sound streams used here did not 

entrain the temporal pattern of rivalry into a more rhythmic state points to a limit in the 

ability of higher-order influences to alter rivalry dynamics. These results support other 

evidence that rivalry dynamics are constrained by inhibitory-adaptive links between 

monocular neurons present in early visual cortical areas (e.g.Wilson, 2003; Alais et al., 

2010). The temporal dynamics of other forms of bistable visual phenomena without early 

hard-wired competitive mechanisms, e.g. the Necker cube, are expected to be more 

susceptible to auditory entraining given the increased sensitivity of other forms of 

bistable stimuli to the higher-order effects of voluntary control compared to binocular 

rivalry (Meng & Tong, 2004).  

 

The source of higher-order effects in this research appear similar to the influence of 

generalised anxiety disorder on binocular rivalry rates reported by Nagamine et al. 

(2007). It is possible that auditory streams affect distributed brain wave activity 

corresponding to states of increased alertness that are enhanced in anxiety disorder. 

Periodic auditory signals can entrain brain waves recorded with EEG (Will & Berg, 

2007). The most effective temporal cycles used in the current Experiments (15 Hz) are in 

the beta brain wave frequency range of 13-40 Hz which is associated with increased 

levels of alertness and even states of panic (Sanei & Chambers, 2007). Beta frequencies 

have also been linked to the timing of binocular rivalry alternations; large changes in 
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power in the beta range (14-30 Hz) occur at the time of perceptual alternations (Piantoni, 

Kline & Eagleman. 2010), Given a stochastic resonance model of bistable dynamics 

(Kim, Grabowecky & Suzuki, 2006), even modest amplification of activity in the beta 

frequency range could account for the present results, as an increase in the overall power 

of beta-wave oscillations would lower the threshold for binocular rivalry alternations to 

occur.  

 

Conclusion 

The results of the experiments presented in this manuscript demonstrate a clear but 

circumscribed effect of rapid, 15 Hz auditory streams on overall binocular rivalry 

alternation rate. The effects are consistent with both local and global contributions to the 

temporal dynamics of bistable perception, as temporal markers of local adaptation such as 

the stochastic independence of each alternation period were preserved during the auditory 

conditions. As direct audio-visual entraining was not found, it is believed that the fast 

sound streams impacted binocular rivalry rates via elevations of general physiological 

arousal. This mechanism does not appear to be mediated by increased eye movements or 

motor response errors however it is also present during a duration discrimination task, 

contributing to other evidence of the involvement of a general timing mechanism in 

bistable perception.  
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Chapter 6 

General discussion 
 

The hypothesis stated in Chapter 1 of this thesis asks whether binocular rivalry is a 

product of a distributed neurological mechanism; and, if so, is this the same mechanism 

that underlies exogenous selection-for-attention? The research presented addresses the 

possibility of a common mechanism underlying all bistable perception and examines its 

nature using psychophysical paradigms such as tracking of bistable alternations, probing 

sensitivity during suppression and measuring flash suppression thresholds. The 

distributed processes under consideration in the current thesis include temporal 

processing, orienting of attention and cross-modal sensory interactions – all of which are 

modality agnostic and, therefore, suitable for inferring the extent of distributed activity 

over the resolution of binocular conflict. 

 

The current experimental chapters add to what is known about the mechanism behind 

binocular rivalry; specifically, how it behaves with respect to exogenous attention and 

cross-modal interactions. The experiments contained herein were designed to test the idea 

that a general mechanism underlies the temporal dynamics of binocular rivalry. The 

possibility of a general mechanism arises from the fact that bistable alternations are 

ubiquitous across the senses. The ubiquity of bistable perceptual phenomena is such that 

it even occurs in the olfactory sense between two different smells presented separately to 

each nostril (Zhou & Chen, 2009). It has been demonstrated with auditory stimuli, which 

Brancucci and Tomassi review (2011), as well as tactile stimuli (Holcombe & Seizova-

Cajic, 2008; Carter, Konkle, Wang, Hayward & Moore, 2008). Not only are bistable 

alternations ‘modality-agnostic’, the temporal pattern of alternations is remarkably 

similar for an individual observer across bistable stimuli of different modalities 

(Holcombe & Seizova-Cajic, 2008; Pressnitzer & Hu, 2006). This is also the case for the 

many different forms of visual bistable stimuli (Brascamp, van Ee, Pestman & van den 

Berg, 2005;  Klink, van Ee & van Wezel, 2008), many of which were discussed in the 

introductory chapter of this thesis. Additional psychophysical and physiological evidence 

also points to the possibility that some form of general mechanism underlies all forms of 
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perceptual bistability, and will be discussed below in relation to the results contained in 

this thesis. 

 

Brief, temporal stimuli - designed to engage subconscious arousal systems responsible for 

selection for attention - feature strongly in many of the experiments. The strong temporal 

signals used in Chapters 3, 4 and 5 all demonstrate a strong influence of transient events 

over rivalry alternations, even when they had little or nothing to do with the binocular 

conflict, such as the tone and white noise streams used in Chapter 5. Together with the 

results of Chapter 2, on the similarities and differences between binocular rivalry and 

pattern rivalry; and Chapter 3 and 4, on the effect of exogenous and endogenous 

attention; this research contributes to previous evidence that binocular rivalry is 

influenced by distributed neural processes. Whether or not the distributed processes in 

question are the same as those networks underlying selection for attention in normal 

viewing circumstances cannot be conclusively settled by the current results. The results 

point, rather, to local (or stimulus specific) mediation of binocular rivalry that is under 

the influence of distributed processing, as opposed to centrally caused by it.  

 

Nonetheless, this interpretation does not exclude the possibility that identical patterns of 

activity within sensory specific processing areas cause the similarity in bistable temporal 

dynamics across its different forms. These patterns may arise from a similar temporal 

course of inhibition and adaptation in sensory neurons found across the brain in visual, 

auditory, tactile and olfactory areas. Unfortunately, testing this possibility is out of the 

scope of this thesis, but it is a feasible theory for future exploration. 

 

Local and distributed processes in binocular rivalry 

Visual processing in the brain is both modular and distributed. Although particular areas 

of the occipital lobe respond best to specific visual attributes – such as colour, orientation 

or motion (listed in Zeki & Bartels, 1998) – the activity of these areas is influenced by 

what is happening in other visual processing areas, as well as other non-visual areas of 

the brain. A review by Kayser and Logothetis (2007) of the cross-modal influences on 

early sensory areas, such as area V1 of the visual cortex, attests to this and that these 
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early intersensory interactions are far more widely present than was previously thought. 

How these interactions give rise to cognition and perception is a complex problem that 

requires continued experimental work. A useful paradigm for this work is binocular 

rivalry because it provides an excellent means to infer how disparate neural events 

contribute to visual awareness and the physical stimulus used to induce rivalry can be 

highly controlled, and the subsequent perceptual outcome reliably tracked (both with 

psychophysical and physiological methods).  

 
In order to examine the extent of stimulus specific (i.e. local or modular) versus 

distributed processing during bistable perception, the first experimental chapter (Chapter 

2) explored the similarities between binocular rivalry and another form of perceptual 

bistability called monocular rivalry. Perceptual alternations in monocular rivalry arise 

between conflicting patterns overlaid and presented similarly to both eyes, rather than 

conflict between two different images presented separately to each eye, as is the case with 

binocular rivalry. During monocular rivalry observation, perception of the two fused 

patterns does occur, which does not happen with binocular rivalry stimuli. The fact that 

monocular rivalry does not require binocular conflict to occur confers its name, although 

it is also known simply as ‘pattern’ rivalry. The comparisons made between binocular 

rivalry and pattern rivalry in Chapter 2 revealed many similarities. These can be 

interpreted as evidence for the involvement of a common bistable mechanism, as has also 

been inferred from previous similar studies (Brascamp, van Ee, Pestman & van den Berg, 

2005; Klink, van Ee & van Wezel, 2008). There was also evidence from the experiments 

of Chapter 2 comparing monocular and binocular rivalry that not all processing is 

common, such as the large difference in depth of suppression between the two bistable 

phenomena. 

 

Supporting the other studies showing similarities between different forms of bistability 

(Zhou et al., 2004; Brascamp et al., 2005; and Klink, van Ee & van Wezel, 2008), the 

pattern of results in Chapter 2 again show that there are indeed similar dynamics between 

these different forms of perceptual bistability. However the extent that a common 

mechanism determines bistable perceptual alternations is limited by the involvement of 
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processing specific to the physical nature of the bistable stimulus; in the case of binocular 

rivalry, inter-ocular processing occurring in early visual cortical areas V1. For instance, 

computation modeling evidence (Wilson, 2003) suggests the particular time course of 

binocular rivalry alternations is linked to the time-course by which monocular and 

binocular neurons in the early striate cortex (area VI) adapt and interact with each other. 

However, both the computational modeling and other psychophysical experiments 

utilising measures of the depth of binocular rivalry suppression (such as Alais & Parker, 

2006) show that the nature of the stimulus used, beyond simple binocular competition, 

can also contribute to the depth of binocular rivalry suppression. More complex stimuli 

activating extrastriate visual areas are more deeply suppressed (Nguyen, et al. 2003).  

 

Stimulus- versus eye-based suppression 

The distinction between binocular competition and the contribution of the type of 

stimulus used to elicit binocular rivalry can be characterized, respectively, in terms of 

‘eye-based’ and ‘stimulus-based’ competition. Eye-based competition refers to the 

inhibitory competition between monocular neurons involved in binocular vision; and 

stimulus-based competition refers to the higher-order properties of the visual stimulus, 

such as motion or type of object depicted. These terms are another way of referring to the 

relative contribution of what is previously called local and distributed processing in this 

work. Although a standard binocular rivalry stimulus always involves some component 

of eye-based processing, stimulus features can exert an additional influence over the 

alternating perception. Flicker-and-swap rivalry, where the dominance of one image 

persists when it is swapped between the eyes, seemingly isolates the stimulus-based 

component of binocular rivalry suppression (Leopold & Logothetis, 1996).  However, 

this type of rivalry stimulus is only effective when it is flickered on and off at 18 Hz or 

so, a flicker rate thought to override inhibitory binocular interactions (Wilson, 2003). 

Despite this, there is other evidence that stimulus-based rivalry occurs during binocular 

rivalry. 

 

Bartels and Logothetis (2010) demonstrated that the likelihood that eye or stimulus 

dominance would persist after a physical swap is dependent on the time lag in the 
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binocular rivalry cycle, showing that eye and stimulus competition have different relative 

contributions to binocular rivalry depending on how long ago the last perceptual reversal 

occurred.  This variability may be linked to fluctuations in suppression depth that 

correspond to the current level of stimulus inhibition in the rivalry cycle, as measured by  

Alais, Cass, O’Shea and Blake (2010). Despite the reason, Bartels and Logothetis’ results 

show that stimulus-based dominance can occur without fast flicker (also reported by 

Bhardwaj, O’Shea, Alais & Parker, 2008); the fluctuation between stimulus and eye 

based suppression across the viewing period demonstrates that there is both local and 

higher-order suppression occurring during observation of standard binocular rivalry 

stimuli.  

 

The general consensus among the body of research is that there are both local, or eye-

based, and high-level, or stimulus-based, components of binocular rivalry suppression. 

The study of the role of stimulus-based processing during binocular rivalry overlaps 

somewhat with the role of stimulus-based attention. A lot of the evidence for the role of 

stimulus-based processing during binocular rivalry comes from examining the role 

attention to stimulus features has over binocular rivalry dynamics. 

 

Attention as a distributed process operating on binocular rivalry 

Some aspect of the temporal pattern of binocular rivalry will always be confined to the 

underlying neurophysiology of binocular combination. The temporal course by which 

binocular signals are resolved and integrated with each other appears to limit the degree 

to which binocular rivalry can be modulated by distributed processes, such as willful 

attention or stimulus-congruent cross-modal signals. No amount of attention or trying can 

hold one binocular rivalry percept over the other indefinitely, although there appears to 

be an exception to this; studies using Tibetan monks as observers have found incredibly 

long dominance periods for one stimulus – up to 20 minutes (Carter et al., 2005).  

 

Buddhist monks are quite an unusual population; they spend a great deal of time with 

their eyes closed in meditation as well as honing their ability to see things ‘as they are’ 

rather than how they are ‘constructed’ by previous experience or presumption. This 
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unusual perceptual existence could impair stereoscopic (and other visual) functioning as 

it exists in the majority of people that lead less reclusive, less contemplative lives than the 

monks, rather than produce an enhanced ability to control rivalry alternations with 

attention. If this were the case, the monks’ anomalous binocular rivalry results can not be 

generalised to normative models of visual processing. Another explanation is that the 

monks are experiencing extremely low levels of physiological activity, which 

substantially reduces their binocular rivalry rate. Physiological measures of meditating 

monks have shown reduced somatic activity (Dillbeck & Orme-Johnson, 1987). Monks 

also demonstrate moderated EEG responses to negative stimuli (Aftanas & Golosheykin, 

2005). If general physiological arousal underlies the overall temporal rate during 

binocular rivalry, as is argued in Chapter 5 and discussed later in this chapter, it makes 

sense that these ‘almost hibernating’ monks would be experiencing extremely slow 

binocular rivalry cycles due to their underactive arousal systems. This explanation might 

also account for the slower rivalry alternations experienced by observers with bipolar 

disorder (Miller et al 2003). 

 

Aside from data taken among unusual populations, research has shown that wilful 

attention is less effective over binocular rivalry dominance durations than other forms of 

bistable perception that do not involve binocular conflict (Meng & Tong, 2004). 

Electrophysiological data also suggests that the influence of endogenous control is 

reduced during binocular rivalry viewing compared to pattern rivalry (Mishra & Hillyard, 

2009). This difference can be explained by the involvement of relatively non-conscious 

neural circuitry in binocular processing, as opposed to the more conscious aspects of 

perceiving colour, shapes and forms. Bistable stimuli that rely on conflict between object 

interpretations (such as the face/vase illusion) or orientation (as with monocular rivalry) 

feature visual components open to conscious visual appraisal under normal viewing 

conditions.  

 

Although the effect of endogenous, or wilful, attention is somewhat limited during 

binocular rivalry (Meng & Tong, 2004), susceptibility to the influence of exogenous or 

stimulus-driven attention should be considerable if bistable perception relies on the same 
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subconscious neurological mechanism as that underlying automatic visual selection for 

attention. The possibility that binocular rivalry and visual selection for attention share the 

same neural hardware is reasonable given that binocular rivalry (and all bistable 

phenomena for that matter) is an attempt to resolve ambiguous sensory input, and 

involves deciding what should be attended to at any one instance. In everyday sensory 

experience, these selection decisions are made all of the time. The difference with 

binocular rivalry is that a final, stable decision cannot be reached due to the equivalence 

of the two possible interpretations. If this relationship to visual selection exists, it is 

expected that salient stimuli that orient attention – such as loud noises or objects on an 

impending collision course with the observer – would impact on binocular rivalry much 

more strongly than has been demonstrated with endogenous attention.  

 

The role of exogenous attention during binocular rivalry 

The preponderance of research on the role of attention during binocular rivalry has been 

largely restricted to self-directed, wilful or ‘endogenous’ attention; i.e. ‘purposeful 

attention’ generated from within. Less research has focused on the role of exogenous 

attention (some examples being Ooi & He, 1999 and Paffen & Van der Stigchel, 2010). 

Even so, there is enough to indicate that exogenous attention has a very strong impact on 

binocular rivalry, even when exogenous attention per se is not specifically under 

examination.  

 

Stimuli that intrinsically capture our attention, when  presented to one of the eyes during 

binocular rivalry, can predominate over stimuli that do not command such attention 

(Sheth & Pham, 2008). These stimuli include things like faces showing marked emotions 

(Alpers & Gerdes, 2007). Stimuli that are accompanied with an exogenous cue are also 

likely to be the first seen at the start of a binocular rivalry observation session (Mitchell, 

Stoner & Reynolds, 2004; Chong & Blake, 2006). Not only do exogenous stimuli prolong 

predominance when consciously available, they also appear to be able to penetrate 

through suppression (Ooi & He, 1999) and produce an alternation (Paffen & Van der 

Stigchel, 2010). If exogenous attention can influence binocular rivalry through 

suppression, it is unlikely that feedback from higher-order visual processing areas is the 
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only distributed influence over rivalry. It seems reasonable to invoke a role for 

unconscious (perhaps subcortical) neural networks in the disruption of binocular rivalry 

suppression. Whether or not this role is ongoing and underlies suppression dynamics 

continuously during regular binocular rivalry observation sessions – or whether it only 

occurs when a relevant stimulus is present – is open to additional inquiry.  
 

The hypothesis that exogenous attention is more effective at modulating binocular rivalry 

predominance than internally driven, or endogenous, attention was the subject of 

Chapters 3 and 4. In Chapter 3, looming motion – a strong cue for exogenous attention – 

was expected to predominate during binocular rivalry. Given the limited effects over 

binocular rivalry reported with endogenous attention, and the possible relationship 

between binocular rivalry and visual selection mentioned, this kind of exogenous 

attention was expected to influence binocular rivalry predominance in the absence of 

endogenous attention. This was found to be the case, as there was a large bias for 

looming motion stimuli to be seen during binocular rivalry compared to an equivalent 

(and even faster) motion of the opposite direction presented to the competing eye.  

 

In using a ‘looming’ motion stimulus, balanced by an equivalent motion signal of an 

opposite motion direction in the other eye (contracting motion), the tendency for motion 

strength to predominate was dissociated from motion direction. The strong predominance 

for the forward, looming motion during binocular rivalry supports connections between 

bistable perceptual selection and selection for attention in normal, non-binocular rivalry 

viewing. Rapidly approaching motion is perceptually salient, and processed by neurons in 

the superior colliculus of the brainstem – an area responsible for quickly orienting to 

environmentally important objects and events (Wurtz & Albano, 1980), as well as in 

cortical areas responsive to motion stimuli (e.g., MST). It was so salient during binocular 

rivalry that slower 1 Hz cycles of looming motion predominated over the faster 3 Hz 

contractions. It should be noted that the realism of the looming cycle is potentially 

reduced at the faster cycle stream, which explains the superiority of the slower cycle over 

the fast one without diluting the interpretation that exogenous attention is at play.  
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The effect of looming stimuli reported in Chapter 3 was strongest for motions presented 

with concentric gratings, and weaker for dot motion arrays. This difference presumably 

occurs because dot motion arrays correspond to optic flow fields corresponding to 

passage through the environment – such as walking or running (a neutral environmental 

experience) – whereas the contours of a concentric grating correspond to objects that 

approach an observer independently of their own movement (posing a possible threat to 

bodily integrity). Expanding motion arrays are afforded a greater neural representation 

than contracting motion in the visual areas of the brain (Graziano et al., 1994; Berman & 

Colby, 2002) presumably due to the greater perceptual experience of expansion during 

self motion across the lifespan and greater processing need. However, given the different 

results obtained with dot-motion arrays and concentric gratings, it is not simply a greater 

neural representation of expanding optic flow that accounts for the increased 

predominance of looming gratings during binocular rivalry. The difference points to a 

specific influence of exogenous attention: it must be an object approaching – not just 

expanding motion that is associated with optic flow – in order to engage exogenous 

attention and have an impact over binocular rivalry predominance durations. A recent 

study supplements this interpretation by demonstrating a high degree of attention control 

over rivalry with motion stimuli that engage ‘vision for action’ (Hugrass & Crewther, 

2012). 

 

The neural area responsible for achieving the orienting or startle response displays cross-

modal summation (Yeomans, Li, Scott & Frankland, 2002) whereby a looming signal 

presented in more than one sensory modality – for instance both visual and auditory 

senses – will produce a greater neural response than either the visual or auditory 

responses alone. The possibility of cross-modal summation of the effect of looming 

found in Chapter 3 was explored in Chapter 4, which examined the effect of looming 

sounds on the predominance of looming visual motion in binocular rivalry. Chapter 4 

examined how sounds congruent with binocular rivalry stimuli affect predominance. The 

experiments explored how a matching looming sound might be able to boost the effect of 

attention in raising one of the binocular rivalry targets to perceptual dominance. It was 

concluded that sounds do assist in boosting elevations in the predominance of the 
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matching binocular rivalry target; but they do not elevate the target’s predominance in the 

absence of effort. That is, passive viewing of binocular rivalry in the presence of the 

sounds did not elevate predominance of the visual stimuli that matched the sound.  

 

A study matching motion sounds to motion targets during binocular rivalry found that the 

effects of the sounds were comparable to context effects (Conrad, Bartels, Kleiner & 

Noppeney, 2010).  In Conrad et al.’s study, directional sounds were able to extend 

periods of rivalry predominance, when the congruent visual motion was consciously 

available. The sounds did not attenuate suppression periods, unless they were 

directionally opposite the currently dominant visual motion. This result parallels the 

influence endogenous attention has over dominance periods during binocular rivalry, but 

not over suppression phases. This suggests that cross-modal influences on binocular 

rivalry act in a similar fashion to endogenous attention, by providing a boost to a 

dominant percept via feedback mechanisms. This goes against the expectation that 

looming sounds might influence rivalry via mechanisms related to exogenous attention. 

An automatic orienting mechanism, by definition, should be able to operate on sensory 

information not in the current scope of conscious awareness in order to bring it into 

awareness (Yin, Murray & Boynton, 2009), including suppressed binocular rivalry 

stimuli. Although the lack of auditory influence in the passive viewing conditions in 

Chapter 4 suggests that cross-modal influences over rivalry are high-level, the 

experimental purpose (to specifically examine how cross-modal information might boost 

attentional control) limit extrapolation of the results to exogenous attention. 

 

Experiments conducted by Chong, Tadin and Blake (2005) mirror the paradigm used in 

Chapter 4 in that they tested whether the effect of endogenous attention over rivalry can 

be increased with the use of temporally salient cues. Their study used transient stimuli – 

such as flicker and spatial frequency changes – to elicit endogenous attention. Even 

though these transient stimuli did not achieve an equivalent extension of dominance 

during the unattended condition as compared to the purposeful attention one, nonetheless, 

the unattended condition produced significant extensions of binocular rivalry dominance 

periods (see Figure 1). This inconsistency with the results presented in this thesis are 
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probably due to the presence of dual sound streams in Chapter 4, which masked the 

effectiveness of the looming sound stream when it was not being actively attended to. 

Additionally, instructions not to attend could have been interpreted as instructions to 

explicitly direct attention away from the sound stimuli. 

 

The component of endogenous attention allocated to a transient stimulus in the data from 

Chong et al. and Chapter 4 cannot be wholly separated from the survival-based attention 

mechanism activated by the exogenous cues that were used. It is doubtful whether wilful 

attention conditions that are anchored on the highly attention-grabbing stimuli used –

known to be a strong trigger for exogenous attention (Franconeri & Simons, 2003) – can 

rightly be attributed to endogenous attention alone. The type of attention producing the 

effects reported could be called ‘transient-based’ attention; whether purposeful or not, the 

effect is dependent upon the intrinsically salient nature of the stimulus used as the object 

of attention. The tone pips, looming sounds and even periodic tactile vibrations used in 

Chapter 4 can all be classed as attention-orienting stimuli. Further, the flicker and spatial 

frequency changes used by Chong et al. are not ‘objects’ per se, but events such as 

changes to a feature. The idea that object-based attention is relatively ineffective at 

controlling dominance durations, compared to event-based attention, deserves further 

exploration. This can be achieved with experiments explicitly designed to pit object-

based attention against event-based attention during binocular rivalry and other bistable 

phenomena. 

 

Figure 1. Results from Chong, Tadin and Blake 2005 
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Figure 1. Results from Chong, Tadin & Blake, (2005) showing that both unattended and 
attended transient events increase binocular rivalry dominance durations.  

 

The results contained in Chapter 4 – that the effect of sound over binocular rivalry 

predominance requires willful attention – differs from results collected using the same 

stimulus where instructions concerning attention were not given (Parker & Alais, 2005). 

In the 2005 study, subjects were simply instructed to record the visual fluctuations 

experienced during binocular rivalry and were given no instruction concerning the sounds 

(other than a non-specific warning that they might be present in any given trial). As 

mentioned, an explanation for this difference with the results in Chapter 4 is that the 

auditory stimulus used in Chapter 4 was not presented independently. Both a constant 

chord and the looming sound wave were presented through ear phones, requiring the 

participants to pay attention to one or the other sound selectively. Not only does the 

presence of an additional sound, competing for auditory attention, diminish the salience 

of the looming sound, headphone presentations also diminish it’s salience.  In the Parker 

and Alais experiment, the tones were presented from two speakers on either side of the 

monitor. In this way the sounds appeared to emanate from a distance and simulated a 

realistic approach. When sounds are played via headphones they are typically 

experienced as emanating from within the head. This important distinction likely 

underlies the lack of auditory enhancement of rivalry predominance in the passive 

viewing conditions tested in Chapter 4. A comparison of the relative salience of 

headphone and speaker presented looming tones would confirm this explanation. 
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Rhythmic versus directional auditory influences 

Control conditions carried out in Chapter 4 indicate that temporal congruency, rather than 

motion direction is the important factor in auditory-visual integration during binocular 

rivalry. The conditions comparing a non-directional auditory stimulus with an auditory 

temporal modulation that was phase-locked to the visual target produced equivalent 

results; showing that temporal consistency is a major factor in the effect of sound over 

binocular rivalry in the tested conditions. In fact, it appears to be the primary factor; if 

motion direction had an independent effect, it is expected that the conditions with both 

temporal and motion direction sounds would yield a greater influence over 

predominance. On the other hand, there could be a cap on the extent to which binocular 

rivalry predominance periods can be modulated, which would rule out the potential for a 

superior effect with directional stimuli. 

 

Although temporal rate appears to be the determining factor in the subject’s ability to use 

the sounds as an aid to holding one binocular rivalry target perceptually dominant, the 

fact that the sound consistent with the radial grating’s motion did not show comparable 

effects means that rate is not the sole factor: motion direction, or meaning, does indeed 

play a role in the cross-modal influence over binocular rivalry predominance. The sound 

pulses used can be considered representative of some kind of object onset. Disentangling 

the influence of auditory motion type, or meaning, and auditory temporal rate over 

binocular rivalry deserves more exploration. The interpretation of the data from Chapter 4 

– that temporal rate is of primary importance in auditory affects over binocular rivalry – 

leads into the next series of experiments contained in Chapter 5. This chapter explored 

the impact of temporal auditory information over the overall rate and pattern of binocular 

rivalry alternations, not just the predominance of one binocular rivalry target over 

another. These experiments were conducted to isolate the effect of temporal information 

(both visual and auditory) over binocular rivalry dynamics. 

 

Given past research showing that temporal auditory information can heavily bias visual 

temporal perception – more so than spatial auditory information can bias visual spatial 

perception (Shipley, 1964; Recanzone, 2003) – Chapter 5 explored how temporal 
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auditory information affects the temporal dynamics of binocular rivalry. The auditory 

sense has a much better temporal resolution than vision. Vision, on the other hand, is 

superior to hearing in spatial resolution (Alais & Burr, 2006). Hearing, being a better 

temporal sense, lends its advantage to vision during congruent cross-modal stimulation 

and vice versa (Recanzone, 2003; Alais & Burr, 2004). Recent unpublished evidence 

(conducted in the same lab as this thesis) suggests that temporal perception is modality 

agnostic; that is, occurs in a centralised and distributed manner not dependent upon any 

one sensory modality. This ties in with the possibility that the temporal element of 

bistable perception is, likewise, subject to a distributed temporal mechanism or oscillator. 

Chapter 5 sought to address the question of whether the temporal element of binocular 

rivalry is determined in a modality-agnostic fashion by a centralised temporal process. 

 

In the experiments contained in Chapter 5, streams of flashes, tone pips or white noise 

bursts were presented while participants experienced and recorded their perceptual 

alternations to the binocular rivalry stimulus. At the fastest 8 and 15 Hz presentation 

frequencies, binocular rivalry alternations were significantly sped up for all participants, 

without changing the underlying stochastic independence of the alternation periods, nor 

by entraining each alternation to the timing of the auditory stimuli. This generalised 

elevation of binocular rivalry rates was not tied to the specific temporal pattern of the 

sounds. Due to this, it appears that the effect of sounds over binocular rivalry is achieved 

via a secondary elevation in generalised arousal (or perhaps even anxiety) produced by 

the sounds, rather than by temporal driving of the alternations with audition. 

 

A series of control experiments measuring the effect of the auditory stimuli on motor 

control, eye movements and the perception of interval duration indicate that the effect of 

sound was not due to errors in key press responding or an increase in eye movements, but 

rather, was affecting a centralised timing mechanism also involved in the perception of 

duration. In consideration of other results published in the literature concerning 

individual variability in binocular rivalry rates as a function of age (Ukai, Ando & Kuze, 

2003), mental health (Miller et al., 2003), and anxiety (Nagamine et al., 2007), the pattern 

of results appears consistent with the idea that individual variance in binocular rivalry 
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temporal rate is influenced by the overall activity of the nervous system, which can in 

turn be modified by the presence of anxiogenic stimuli, such as a fast auditory tempo 

(Dillman-Carpentier & Potter, 2007). 
 

Neurophysiological evidence for this connection can be found in a study by Einhauser et 

al. (2008); pupil diameter reliably predicted both a perceptual reversal and the duration of 

subsequent binocular rivalry dominance period. Pupil dilation is an indicator of visual 

interest, but also occurs when a new visual object is presented to a viewer (Loewenfeld, 

1993). It is aligned with activity of norepinephrine (also known as noradrenaline) in the 

locus coeruleus (Koss, 1986), a part of the brainstem whose major purpose is regulation 

of the sympathetic nervous system and the physiological response to stress, i.e. arousal 

(Samuels & Szabadi, 2008). It is theorised that the overarching purpose of this network is 

to enable recalibration of sensory organisation; that is, to mediate shifts in attention 

(Bouret & Sara, 2005). This connection is consistent with the interpretation put forward 

regarding the results of Chapter 5 as being due to physiological arousal; if binocular 

rivalry and other bistable alternations are achieved by networks mediating stress and 

arousal responses, it is feasible that elevations of arousal will correspondingly elevate 

overall binocular rivalry alternation rate. 

  

In order to confirm an arousal interpretation of the speeding of binocular rivalry reported 

in Chapter 5, clarification is needed on the effect that the particular transient event 

streams used have on physiological arousal. This can be achieved with skin conductance 

response or heart rate monitoring during stimulus presentation. Skin conductance 

response is an ideal measurement being a fairly robust measure of physiological arousal 

and activity of the sympathetic nervous system (Martini & Bartholomew, 2003). In lieu 

of the results of these future experiments, past measurements of skin conductance 

response during the presentation of slow and fast music scores suggest that an elevation 

of arousal is likely. Skin conductance response was shown to be greater for fast tempo 

music than slow tempos, which in turn produced greater skin conductance response than 

silence (Dillman-Carpentier & Potter, 2007). This increase in arousal to increased tempo 

is very likely to be replicated with the transient sound streams used during the binocular 
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rivalry trials described in Chapter 5. Whether or not this increase in turn causally 

increases binocular rivalry switching rate remains to be proven; yet, at this stage, it 

appears to be the most fitting explanation of the effect, given the pattern of results 

reported such as the lack of alternations time-locked to individual transient events. 

 

An alternative interpretation of the results of Chapter 5 can be made in terms of the 

addition of neural noise to the rivalry mechanism. Neural noise refers to the activity of 

background neurons not directly involved in a specific neural process, that can still have 

an impact on it. It is a feature of computational models of binocular rivalry, included to 

account for the stochastic properties of the alternation periods (Wilson, 2003; Freeman, 

2005). Evidence that principles of stochastic resonance are involved in binocular rivalry 

have been reported previously (Kim, Grabowecky & Suzuki, 2006), as have the ability of 

sounds to act as a source of resonating noise to a visual detection task (Lugo, Doti & 

Faubert, 2008). Together, these findings suggest the effects reported in the present work 

could be due to additional neural noise created by the transient event streams, rather than 

an increase in general arousal. This alternative interpretation requires validation, perhaps 

using computational and physiological methods and to quantify the amount of neural 

noise produced by the sounds streams and to model the subsequent influence on rivalry 

dynamics.  

 

Appendix 1 and 2 present experiments and data analysis supplementary to Chapter 5. 

Appendix 1 presents experimental data examining the effect of brief sounds on the 

likelihood of inter-ocular suppression in a 1-cycle version of binocular rivalry called flash 

suppression (Wolfe, 1984). In these experiments, conflicting inter-ocular stimuli were not 

presented for an extended viewing period as in binocular rivalry. This is because flash 

suppression involves presenting one of the binocular rivalry stimuli to one eye first. Then 

after a period of time (usually around 1 second) – when the second image is presented (or 

flashed) to the other eye – the first stimulus becomes instantly suppressed. Instant 

suppression only occurs when the second stimulus is presented with enough of a latency 

after the first stimulus. This latency is called the stimulus onset asynchrony and allows 

for sufficient adaptation to the first image to occur. Thresholds for the required stimulus 
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onset asynchrony for complete and instant flash suppression can be measured across 

numerous trials by altering the asynchrony (e.g. in a staircase procedure) and recording 

the consequent perceptual outcome to find the asynchrony required for flash suppression. 

 

Flash suppression thresholds were measured for the same grating stimuli that were used 

in Chapter 5 – with and without the presence of sounds at, or around, the time of the 

second stimulus’s onset. It was found that the presentation of a tone just before (or 

synchronous to) the flashed stimulus significantly decreased the required stimulus onset 

asynchrony for complete flash suppression to occur. This result agrees with those 

reported in Chapter 5, where temporal auditory information was found to speed up 

temporal processes in vision. Specifically, auditory events seem to be speeding up the 

baseline cycle period of inter-ocular suppression. The effect of sounds on shortening the 

threshold time required for inter-ocular flash suppression appears to be different to the 

speeding effect of sounds over long-duration binocular rivalry trials. The attentional 

boost from the singular sound bursts might ‘tip’ the balance of inhibition and adaptation 

in favour of a perceptual switch, especially later in cycle when a swap is more probable. 

That this is not happening for individual alternations during binocular rivalry with 

continuous sound streams (as evidenced by a lack of auditory entraining) indicates that 

two different mechanisms are at work. The distinction lies in the difference between a 

persistent increase in physiological arousal with continuous sound streams and the 

instantaneous capture of attention achieved by isolated sounds and is discussed in more 

detail later in this chapter.   

 

Is temporal rate during binocular rivalry determined by a generalised, whole-brain 
mechanism? 

In the introductory chapter of this thesis, two interlinked hypotheses were posed. The first 

was concerned with whether a common mechanism underlies perceptual bistabilty, 

specifically; “Is there a common mechanism underlying perceptual bistability; what 

evidence is there for the existence of this mechanism?” The experimental chapters 

contained herein point to the conclusion that temporal rate during binocular rivalry is at 

least in part determined by a generalised mechanism. The fact that temporal rate but not 
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predominance in binocular rivalry can be altered by factors not relevant to the visual 

conflict, such as the sound streams used in Chapter 5, partially supports the first 

hypothesis. Physiological data also supports the role of distributed brain activity in 

bistable perception; activity in non-visual processing areas correlates with perceptual 

alternations (for example Britz, Pitts & Michel, 2011) and there are measurable whole-

brain oscillatory networks that coincide with binocular rivalry fluctuations (Doesburg et 

al., 2009), although there is conflicting evidence, such as MEG frequency tagging data 

(Kamphulsen, Bauer & van Ee, 2008) showing synchronised neural activity is confined to 

exclusively visual areas during rivalry. 

 

The temporal rate of binocular rivalry alternations is more open to the influence of 

attention than the predominance of one binocular rivalry target over the other. Attention 

toward or away from both rival stimuli produces variance in alternation rates (Lack, 

1978; Paffen et al., 2006). It seems that there is a dissociation between the effects of 

attention on the spatial versus the temporal aspects of binocular rivalry – ‘spatial’ 

referring to the ability to bias perception of one binocular input over the other.  

 

The temporal rate of binocular rivalry is plastic over time. Binocular rivalry settles into a 

stable rate for individuals after experiencing the phenomena a few times; however, 

alternation rate is slower and more sporadic in the first few experiences (Suzuki & 

Grabowecky, 2007). Binocular rivalry rate also varies between individuals and is 

correlated with age (Ukai, Ando & Kuze, 2003) and other variables that modulate overall 

somatic physiology (Nagamine et al., 2007). This flexibility suggests that the determinant 

of temporal rate is not intrinsic to the visual processes underlying binocular rivalry but is 

provided by other, shared mechanisms that govern the speed of other perceptual 

processes. This interpretation is supported by the data collected in Chapter 5 that rivalry 

temporal rate is changeable.  In conclusion, it appears that the temporal rate of binocular 

rivalry, but not dynamics or alternation pattern, is at least partially governed by a 

common mechanism across different forms of perceptual bistability.  

 

Neurophysiological evidence of distributed processing during binocular rivalry 
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Neurophysiological measurements can be used to infer the locus of bistable activity, 

especially when cause and correlation can be accounted for. Particular physiological 

markers have been shown to predict perceptual alternations during binocular rivalry, such 

as pupil dilation (Einhauser, Stout, Koch & Carter, 2008) and activity in non-visual areas 

of the brain responsible for sensory integration (Lumer & Rees, 1998; Britz, Pitts & 

Michel, 2011). There have also been studies showing that widespread, synchronised 

oscillations correlate with perceptual fluctuations arising from bistable stimulation 

(Doesburg et al., 2009). The above, and other examples, suggest that a modality-agnostic 

and distributed neural mechanism is involved in binocular rivalry. It is suggested that this 

mechanism is focused on the overall task of resolving ambiguity and in selecting objects 

for conscious attention, irrespective of the particular form of ambiguity encountered. 

Another complementary possibility is that bistable perception reflects the malfunction (or 

state of permanent flux) of a subconscious system responsible for selecting objects in the 

environment for conscious attention. A role for the subconscious system of attentional 

selection in bistability is supported by the behavior of the pupil response during binocular 

rivalry (Einhäuser et al., 2008). 

 

It is difficult to distinguish whether activity occurring in particular areas of the brain are 

the locus of bistable alternations or are simply activated due to an awareness of the 

currently dominant image. Activity that corresponds to the conscious perceptual 

experience of an observer, but has little to do with achieving the actual bistable 

alternations, could be separated by comparing its similarity to normal, non-bistable 

sensory experience. Unfortunately, there may be some component of the conscious 

bistable percept that, although not involved in the resolution of rivalry fluctuations, 

produces a unique neurological trace due to the bistable presentation. Another way to 

determine whether specific neural activity is involved in bistable alternations is to test 

whether or not the activity appears causally related to alternations, for example, by 

appearing just prior to an alternation, or when disruption of the neural event (as with 

transcranial magnetic stimulation) disrupts the alternation.  
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Right parietal lobe activity has been found to precede perceptual reversals during 

binocular rivalry (Britz, Pitts & Michel, 2011). The same result was reported for bistable 

stimuli that did not involve binocular conflict (Britz, Landis & Michel, 2009) – implying 

that activity in this parietal area is common to all bistable phenomena, at least in the 

visual modality. Whether or not it is involved in bistable phenomena arising from the 

other senses remains to be examined. This possibility is not unreasonable given that the 

parietal lobes are involved in sensory integration across all of the senses, not just vision. 

The right parietal lobe is also aligned with spatially-based aspects of higher-order sensory 

processing, which is consistent with the view of bistable phenomena as the attempted 

resolution of a spatial conflict (i.e. the impossibility of two objects appearing in the same 

space at the same time).  

 

A complementary investigation conducted by Zaretskaya et al. in 2010 supports a 

causative role for parietal activity in binocular rivalry. Transcranial magnetic stimulation 

(TMS) was used to disrupt parietal function during viewing of a binocular rivalry 

stimulus. This disruption had the effect of prolonging binocular rivalry dominance 

periods; that is, preventing a perceptual reversal during the TMS disruption. It would be 

further confirmation of the role of the parietal areas to obtain data from individuals who 

have experienced damage to this area of the brain; if the parietal areas are essential for 

perceptual alternations, it is possible that such individuals may not experience perceptual 

alternations at all. Measurements of parietal involvement were made with TMS and via 

electroencephalogram (EEG), which can not target brain areas much deeper than the 

cortical surface. It is possible that areas deeper in the brain are activated preceding a 

perceptual alternation, particularly brainstem areas involved in shifts of attention and 

selecting which objects should be attended to in the environment.  

 

That activity in brain regions involved in cross-modal sensory integration is linked to 

binocular rivalry alternations provides evidence that it is not solely uni-sensory areas 

specific to the particular bistable stimulus that are responsible for alternations; there may 

be a more general locus of bistable alternations. There is the alternative possibility that 

these cross-modal areas are active consequent to a resolution of the conflict by activity in 
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the local brain areas responsible for processing the bistable stimulus. Even though the 

response in the parietal lobe is recorded before the perceptual alternation is experienced, 

it is possible that this activity is triggered from feed-forward activity in early visual 

cortical areas that have reached a ‘decision’ – that is, the adaptation threshold required to 

produce a switch to the non-dominant percept, before it is consciously experienced and 

recorded by the observer. 

 
Psychophysical studies of cross-modal influences 

Examining the influence of information arising from a sensory modality not involved in 

the primary bistable conflict is a way to gauge if, and how, distributed processes are 

involved in determining alternations during bistable perception. Since the auditory 

information is not necessary to the specific local processes involved in resolving the 

conflicting visual stimuli, it can be inferred that the extent that sound affects binocular 

rivalry is an indicator of its susceptibility to distributed processing in the brain. Non-

visual sensory signals that are congruent with one or the other binocular rivalry inputs 

increase the amount of time that input is perceptually predominant. Congruent cross-

modal signals do not, however, attenuate suppression periods (Conrad et al., 2010) – 

which indicates that the effect of sound over binocular rivalry is achieved via feedback 

mechanisms that require observers to be conscious of the visual input to which the sound 

coheres. This reasoning also applies to the effects of contextual surrounds (Sobel & 

Blake, 2002) and willful attention (Meng & Tong, 2004) over the predominance (but not 

suppression) of the targeted stimulus involved in binocular rivalry. These influences can 

be considered ‘higher-order’, requiring full conscious awareness of the targeted stimuli in 

order to have an impact on the temporal course of binocular rivalry. They are achieved by 

feed-back mechanisms originating from processing sites downstream of the local visual 

processes that handle binocular input. 

 

Some evidence points away from a unified mechanism for different bistable phenomena. 

Experiments conducted by Hupé, Joffo and Pressnitzer (2008) are inconsistent with the 

idea that the switching mechanism in bistable perception is mediated by a supra-modal 

process. Participants in their experiments measured perceptual reversals to auditory 
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bistability, visual bistability and a condition where both forms of bistable stimuli were 

presented together. In the conditions where auditory and visual stimuli were meaningfully 

paired, greater periods of co-predominance were found for the bi-modally congruent 

interpretations. However, no coincidence between auditory and visual bistable switches 

was found; the reversals experienced for the visual bistable stimulus did not coincide with 

the reversals experienced for the auditory stimulus. Due to this, the authors argued that 

the switching mechanism underlying bistable phenomena is based on stimulus-specific 

processing areas and is not achieved by a supra-modal or global mechanism. The 

increased coincidence of congruent auditory and visual dominance periods was accounted 

for by the influence of higher-order feed-back, such as that operating during the effects of 

context and attention. This is consistent with the boost to endogenous attentional control 

over rivalry with auditory (and tactile) stimuli reported in Chapter 4. The lack of 

synchronised switching does not support a central oscillator account of bistable 

perception. 

 

The absence of synchronous switching in Hupé et al.’s (2008) study supports the idea that 

local processing determines the dynamics of bistable alternations. The similarities in the 

temporal pattern of alternations across different modalities of bistable perception could be 

due to the action of a common (but not central) mechanism reproduced in the local 

processing specific to each sensory modality and the qualities of the bistable stimulus. 

The inability of the temporal sound streams used in Chapter 5 to precisely determine 

bistable dynamics is consistent with this interpretation. The dynamics of binocular rivalry 

were not vulnerable to a strong auditory temporal cue, as might be expected for other 

forms of temporally ambiguous visual stimulation (Shipley, 1964; Alais & Burr, 2004). It 

is more reasonable to attribute the moderate speeding of binocular rivalry by the high 

tempo sound streams to a general increase in whole-brain physiological processing; i.e. 

an increased level of general arousal. Increased arousal has been previously demonstrated 

to correlate with an increased speed of binocular rivalry alternations (e.g. in subjects with 

generalised anxiety), and is likely the same underlying cause of the pattern of results 

reported here.  
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Although Hupé et al.’s study showed no coincidence between auditory and visual bistable 

switching, auditory cues can impact on bistable perception in the visual modality in ways 

independent of higher-order effects.  The way they do so constitutes evidence that sounds 

can tap into unconscious perceptual processes occurring during binocular rivalry. 

Takahashi and Wantanabe (2010) compared the influence of auditory cues on a bistable 

visual motion stimulus. The bistable visual motion was accompanied by a non-bistable 

auditory stimulus that was congruent with one of the visual motion interpretations, 

similar to how looming visual and auditory motions were paired in Chapter 4. Takahashi 

and Wantanabe (2010) found that auditory cues can bias visual bistable perception even 

when the auditory signal is below conscious threshold. This result argues against 

contextual cross-modal influences based on awareness of the stimuli, and suggests that 

unconscious audio-visual integration can and does play a role in the resolution of 

ambiguous sensory inputs. The ability of subconscious auditory-visual integration to 

influence bistable perception implicates the involvement of the subcortical neural 

pathways in the superior colliculus responsible for orienting responses. 

 

There is also evidence that auditory cues can affect bistable suppression by triggering a 

perceptual switch. Takahashi and Wantanabe (2011) published an examination of how 

auditory and visual transients impact on bistable motion in the visual modality. The 

visual stimulus was a bistable apparent motion dot quartet (see Figure 2 below). Although 

they did not manipulate the temporal frequency and pattern of transient events in their 

study, they did demonstrate an equivalent influence in the ability of visual and auditory 

transients to trigger visual alternations. The trial periods in their experiment where as 

long as 240 seconds per trial, which is comparable with the length of the binocular rivalry 

trials in Chapter 5. Their results cohere with the flash suppression results contained in 

Appendix 1 in that transient events triggered an alternation, but this was not the case for 

the longer binocular rivalry trials of Chapter 5.  

 

Figure 2. Stimulus presentation used by Takahashi & Wantanabe 2011 
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Figure 2. Perceptual alternations in a bistable apparent motion stimulus were induced by the 
presentation of visual and auditory transients. The effects of auditory transients were 
equivalent to the effect of visual transients in their ability to provoke a change in the current 
perceptual state.  

 

The finding that transient events evoked time-locked visual alternations for the bistable 

motion used in Takahashi and Wantanabe’s (2011) study was not replicated in the 

prolonged binocular rivalry trials with continuous transient streams conducted in Chapter 

5. Participants observed binocular rivalry in trials of 1 minute per duration – much longer 

than the flash suppression presentations. During the binocular rivalry trials, transient 

visual or auditory events were presented in a continuous stream, not in isolation. There 

are a few reasons why these continuous streams of transients did not produce time-locked 

alternations in the binocular rivalry stimulus. One reason for this is the dependence of 

binocular rivalry on competition between monocular neurons, as well as the relative 

imperviousness of binocular rivalry to top-down effects of attention compared to other 

forms of visual bistability such as the Necker cube (Meng & Tong, 2004) or the 

ambiguous motion used by Takashi and Wantanabe. However, this explanation does not 

account for the preservation of the transient effect with the flash suppression stimulus 

used in Appendix 1. Flash suppression is a form of bistable phenomena dependent on 

binocular adaptation – ruling out the imperviousness of monocular neurons to the 

influence of cross-modal transients. The difference between long periods of binocular 

rivalry and short, one-cycle binocular rivalry (i.e. flash suppression presentations) is less 

likely to be the reason behind the difference between Takahashi and Wantanabe’s results 

and Chapter 5 – it is more likely to do with the continuous presentation of the transient 
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events used in Chapter 5 versus singular sounds: continuous presentation of the transient 

events could have resulted in an adaptation of the startle-orienting response.  

 

The transients used by Takahashi and Wantanabe (2011) were apparently distanced 

enough to keep the orienting response alive, whereas the regularity of those used in 

Chapter 5 were not. Future experiments comparing the point at which repetition leads to a 

loss of the orienting response during bistable perception should be carried out to confirm 

the source of this difference. Another possibility is that ambiguous motion, which is 

already engaging transient-based perceptual processes, is more susceptible to transient 

disruptions. Whether this is also the case with motion used in a binocular rivalry 

paradigm should be tested. In any case, if binocular rivalry between conflicting motion 

stimuli are equally susceptible to transient events as the bistable motion array, this would 

imply a dependency on stimulus-specific processes, rather than a blanket openness to the 

orienting response during binocular rivalry. 

 

The orienting response versus general physiological arousal 

Although there is evidence that the orienting response does impact on binocular rivalry 

alternations, the overall speeding effect due to transients (in the absence of transient-

locked switching) implies that discreet, repeated orienting responses are not at play in the 

results of Chapter 5. To disentangle whether or not an attention-based orienting response, 

or an increase in general arousal, was responsible for the speeding of binocular rivalry 

reported in Chapter 5, further experiments comparing single transients and transient 

streams during binocular rivalry viewing will need to be conducted. These experiments 

can clarify the difference in the ability of transient auditory events to cause time-locked 

alternations in binocular rivalry compared to flash suppression by asking whether single 

transient events during prolonged binocular rivalry viewing will cause time-locked 

alternations.  

 

To determine whether general arousal underlies the current results, simple physiological 

measurements can be made while repeating the primary conditions of Chapter 5. For 

example (and as mentioned previously) the arousal hypothesis would be supported if 
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simple heart rate and skin conductance monitoring (which are robust measures of levels 

of physiological arousal) measures increased physiological activity to the transient 

stimuli that produced speeded binocular rivalry rates. Other experiments could be 

conducted on two different sample groups: one with high levels of susceptibility to 

anxiogenic stimuli, and another low-susceptibility group. Differences between these two 

groups in the size of the effects reported in the current research would support the arousal 

hypothesis. Overall, it is feasible that the transient induced individual switches reported 

in Appendix 1 and elsewhere and the binocular rivalry speeding reported in Chapter 5, 

reflect the immediate and sustained responses of the one arousal network.  

 

Many processes that contribute to our conscious awareness occur unconsciously. It is 

possible that, since the exogenous stimuli used in the present experimental chapters were 

all created and presented in a laboratory environment, that true exogenous attention was 

not activated. The artificiality of the stimulus may have precluded its being treated as a 

true threat that needed to be oriented to. This possibility points to the need to conduct 

research in increasingly realistic stimuli and environments, a future direction made 

available with advances in the equipment and technology needed to simulate realistic 

environments and to collect data in the field.  

 

 

 

Conclusions 

The results of the present experimental chapters compliment previous literature on 

binocular rivalry, concluding that binocular rivalry involves a specifically visual 

component of competition; some part of the conflict is mediated by neural areas 

dedicated to stimulus-specific processing. This is because binocular rivalry alternations 

cannot be fully taken over by auditory cues, as other visual temporal information can (e.g. 

Shipley, 1964). Distributed influences over binocular rivalry exist but are limited in their 

ability to modulate the temporal dynamics of the perceptual alternations.  
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Exogenous attention cues, such as looming motion targets, cannot completely determine 

perceptual dominance during binocular rivalry. Likewise, extremely salient attention-

grabbing sound streams cannot trigger perceptual alternations in binocular rivalry to 

match the auditory temporal pattern and rate. The binocular rivalry mechanism cannot be 

concluded to be the same as that underlying exogenous attention, or attention generally; 

but it is, to some extent, influenced by it. The temporal dynamics of binocular rivalry are 

more likely tied to unconscious mechanisms of visual selection, such as the resolution of 

binocular signals with and without ambiguity, that are functionally related to selection for 

conscious awareness. Resolution of ambiguity appears to be a response to modality-

specific inputs in modality-specific processing sites that is in turn assisted by concurrent 

processing in areas responsible for sensory integration.  
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Appendix 1: Flash Suppression and sound 
 

In order to more objectively characterise the likelihood of an alternation with transient 

sounds and flashes during binocular rivalry the flash suppression paradigm was used to 

measure stimulus onset asynchrony adaptation thresholds required for 75% probability of 

an alternation. Flash suppression (FS) involves presenting a rival image to one eye first, 

then waiting a short stimulus onset asynchrony (SOA) before presenting the second rival 

image to the other eye. The likelihood that this second image completely suppresses the 

first (provoke an alternation) increases with increasing SOAs. In this way the SOA can be 

varied across numerous FS trials (using an adaptive staircase procedure) to measure the 

threshold adaptation period required for suppression of 75% of trials. In the following 

experiments this method is used to measure the likelihood of alternations during trials 

with or without singular auditory transients accompanying the second flash stimulus. In 

the first experiment, flash suppression thresholds are obtained across three conditions; 1) 

without sound (control), 2) with an 800 Hz pure tone accompanying the second ‘flash’ 

stimulus and 3) with a white-noise burst accompanying the flash. In the following 

experiment, the audio-visual synchrony between the pure tones and the second ‘flash’ 

stimulus was shifted plus or minus 300 ms in two further conditions. 

 

 

Figure 1. An illustration of the time course of a flash suppression trial 
 

Figure 1. The time course of a flash 
suppression trial. For the first part 
of the trial, only one grating is 
presented to one of the eyes. After a 
stimulus onset asynchrony (SOA) 
the second grating is presented to 
the other eye. This onset was 
accompanied by a sound in the 
active conditions and without a 
sound in the control condition. 
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Method 

Subjects: Six subjects participated in Experiment 1, 2 female, 4 male with ages ranging 

between 25-43 years. All had normal or corrected-to-normal acuity as in the previous 

experiments. Three of the subjects including the authors AP and DA participated in 

previous experiments. The other three were new subjects and naïve as to the hypothesis 

of the Experiment. 

 

Stimuli: The two sine-wave gratings used in the previous experiments were again used as 

the flash suppression stimuli with one difference; in this experiment the gratings were full 

contrast. The orientation of the gratings presented to each eye differed trial to trial in a 

random order, as did the presentation order of the two gratings. In order to stabilise fusion 

of the binocular stimuli a narrow binocular annulus was added to each eye’s view, as was 

a central white fixation dot with a 1 pixel width black border, similar to that shown in 

Figure 1.  

 

Procedure: Subjects adjusted the mirror stereoscope to comfortably fuse the binocularly 

presented fixation spot and annulus. Each trial was initiated by pressing any key, which 

started with the presentation of the first rival stimulus to one of the eyes. The eye 

receiving the first stimulus was randomly determined trial to trial. This was also done for 

the orientation of the first and second grating to decrease adaptation effects. After a 

certain SOA determined by an adaptive staircase method, the second rival stimulus (the 

flash stimulus) was presented to the other eye, which until then had only been exposed to 

the annulus and fixation spot against the grey background. The two rival stimuli remained 

on the monitor a further 500 ms after which a random-noise patch cycled at 60 Hz to 

produce a spatially and temporally broadband mask. The mask remained on the screen for 

1000 ms. A further pause of 500 ms was imposed between trials in an attempt to counter 

ongoing adaptation. After each trial subjects were required to judge whether or not the 

second ‘flash’ stimulus completely suppressed the first by responding either 1 (yes) or 2 

(no) on the keyboard. Each session consisted of either two interleaved staircases, each 

testing a control and a sound condition in interleaved trials (subjects 1-3) or as a 
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continuous block of either control or sound trials (subjects 4-6). A minimum of 100 trials 

was used to calculate thresholds of suppression for each subject and condition.  

 

Figure 2. Averaged threshold for flash suppression with and without sound 

 

 
Figure 2. Single tones significantly 
decreased the stimulus onset asynchrony 
(SOA) required for complete flash 
suppression compared to trials where no 
sounds were presented. This effect was 
greatest for pure tones, with white-noise 
bursts resulting in a very small, non-
significant decrease in the required SOA. 

 

 

Results and discussion 

During trials with pure tones accompanying the flash, the likelihood of suppression was 

significantly increased relative to the no-sound control trials (t=2.484, df=5 one tailed t-

test p <.05). This was not the case with white-noise bursts which did not affect the 

likelihood of alternations (t=0.411, df=5 one-tailed t-test, p >0.05). It should be noted that 

during a great number of white-noise sessions (each session consisted of 25 trials) 

thresholds for suppression could not be obtained/fitted. White-noise appeared to be 

disrupting inter-ocular inhibition rather than assisting suppression.  

 

Parametric studies mapping out these effects with sounds of various stimulus intensities 

may shed light on the difference between broad-spectrum white-noise and singular pure 

tones in producing transient-induced alternations. Importantly, the results of Experiment 

1 show that the speeding of rivalry found in Chapter 5 is not an artefact of transient 

events affecting motor responses, because responses were required after the trial stimulus 

was presented. 
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The discrepancy between white-noise and pure tones may be due to the naturalistic (or 

lack thereof) quality of the auditory stimuli used. The white-noise stimulus did not appear 

to sound like anything that is encountered in the normal environment (the random phase 

of the components makes it very unlike natural sounds, with synchronised onset of 

frequency components and co-modulation of harmonics). Pure tones on the other hand 

are similar to a variety of auditory cues used in everyday scenarios such as email and text 

message alert systems, alarms, sirens and indicators on electronic appliances to name a 

few. These may have a stronger influence over processes underlying visual selection than 

sounds we rarely encounter, especially due to the attention grabbing nature of their 

functional associations.  

 

Experiment 2: Flash Suppression and audio-visual synchrony 

The second flash suppression experiment carried out examines how robust the effect of 

pure tones is in increasing the likelihood of suppression when they are presented with a 

300 ms asynchrony to the flash onset. Many auditory influences over visual perception, 

such as the sliding/bouncing ball effect (Sekuler, Sekuler & Lau 1997) are robust at 

audiovisual asynchronies up to 300 ms. If the effect of sound over flash suppression 

documented in Experiment 2 is similarly robust the processes involved in the auditory 

effects over rivalry described here adhere to the same principals involved in cross-modal 

integration more generally. This outcome would also support the pattern of results found 

in the previous experiments; that the effects of sound over binocular rivalry are mediated 

by a system more global than vision. 

 

Method 

Subjects: Three subjects from Experiment 1 participated in Experiment 2 ages ranging 

from 27 to 43 years and including the authors AP and DA.  

 

Stimuli and procedure: The stimuli and procedure were the same as that used in 

Experiment 1 during the pure-tone conditions. The pure tone was however not presented 

in synchrony with the flash onset but either 300 ms prior to, or after it. Here the control 
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thresholds (no sounds appeared during the trial) were measured with trials interleaved 

with the sounds trials.  

 

Figure 3. Audio-visual asynchrony and the effect of sound on flash suppression 

 
Figure 3. A) Sounds presented before the flash onset still reduced the SOA required for 
complete flash suppression to occur. B) Sounds presented after the flash onset were not as 
effective. 

 

Results and discussion 

When sounds are presented 300 ms before the flash onset, the effect remains the same as 

reported in Experiment 1; these sounds significantly increase the likelihood that a 

complete swap to the new, flashed image occurs (F=8.63, df=3, p <0.05). If sounds are 

presented 300 ms after the flash however, they have no significant impact on this 

likelihood, although a small trend is observed (see Figure 3 B). This result is consistent 

with the finding that audiovisual interactions can persist with small asynchronies 

(Sekuler, Sekuler & Lau 1997).  
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Figure 4. Individual data  

 
 

Figure 4. A positive or negative 300 ms asynchrony between the sound and flash stimulus did 
not eradicate the effect of pure tones on reducing FS latencies, although it is diminished. 
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Appendix 2: Data analysis supplementary to Chapter 5 
 
Results and discussion supplementary to Chapter 5 Experiment 1 

 
Binocular rivalry key press responses during each 60-second trial were recorded as a 

series of key press states (1, -1 and 0 for piecemeal) and their corresponding durations. 

These data are plotted for one subject in Figure 1, which shows the key presses for 6 of 

the 87 trials. The particular 6 trials shown in Figure 1 involved pure-tone event streams at 

the 6 different temporal frequencies tested during binocular rivalry between 48% contrast 

gratings.  

 

Figure 1. Binocular rivalry key press data 

 
 
Figure 1. Key press recordings from one of the subjects in Experiment 1. The recordings from 
7 trials are shown, including a baseline trial (the first row). These particular data were 
recorded during rivalry between orthogonal 48% contrast gratings. Rows 2 to 7 show 
binocular rivalry key-presses during the presentation of the sound streams. The sound streams 
tested ranged from 0.5 to 15 Hz. 
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The key press data indicating the observers’ perceptual alternations over time were 

converted to alternation rates (alternations per second). Binocular rivalry alternation rates 

were significantly sped up in the presence of high-frequency event streams, specifically 

the 8.1 and 15 Hz streams tested. The effect appears to be similar for all the types of 

transient events used, including the sound events. Analysis of variance of the alternation 

rates across conditions (within subjects factors: event type (4) x contrast (3) x event rate 

(7)) resulted in significant main effects of event type (F(3,9.92), p <.01), contrast 

(F(2,10.44), p <.05) and event rate (F(1.28, 9.228), p <.05 Greenhouse-Geisser correction 

for violation of sphericity). All auditory event types, including the audiovisual condition, 

were as effective as the contrast increments in speeding rivalry, as can be seen in Figure 

2.  

 

Figure 2. Binocular rivalry alternation rates 

 
Figure 2. Average alternation rate during each of the experimental conditions across all 
subjects. The black solid line shows the alternation rate for the baseline binocular rivalry 
condition. The corresponding black dashed lines represent the standard error of measurement 
for the baseline average. The blue circular data points show averages during conditions with 
transient event streams. Each plot shows the data collected for the four different types of 
transient events, visual, auditory (including tones and white-noise bursts) and audiovisual. Six 
event cycle frequencies were compared, shown on the x-axis. 

 

Helmert contrasts showed no difference between the different transient event conditions; 

sounds such as the tones and white-noise bursts used can affect rivalry as much as 

transient contrast increments. The equivalence of sounds and contrast increments in these 

experiments is at first surprising. Visual transient responses are more sluggish than 
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auditory ones, with a latency of up to 100 ms. This is because the conversion of light 

energy into a neural signal involves chemical transduction, whereas hearing involves a 

more immediate mechanical process. It is possible that the 22 ms contrast increments 

used were not long enough to produce a robust transient visual response. Pilot 

experiments replicating some of the conditions from Experiment 1 suggest elevated 

speeding effects for combined contrast and luminance increments (compared with 

contrast only increments, as tested here). The possibility that the speeding of rivalry 

alternations with visual transients depends on their salience deserves future exploration. 

Although sounds here show equivalent effects, the salience of visual and auditory events 

should be properly equated before concluding that they are truly equal in their ability to 

speed binocular rivalry. 

 

Rivalry alternation rates are known to increase with visual contrast. Confirming this, the 

main effect of contrast was significant (df=2, F=10.44, p <.05), although it did not 

interact with event type (F=0.74, p >.05) or event rate (df=2.33, F=2.37, p >.05 

Greenhouse-Geisser correction) meaning that the elevation of rivalry rate was the same 

for each contrast tested. Only the 8.1 and 15 Hz event cycles significantly sped 

alternation rate (see Figure 2 which shows the baseline rate as a solid line) compared to 

the 0 Hz trials (simple contrasts 8.1 Hz: F=12.13, p <.05, 15 Hz: F=13.916, p <.01). From 

inspection of the probability of particular dominance durations plotted in Figure 3, it 

appears that this is due to reduced likelihood of long, outlier dominance durations, rather 

than a shift in the most frequent dominance durations. This can be seen by comparing the 

peak with the range in the frequency histograms shown in Figure 3. Compared to the 

histogram peak, range becomes markedly narrower in the two fastest event streams (8 & 

16 Hz).  
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Figure 3. Distribution of dominance durations 

 

 
Figure 3. Frequency histograms of the binocular rivalry perceptual durations. The key press 
durations have been binned and then the frequency tallies normalised to the maximum. The 
probability density of these dominance durations (y-axis) is plotted for each key press 
duration (x-axis). Data from one of the subjects is shown for the same conditions presented in 
Figure 1. The probability of longer key press durations in the fast, 15 Hz sound stream 
condition is reduced. 

 

Because visual transients can trigger alternations in bistable stimuli (Kanai, Moradi, 

Shimojo & Verstraten 2005) and auditory events can drive perception of visual temporal 

rate (Shipley 1964) it is reasonable to ask whether the stream of visual or auditory events 

are entraining binocular rivalry alternations. A hallmark of discreet binocular rivalry 
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durations is that they are independent from each other; the probability of each eye’s 

dominance duration is stochastic (Levelt, 1968, Fox and Hermann 1967). If the regular 

event streams presented here are entraining binocular rivalry alternations, alternations 

should become more periodic and less stochastic. To test this, an autocorrelation analysis 

was performed on the key press durations recorded. For each subject and condition, the 

dominance durations were correlated with each other over 12 lags, with the first 

correlation (of no lag) giving a correlation coefficient of 1.  

 

As has been mentioned, individual dominance periods in binocular rivalry show 

stochastic independence with each other (Levelt, 1968, Fox and Hermann 1967). This 

holds true for the conditions tested here, showing that periodic event streams do not 

increase the periodicity of rivalry alternations. Although there were occasional instances 

of significant correlations, these did not occur more than would be expected from random 

error (less than 5% of the time) and no systematic differences across any condition were 

found (AVOVA: event rate main effect F(6, 1.178 p>.05 and event type F(2.41, p>.05). 

This indicates that the underlying stochastic nature of rivalry alternations is preserved 

during the presentation of periodic transient events across the trial period. In other words, 

transient events do not override or ‘capture’ the temporal pattern of binocular rivalry 

fluctuations.  
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Figure 4. Autocorrelation of binocular rivalry dominance durations 

 

 
Figure 4. Autocorrelations of key press durations recorded by one of the experimental 
subjects. Key press durations were not correlated with one another, expect at the zero lag 
step, where identical key press series are compared. This independence is a feature of regular 
binocular rivalry alternations and shows that the event streams do not alter the stochastic 
dynamic involved. 

 

In addition to the autocorrelation analysis, a cross-correlation analysis was 

performed between the transient events and the key presses. Key press and event data 

were transformed into periodic sawtooth waveforms, seen in bottom panels of Figure 5 A 
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& B for one subject for the 1 and 2 Hz sound-stream conditions. These waveforms 

captured the occurrence of a key press swap or a transient event across the 60-second trial 

(although the plots in Figure 5 show only the first 10 seconds of the trial due to space 

constraints). The waveform peak of 1 denotes a swap or a transient event, the value of y 

giving the time to next swap or event : y = 1 – (1/t) (t= time to next event/swap).  

 

The two waveforms where correlated with each other across 90 lags (corresponding to 

one second at a sample rate of 90 Hz). A slight modulation in the correlation coefficients 

mirroring the periodic event streams was found, however none of the correlations was 

significant, when tested against P values obtained from randomly shuffling them and 

bootstrapping the data sets 1000 times. The cross-correlogram for one subject is shown in 

Figure 5. The blue line shows the pattern expected from a perfect correlation between the 

events themselves. The red line shows the actual cross-correlations, which were all non-

significant. This result is consistent with the lack of periodicity found between the 

dominance durations in the autocorrelation analysis, and preservation of the stochastic 

properties of rivalry dynamics. 

 

Lack of any specific entraining is also supported by informal subject interviews; 

observers noted that there were only occasional instances where alternations appeared to 

coincide with the accompanying sounds or visual events. Qualitative post-experiment 

reports from observers revealed that they found the white-noise transient events at the 

higher rates (8.1 & 15 Hz) irritating, but did not report irritation at lower cycle rates or for 

the pure-tone pips. This provides qualitative support for the interpretation that the 

speeding of rivalry alternations accompanied by rapid transient event sequences is due to 

increased arousal. In order to explore this further an additional analysis was performed on 

the speed of rivalry alternation across the duration of each trial. If the effect of transient 

events is due to a startle effect that adapts or diminishes over the trial, there should be a 

negative correlation or slope of alternation rate across time. 
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Figure 5. Cross-correlation between events and binocular rivalry alternations 

A. 

 
 

B. 

 
Figure 5. Cross-correlograms of events and key presses, here shown for one subject for the 1 
and 2 Hz sound event stream conditions. 

 

Rivalry alternation rates did not change across the duration of the 60-second trials in any 

of the conditions tested. A few significant correlations where found, but these were below 
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5% of the data points tested and had no particular pattern. This suggests that the effect of 

sound events on binocular rivalry is not due to a quickly adapting startle response.  

 

Figure 6. Alternation rate across time 

 
Figure 6. The alternation rate did not change across the trial durations tested (60 seconds). 
The data plotted here include only the left and right eye key press recordings, and not the 
shorter instances of piecemeal rivalry. 

 

The effect of contrast on speeding rivalry alternations is well documented; rivalry 

alternation rates increase linearly with log increases in the contrast of the rival stimuli 

(Levelt, 1968). The contrast increments constituted an overall increase in the binocular 

rivalry stimuli across the trial. Interestingly, the overall increased contrast accounts for 

the magnitude of the speeding effects found. The effect of visual transients in changing 
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rivalry alternation rates can be explained by changes in this average contrast when 

compared to the speeding-effect of contrast measured in the 12, 24, 48 and 96% contrast 

grating baseline conditions. Figure 7 shows the rivalry alternation rates in the flicker 

conditions as a function of time-averaged rivalry contrast. 

 

Since the contrast transients in Experiment 1 involved adding a 50% increment to the 

base contrast, this was proportionately a greater contrast increase for the 12% base 

contrast than for 24% and 48% contrasts. In addition, as the number of contrast 

increments increased (i.e., at higher event rates), the time-averaged contrast would be 

even further enhanced. Together, this would mean that alternation rates for the lower rival 

contrasts at higher event rates should be most accelerated by the visual transients, just as 

was observed (see Figure 1, top-left panel). The similarity in the pattern of results for 

sounds and visual transients suggests that sounds may contribute to contrast gain during 

rivalry, in the same way that sound is thought to boost visual contrast responses in the 

early visual cortex. 

 

Figure 7: Binocular rivalry rates as a function of averaged stimulus contrast 

 
Figure 7. Alternation rates during binocular 
rivalry from Expt 1 and 2 are shown as a 
function of stimulus contrast averaged across 
the 1-minute trial periods for the visual 
transient condition tested in Experiment 1. The 
black data points show rivalry switching rates 
for four different visual contrasts, 12, 24, 48 
and 96 % in the absence of any transient 
events. The increasingly darker grey data 
points show mean alternation rates (N=7) for 
the 12, 24 and 48% contrast pedestals 
respectively. Each event rate condition is 
expressed as the average visual contrast 
across the 1-minute trial, rather than event 
frequency for comparison with the effect of 
visual contrast alone on rivalry switching 
rates. 
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Figure 8. Alternation Rate and rivalry contrast 

 
Figure 8. Binocular rivalry alternation rates as a function of stimulus contrast. 
Increasing stimulus contrast produced corresponding increases in rivalry rates, as has 
been demonstrated previously. 
 

An additional analysis was performed on the proportion of piecemeal rivalry during the 

event conditions. The proportion of piecemeal rivalry did not differ as a function of any 

of the conditions tested (F(2.34, 2.66) p>.05 Greenhouse-Geisser correction), although 

this may be due in part to our small rival stimuli (1.5° diameter), as this is known to limit 

piecemeal rivalry (Blake, O’Shea & Mueller 1992). The possibility that transient contrast 

increments and sounds can affect the completeness of binocular rivalry alternations could 

be tested with larger images in the future. 
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The results of Experiment 1 demonstrate an auditory influence over binocular rivalry 

dynamics. For a range of auditory event rates tested, there is a significant increase in the 

temporal rate of rivalry alternations with no concomitant change to the stochastic 

properties of the rivalry dynamics. Although it is conceivable that an auditory event 

presented in isolation may invoke singular alternations during rivalry, the continuous 

sound streams we used did not entrain the temporal pattern of binocular rivalry 

alternations raising the possibility that response inhibition affects perceived salience 

across the course of the observation trial. This is not supported by the correlation 

analysis, but event-dependent alternations did seem to occur in the first few seconds of 

each trial. Whether sounds can increase the likelihood of one swap is the subject of 

Experiments 1 and 2 of Appendix 1. A replication of Kanai et al.’s 2005 study with 

auditory transient stimuli would also address this question. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 

 
Figure 5 
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Figure 6 
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Supplement: Results in detail 

Binocular rivalry tracking data for a total of 816 mins (n = 22) were collected to quantify 

the baseline influence of sound on attentional control of rivalry dominance. There were 6 

conditions, with 16 subjects doing 4 min blocks and 6 subjects (who did three repetitions 

of the experiment) doing 12 min blocks. The mean perceptual durations for the passive 

and the two active ‘hold’ conditions are plotted in Figure Suppl1a (part of these data were 

presented in Fig 2), shown separately for the looming visual pattern (left-hand panel) and 

the radial visual pattern (right-hand panel). For the raw dominance durations of the 

looming pattern, the mean dominance duration without sound (first pair of columns) was 

2.6±0.2 s in the passive condition, and subjects were able to increase dominance to 

3.6±0.3 s by attentively holding it (p <0.001, paired t-test). For the radial pattern, mean 

dominance duration without sound (right panel, first pair of columns) was 2.3±0.2 s in the 

passive condition, increasing to 3.0±0.3 s when subjects attentively held it (p <0.001, 

paired t-test). These findings from the no-sound conditions replicate earlier reports 

showing a degree of voluntary attentional control in selecting the dominant percept in 

perceptual bistability. These findings also replicate earlier reports showing that not only 

the dominance periods for the held pattern change, but also those for the other pattern. 

When subjects held the looming pattern the dominance duration of the radial pattern 

changed slightly from 2.3±0.2 s to 1.9±0.2 s (p <0.001). When subjects held the radial 

pattern the dominance duration of the looming pattern changed from 2.6±0.2 s to 2.0±0.2 

s (p <0.001). There were brief periods of superimposed or piecemeal pattern perception 

scattered throughout the observation period where neither pattern was exclusively 

dominant. In total, they averaged 13.7% of the observation period. 

 

Next we turn to the multimodal conditions (see also Fig Suppl1a), in which the visual 

stimuli and attentional selection tasks were identical to those just described above, but 

there was a looming sound matched to the visual looming pattern. During passive 

viewing, mean dominance duration for the looming pattern was identical (p>0.85, paired 

t-test) to the passive-no-sound condition (2.5±0.3 s), but subjects were able to nearly 

double mean dominance duration to 4.5±0.4 s in the active sound condition by attentively 

holding it (p <10-4). The absence of a change in dominance durations in the passive 
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condition shows that presenting sound with the visual stimuli did not automatically 

change dominance durations. These findings were corroborated by a two-way repeated-

measures ANOVA (sound (present/absent) x hold (yes/no)), revealing significant main 

effects for sound (F1,21=10.4, p <.005) and hold (F1,21=55.2, p <0.005). Importantly, 

there was a significant interaction between these factors (F1,21=22.1, p <0.001), 

indicating that subjects were better able to hold the looming pattern with the sound 

present than with the sound absent. 

 

For the radial pattern, similarly, the mean dominance duration in the passive condition 

was virtually unchanged by the presence of sound (2.3±0.2 s vs 2.3±0.2 s without sound; 

p>0.80, paired t-test), and subjects were able to increase it to 2.9±0.3 s by attentively 

holding it (p <0.001, paired t-test). A similar two-way ANOVA for the radial pattern 

revealed no effect of sound (F1,21=0.35,p >0.7), but a significant increase of dominance 

durations when subjects attempted to influence dominance (F1,21=20.4, p <0.0001). The 

interaction was not significant (F1,21=1.2, p=0.27), although it showed a trend in the 

opposite direction to the looming pattern, suggesting that subjects were worse at holding 

the radial pattern when the looming sound was present. We also examined predominance 

of the looming and radial patterns and ruled out that sound had a non-specific enhancing 

effect: the non-held pattern duration did not increase with sound present (all p >0.3; 

paired t-test). In these multimodal conditions, the dominance duration of the radial 

pattern changed from 2.3±0.2 s (for passive) to 1.9±0.2 s (hold looming). When subjects 

held the radial pattern the dominance duration of the looming pattern changed from 

2.5±0.3 s (passive) to 2.1±0.2 s (hold radial pattern). Again a two-way ANOVA for the 

non-held patterns showed only significant effects of the hold-condition (p <0.0001). 

Detailed results of the other experiments are given in the figures. 

 

Captions of Supplementary Figures 

Fig Suppl1: Detailed data from Experiment 1 (part of the data were presented in Figs. 2a 

and 3a of the main paper). a. The mean duration for the looming (left) and the radial 

(right) visual patterns. P denotes passive; HL and HR denote hold the looming pattern 

and rotating pattern, respectively. The ‘speaker icon’ denotes the sound conditions. b. 
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The proportion of the gain with the sound present over the gain without sound quantifies 

how much the looming sound enhances attentional control over the visual pattern. Those 

proportions for each individual subject (horizontally) are presented as multimodal 

attentional gain for the looming (green) and the radial (grey) patterns. The average value 

across the 22 subjects is denoted by A. c. The lack of correlation between the multimodal 

attentional gains for the two patterns demonstrates that a subject who is successful in 

holding the looming pattern is not necessarily successful in holding the radial pattern. d. 

Same as panel b, but now for the non-held patterns. Neither of them produces data 

significantly greater than 1 (p’s>0.1). Error bars, ±1 standard error. 

Fig Suppl2: The mean duration for the looming (left) and the radial (right) visual patterns 

in Experiment 2 (a) and Experiment 3 (b). P denotes passive; H denotes hold. Error bars, 

±1 standard error. 

 

Fig Suppl3: a. The mean duration for the looming (left) and the radial (right) visual 

patterns in Experiment 4. Error bars, ±1 standard error. b. Direct comparison of the data 

from Experiment 1 (Fig. 3a of main text) and Experiment 4 (Fig. 3d) for each individual 

who ran both the attended and unattended conditions, demonstrating that paying attention 

to the congruent looming sound is required to enhance holding of the visual looming 

pattern. The dashed lines connect data of identical subjects. The filled red circle indicates 

significance (t-test, see text), and error bars are ±1 standard error. c. Multimodal 

attentional gain in Experiment 1, comparing subjects who started with Experiment 1 

(open circles) with those who first completed Experiment 4 (closed circles). These data 

show that there is no significant difference between the two groups (p >0.8), while both 

groups show multimodal attentional gains larger than 1 (p <0.002, and p <0.02, 

respectively), implying that there is no effect of practice. These results show that the 

absence of multimodal attentional gain in Experiment 4 is unlikely to be due to 

inexperience of the subjects. 

 

Fig Suppl4: The mean duration for the looming (left) and the radial (right) visual patterns 

in Experiment 5. Error bars, ±1 standard error. 
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Fig Suppl5: a. We presented a high-frequency pure tone (H) alternating with a low-

frequency pure tone (L) in an LHL pattern. This sequence can be perceived either as one 

stream (LHL-LHL, i.e., grouped ‘galloping’ rhythm) or as two streams (H-H-H and L-L-

L, i.e., segregated ‘Morse’ tones). b. The mean duration for the Morse (left) and the 

galloping (right) auditory patterns. Note that the scale is different as in the other mean 

durations data figures. The disk icon denotes the visual flickering disk that supported the 

Morse pattern. c. There was significant multimodal gain in holding the percept of 

segregated Morse tones dominant over the galloping tones when the flickering visual disk 

(matching the Morse) was viewed, but there was no significant change when holding the 

galloping pattern. d. Same as panel b but here subjects were given the instruction that the 

flickering disk was not relevant to their task, although no explicit instruction was given to 

attend or to disregard the disk. These data concern a preliminary pilot experiment whose 

conditions were exactly identical to those used to collect the data for panel b but it 

involved only four out of the seven subjects who participated in this experiment (note that 

those four subjects participated in all experiments presented in this paper). The duration 

of a pilot series was 2 minutes. They did this attention task before they participated in 

Expt 6. e. Same as panel d of Fig. Suppl1 but now for the 7 subjects whose data are 

plotted in panel c of this figure: changes in “multimodal attentional gain” for the non-held 

patterns. Neither of the two multimodal attentional gains is significantly greater than 1 

(p’s>0.2). The average value across the 7 subjects is denoted by A. Error bars show ±1 

standard error. 

 

Fig Suppl6: a. A sound speaker was attached to the dorsal side of the hand to produce a 

tactile looming stimulus matched to both the visual and the auditory looming stimuli. b. 

The mean duration for the looming (left) and the radial (right) visual patterns in tactile 

condition (middle pair of bars) and the tactile+sound condition (right pair of bars). The 

‘hand icon’ denotes the tactile conditions. c. The individual subject data for both the 

tactile and the tactile+sound conditions. Error bars, ±1 standard error.
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Appendix 4: Statements of co-author contributions  
 
Statement of co-authors contributions: Chapter 2 

The thesis entitled “A cross-modal investigation into the relationship between bistable 
perception and a global temporal mechanism”, submitted by Amanda Louise Parker in 
fulfillment of the degree of Doctor of Philosophy at the University of Sydney, contains 
four papers either published or in press. The work contained in Chapter 2, entitled 
“Monocular rivalry exhibits three hallmarks of binocular rivalry: evidence for common 
processes”, was co-authored with Robert O’Shea, David La Rooy and David Alais. As 
co-authors, we agree that the authors’ contributions to the paper are as listed below: 
 
Robert O’Shea 
Study conception 
Data collection  
Data analysis  
Graphical presentation of results 
Manuscript preparation 
 
Amanda Parker 
Protocol and stimulus programming  
Data collection  
Data analysis 
Graphical presentation of results 
Manuscript preparation  
 
David Alais: 
Protocol and stimulus programming  
Manuscript preparation 
Guidance on initial design aspects of the project  
 
David La Rooy 
Data collection  
Data analysis  
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Statement of co-authors contributions: Chapter 3 

The thesis entitled “A cross-modal investigation into the relationship between bistable 
perception and a global temporal mechanism”, submitted by Amanda Louise Parker in 
fulfillment of the degree of Doctor of Philosophy at the University of Sydney, contains 
four papers either published or in press. The work contained in Chapter 3, entitled “A 
Bias for Looming Objects to Predominate During Binocular Rivalry”, was co-authored 
with David Alais. As co-authors, we agree that the authors’ contributions to the paper are 
as listed below: 
 
Amanda Parker 
Study conception 
Protocol and stimulus programming 
Subject recruitment 
Data collection  
Data analysis  
Graphical presentation of results 
Manuscript preparation 
 
David Alais 
Manuscript advice and editing 
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Statement of co-authors contributions: Chapter 4 

The thesis entitled “A cross-modal investigation into the relationship between bistable 
perception and a global temporal mechanism”, submitted by Amanda Louise Parker in 
fulfillment of the degree of Doctor of Philosophy at the University of Sydney, contains 
four papers either published or in press. The work contained in Chapter 4, entitled 
“Multimodal congruency as a mechanism for wilful control over perceptual awareness”, 
was co-authored with Raymond Van Ee, Jeroen van Boxtel and David Alais. As co-
authors, we agree that the authors’ contributions to the paper are as listed below: 
 
Raymond van Ee 
Study conception 
Data collection  
Data analysis  
Graphical presentation of results 
Manuscript preparation 
 
Amanda Parker 
Study conception 
Protocol and stimulus programming  
Data analysis 
Manuscript advice  
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